低高度无线电高度表系统
- 格式:doc
- 大小:4.21 MB
- 文档页数:18
低高度无线电高度表系统简介低高度无线电高度表系统(LLWAS)是一种用于航空领域的气象系统,其目的是提供对近地面的风速和方向的快速测量和可视化,以帮助飞行员更好地了解近地面的风场状况。
LLWAS系统在航空管制、航空气象、航空飞行等方面都有广泛的应用。
LLWAS系统的核心是一组无线电高度计,这些高度计会通过雷达等无线电设备的信号接收器接收到近地面反射信号,从而确定风向和风速等信息。
这些信息会被传输到中央处理单元进行处理、分析和可视化。
LLWAS系统通常会安装在机场附近的一些固定点上,可以覆盖整个机场的范围。
优势相对于传统的表面风观测系统,LLWAS系统具有以下的优点:1.覆盖范围广:传统的表面风观测系统只能测量到单一位置的风速和风向,而LLWAS系统可以覆盖整个机场甚至机场附近的空域。
2.精度高:由于LLWAS系统采用了无线电高度计,计算结果会更加准确。
3.实时性好:LLWAS系统可以实时采集、传输和处理风速和风向等信息,从而让飞行员快速了解近地面风场情况。
应用场景LLWAS系统在航空领域有广泛的应用场景,其中包括:1.飞机起飞和降落时的风速和风向掌握。
2.各种气象警报的发布和解除等。
3.需要根据风场条件变化调整起降场的使用计划时,LLWAS系统可以为机场运营提供更多的参考依据。
结论总的来说,低高度无线电高度表系统是一种非常有用的气象系统,可以协助飞行员更好地了解机场近地面风场情况,增加飞行的安全性。
现代航空事业不断发展,LLWAS系统也将不断地优化和升级,以满足航空行业对气象系统的不断需求。
飞机低无线电高度表系统故障飞机低无线高度表(LRRA系统是飞机仪表中的重要组成部分,对于确保飞机安全飞行意义重大。
然而在飞行过程中,由于机组人员的疏忽,或者其他客观因素的影响,会导致低无线电高度表系统出现故障,甚至还会引发其他故障的出现,严重威胁飞机的安全运行。
因此,加强对飞机低无线电高度表系统故障的研究显得尤为重要。
一、飞机低无线高度表系统原理飞机低无线高度表(LRRA系统是用来检测飞机与地面垂直距离的一种机载无线电设备,它是飞机重要飞行器仪表构成之一,属于调频式无线高度表,测量范围一般在0-2500 英尺之间,通常是在航空器飞行高度降低和准备着陆阶段使用。
B737NG飞机上,一般都会有两套LRRA系统,收发机、发射天线、接收天线以及显示装置共同组成LRRA系统。
发射机的发射天线向地面发射出由三角波调制出的调频波,这是一种较高频的连续波,大约为4300MHZ调频波经过地面反射之后由接受天线来接收,收发机再把接收的调频波及从发射机耦合来的发射波进行混频,由于飞机高度与输出的差频有关,用频率计数器测算出差额,之后再通过相关换算,就可以得到飞机离地面的高度。
二、飞机低无线电高度表系统故障通过上述对B737NG飞机LRRA系统工作原理的简单分析,可以得知当LRRA系统出现故障时,很可能还会引发以下某个单一或者并发故障的发生:首先,两侧无线高度表数值会出现较大差异;其次,相互接近的两个通道自动驾驶方式不能使用;再次,在接近过程中,其中一侧的飞行员飞行指示杆显示出意外丢失,并且无线高度表数值显示错误;最后,当飞机起飞后,在接近或者复飞的过程中,可能会出现非常态下的预警提示;此外,当飞机在接近过程中,飞行方式的信号牌会呈现出非正确形式的自动油门显示。
飞机在飞行过程中,一旦出现了以上某一个或者几个故障,首先需要运用具有相关性因素的故障隔离程序及自动检查功能,明确出飞机出现故障是否是由于飞机低无线高度表操作失误而引起的,然后再对飞机低无线高度表系统进行全面排查。
飞机低无线电高度表系统故障分析因为早期机载无线电高度存在着电路集成度不高、拆分不容易以及可测性能较差的弱点,造成其在测试的过程中无法保证测试的可靠性,并且后期的维护和维修时间更长、花费更多等等。
对于以上存在的各项的特点,文中分析了飞机故障一般出现原因和具体表现现象,并且与实际情况相结合,提出了减少故障发生的操作手段。
标签:系统原理;故障分析;无线电高度表引言低高度无线电高度表系统性工作的高度范围在负20英尺至2500英尺之间,通常情况下使用在飞行的过程中以及着陆的过程中。
操作系统中心的工作频率在4300兆赫兹左右,其向地面进行调频信号的发送,无线点信号经过地面的发射之后被飞机低无线电高度表收发机接收,信号发射以及信号的接受进行相互比较之后分析得出彼此间的差频,这样就能够计算出实际距离地面的高度。
收发机把这个高度数据发送至指示器上显示,并且发送至飞机中的其他系统。
1 硬件系统1.1 设计思路开展系统硬件平台设计时,一方面能够考虑到无线电高度表上的各个指标对于测试的速度有较高的要求,需要使用VXI总线仪器将此类测试工作完成,另外一方面因为工作的频率在42千兆赫兹至44千兆赫兹之间,并且测试中有各种多种多样的内容,单纯性的使用VXI仪器无法满足各种测试性要求,因此硬件平台需要使用现如今使用最多的VXI以及GPIB仪器混合形式组成。
整个设计系统需要符合的条件是ARING608A航空電子系统测试中的各项操作设备的一般标准[1]。
此项标准对于接口进行了一般设计,其开展的是标准化定义操作,当中包含了机械连接、安装形式、接口模块的尺寸大小以及接卡的连接方式和信号的分类等等。
1.2 硬件组成无线电高度表的智能测试操作系统使用的是VXI以及GPIB仪器混合形式组成,各种操作仪器使用的是商业货架产品,当中各种仪器以及开关的自检自校功能。
硬件平台主要是通过工控机操作体系、VXI操作仪器以及接口连接器组件等等,能够对测试适配器做更换操作,详细的硬件结构图参见图1。
低无线电高度表常见故障探析摘要本文对航空飞机上低无线电高度表工作方式进行了全面分析,在此基础上论述了低无线电高度表的几种常见故障,并对如何处理这些故障进行了总结【关键词】低无线电高度表故障过程1 低无线电高度表常见故障1.1 低无线电高度表工作方式低无线电高度表(LRRA)系统测量地面到飞机的垂直高度,测量范围在-20-2500FT之间,由于主要用于起飞、复飞、进近和着陆阶段的数据计算和提供显示,要有极高的准确性和可靠性无线电高度表有两套收发机,每套收发机有一对自己的接收和发射天线,收发机通过发射连续波的射频调频信号到地面再反射回飞机,信号经过的时间代表着飞机到地面的垂直距离,现在我们飞机上使用的一般都是等差频接收机。
收发机的工作方式为寻找模式,跟踪模式,无线电高度计算模式寻找模式:当频差如果不是25HZ,那么系统就自动工作在寻找模式上,高度处理器让斜率发生器去改变发射机发射的锯齿波的斜率进而改变发射频率,频率差连续改变,频率差通过电门S1送到鉴频器,鉴频器一直工作直到找到25HZ 跟踪模式:如果频差等于25HZ,那么鉴频器就使高度处理器连接到跟踪模式上,跟踪鉴频器输出值和25HZ比较差频,如果出现小的偏差,那么就稍稍的改变锯齿波的斜率,直到频差改变到25HZ高度计算模式:计数器接收锯齿波的样本,并测量周期T,当在跟踪模式下,锯齿波的周期就代表飞机的高度1.2 无线电高度表给PSEU用于计算航段每个FCC用本边的无线电高度表的信号用于进近的控制和低高度的飞行计算自动油门用无线电高度来计算起飞复飞和自动油�T平飘预位的计算DEU用无线电高度表的数值用于显示WXR用无线电高度表的数据来开启和关闭PWS功能GPWS用无线电高度表的数据来进行近地警告的逻辑计算FDAU用无线电高度表数据来记录高度TCAS用无线电高度表数据来设置灵敏度等级1.3 如果无线电高度表提供了错误或无效的高度数据,飞行可能受到的影响(1)无线电高度表出现故障旗,数值不正确(2)双通道自动驾驶进近不能使用(3)进近时一侧飞行员的飞行指引消失(4)起飞、进近中或复飞过程中触发非正常的形态警告,如起落架构型警告(5)进近阶段飞行方式信号牌出现非正常的自动油门RETARD方式显示,油门杆移动到慢车位(6)进近过程中高度报告不全或没有高度报告所以无线电高度表对飞行安全的影响很大,一旦故障会引起一系列的不安全后果2 故障分析及过程现在我公司737NG机队无线电高度表故障频发,给公司运行带来了很大压力,下面我总结了三种常见多发故障,及相应的故障的处理方法第一种多发故障是空中或地面出现RA故障旗,地面收发机有时工作又恢复正常,测试有可能无故障,这种情况一般是和无线电高度表收发机或天线有关,我们可以简单的通过对收发机前面板进行自测试和对调无线电高度表收发机来进行故障隔离和判断第二种多发故障就是进近条件下一侧的飞行指引消失,可靠性数据显示这个故障随着B737NG飞机机龄增大,出现的也越来越多,占现在无线电高度表故障将近30%,情况也相对复杂在正常情况下如果机组接通了F/D开关,F/D指引会在PFD显示其中如果在第6种条件LOC截获的情况下RA信号消失超过两秒,就会造成相应一侧的飞行指引消失。
无线电高度表(Radio Altimeter)是一种使用无线电信号测量航空器离地高度的机载设备。
民用航空器上使用的无线电高度表一般为低高度无线电高度表(LRRA:Low Range Radio Altimeter),测量范围0到2,500英尺,通常在航空器进近和着陆阶段使用,特别是在低能见度和自动着陆的情况下。
无线电高度表是近地警告系统(GPWS)的基本组成部分。
工作原理简介:无线电高度表系统向地面发射调频连续波信号,这些信号经地面反射后被接收机接受,通过比较发射信号和接收信号的时间差就可以计算出航空器实际的离地高度。
A320飞机的RA 有两部,系统组成如下图.两部收发机位于后货舱,自带风扇冷却.四个小方型天线,两个发射,两个接收.高度显示在两侧的PFD上.在系统使用中经常出现如下错误,给飞行员造成很大困惑,甚至造成飞机损坏.无线电高度表(Radio Altimeter)有两种工作模式,NO正常模式和NCD模式NCD(无计算数据模式)是在某一高度以上(5000英尺)或飞机在某些飞行姿态如(ROLL >30) 这时候系统会进入NCD模式.如果在正常模式时给系统送了错误的数据,如过低的高度,或在飞机低高度时收到了NCD信号.(如在飞机进近中收到NCD会导致飞机不会激活FLARE模式,从而导致擦尾或重着陆)下表中列出了一些典型的故障.在故障调查中,发现问题主要存在于以下几个方面.1.天线区域被污染,常见的是尘土,雨雪天的污泥,渗漏出的各种油液.参考A320 MPD 324200-03-1 要求每6个月做一次清洁工作.在雨雪天气或在跑道受污染的情况下及时清洁天线表面.可以有效避免出现错误数据和NCD情况,防止飞机擦尾或重着陆2.在安装天线时,由于天线电缆露出部分太短,安装人员经常要把天线用力拉出,这个会造成接头处损坏,而外观上是看不出来的.为此空客做了相应的改装SB,如下图.3.天线的接头防水问题为此空客做了多次改装如下图,可以看到各种变化.4.天线线缆的老化问题按照要求每144个月(12年)需要更换线缆.需要注意的是电缆长度是不可随意增加或剪短的.因为在计算时,该长度是计算在内的.这个问题曾经在某些公司出现过.。
低高度无线电高度表系统第一节概述一、功用低高度无线电高度表系统用来测量飞机距离地面的垂直高度。
二、系统概述低高度无线电高度表系统工作高度范围为-20~2500英尺,一般用在飞行的进近和着陆阶段。
系统的中心工作频率为4300MHZ。
它向地面发射调频信号,无线电信号经地面反射后被LRRA收发机接收,发射信号与接收信号进行比较后得出的差频(对应一定的时间差),这样就可以计算出实际离地高度。
收发机将这个高度数据送到指示器显示,并送到飞机其它有关系统。
—三、系统各部件安装位置欢迎下载 2—1、跳开关:LRRA—1跳开关—P18板LRRA—2跳开关—P6板2、收发机—E2—4架3、天线—飞机底部4、EADI显示器—P1、P3板(33A和34N飞机)5、高度指示器—P1、P3板(3T0飞机)第二节部件功能一、LRRA系统收发机1、功用LRRA的R/T组件发射和接收调频信号,对发射信号和回波信号进行比较和处理,得到飞机距离地面的高度。
欢迎下载 3—2、结构特征LRRA收发机是标准的1/2ATR短箱,重15磅。
收发机靠前面两个锁扣固定在设备架上,前面板还有一个把手以便于搬动。
面板上的插座用于连结到测试设备进行航线测试。
前面板上还有一个自测试开关和故障指示灯。
3、电源LAAR收发机使用115V AC,400HZ单相电源。
4、工作发射机产生一个中心频率为4300MHZ的连续调频波信号输出。
向地面发射的信号经过地面反射,回波信号被接收机处理。
接收机通过比较发射与接收的信号频率,产生对应于绝对高度的信号,高度信号的处理是由收发机内部的两个微处理器来完成的,一个处理器进行高度信号处理并输出模拟和数字式高度数据;另一处理器完成监控功能,收发机还将无线电高度数据送到自动飞机控制系统。
5、自测试按压收发机面板上的自测试开关进行自测试。
如果自测试通过,则先显示40英尺,接着显示RA故障旗。
二、LRRA系统天线1、功用LRRA天线用来发射或接收无线电射频(RF)信号2、结构特征LRRA天线通过一根同轴电缆连结到收发机。
由于工作在微波频段,所以电缆长度的要求很严格。
天线通过一个定位销进行定位,并使用8个螺钉进行固定。
发射天线与接收天线是相同的,可以互换。
LRRA天线工作在4300MHZ频率上。
欢迎下载 4—三、EFIS控制面板对于33A和34N飞机,低高度无线电高度表显示在EADI上,控制面板用来选择要求显示的信息。
EFIS控制面板分成左右两部分,左边控制EADI 的显示,右边控制EHSI的显示。
(一)、EADI控制1、功用在进近和着陆阶段,EADI显示器可以显示无线电高度和所选择的决断高度。
下面我们讨论左边的控制面板对EADI显示进行控制。
2、结构特征(1)决断高度选择旋钮决断高度是由决断高度选择旋钮来选择的,选择的范围是-20~+999英尺。
决断高度选择旋钮是一种有24档位可连续旋转的旋钮,通常每转一格改变DH值1FT,但如果旋转速度超过2转/每秒,那么每转一格改变4FT。
欢迎下载 5—(2)DH REF LCD液晶显示器液晶显示器显示所选择的决断高度。
当电源刚接通时,显示器显示200英尺。
进行主暗/灯光测试时,显示器交替显示“888”两秒和显示空白一秒。
(3)复位电门REST当飞机下降穿过决断高度,可以通过接压RST电门对DH电路进行复位。
(4)BRT亮度调节BRT旋钮用来调节EADI显示器的亮度(二)、EADI显示器1、功用在进近和着陆阶段,EADI显示器可以显示无线电高度和所选择的决断高度。
2、特性(1)无线电高度显示欢迎下载 6—无线电高度是以数字形式显示在EADI,显示范围-20~+2500FT,从-20~100FT是以2FT的增量更新显示,从100~500FT是以10FT增量更新显示;从500~2500FT是以20FT为增量递增显示。
大于2500FT高度显示空白。
欢迎下载7—(2)上升的跑道符号当LOC有效时,绿色跑道符号将升起在EADI上,飞机高度从2500到200FT,跑道符号显示一直保持在200FT;当飞机高度低于200FT,跑道符号随着高度的降低将逐渐升起直到碰到飞机符号(三角形)。
(3)决断高度(DH)显示控制面板上液晶显示的决断高度显示在EADI上无线电高度的上面。
如果控制面板所选择的决断高度为负值,那么EADI上决断高度显示空白。
当飞机从比决断高度高75FT的高度下降,经过DH 时,DH值显示消失,只剩下两个黄色DH字母显示,并闪亮三秒钟,同时无线电高度值也显示黄色。
这种DH警戒可以通过按压EFIS控制面板上RST复位按钮进行人工复位,或者飞机爬升到比DH值大75FT时自动复位。
或者飞机落地后自动复位。
DH警戒复位后,将回到原来的颜色显示,无线电高度显示白色,DH显示绿色。
(4)高度警戒(H—ALERT)当飞机下降到高度1000英尺时,高度警戒信息白色的字符“ALT”将显示在EADI上。
当飞机继续下降到500FT或爬升到2500FT时,高度警戒(ALT)将自动复位,或者可以通过按压EFIS控制面板上的REF复位按钮进行人工复位。
3、工作(1)无决断高度警戒(DH ALERT)—RA大于DH当无线电高度(RA)大于所选择的决断高度时,没有决断高度警戒显示。
所选择的决断高度(DH)显示在无线电高度(RA)的上面。
(2)决断高度警戒(DH ALERT)—RA小于或等于DH。
当飞机从比DH高75FT处下降到DH值时,无线电高度和DH显示都变为黄色,并在最初的三秒“DH”闪亮。
(3)决断高度警戒终止决断高度警戒的终点可以自动或人工进行复位。
自动复位出现在飞机欢迎下载8—落地或飞机爬升到比DH高75FT,人工复位通过按压EFIS控制板上RES 复位按钮。
复位后,显示将回到原来的显示颜色,无线电高度RA显示白色,决断高度DH显示绿色。
(4)无效数据当无线电高度或决断高度数据无效时,EADI上将显示各自的黄色警告旗RA或DH。
无线电高度数据无效还使跑道符号显示空白。
四、无线电高度表指示器我部的3T0飞机所装的低高度无线电高度表,显示在专用的高度表指示器中。
1、电源电源为115伏400赫兹交流电和28伏直流,指示器照明用5伏400赫兹交流。
2、特点指示器从-20~500英尺为线性刻度,从500~2500英尺为对数刻度。
出现警告旗表示所指高度无效。
3、工作指示器指针根据无线电高度表收发机的输出信号大小指到一合适位置上。
所测高度大于2500英尺时,指针就进入遮板后面。
转动绝断高度旋钮可调整决断高度,当所测高度低于所选定的决断高度时,决断高度灯亮。
指示器内部的监视器确定收发机和指示器线路工作是否正常,任一装置发生故障,警告旗都出现。
4、测试按压并保持指示器上的自测试按钮,指示器指示+30英尺,两秒钟后,故障旗出现,松开测试按钮,指示器继续指示到+300英尺然后回零。
同时,指示器上的决断高度(DH)灯、ADI上的DH灯和近地警告(GPWS)上的不工作灯同时闪亮。
欢迎下载9—第三节工作原理一、LRRA系统原理1、时间频率关系系统向地面发射一个线性连续调频波信号,信号经地面反射延时后被接收机接收。
接收信号与发射信号进行混濒,得到的差频信号的频率与飞机绝对高度成正比,代表飞机离地的真实高度。
2、工作如图所示,发射机发射的调频信号频率为(4300±A)MHZ,在某个时刻T1发射信号的频率为F1(实线),F1信号经地面返回延时△T后,在T2时刻被接收(虚线)。
而发射调频信号经过△T延时后,从F1上升到F2,欢迎下载10在T2时刻,发射信号(频率F2)接收信号(频率F1)在混频器混频,得到的差频信号的频率△F=F2-F1。
这个△F是与延时时间△T成比例的,△T又对应于绝对高度,所以经过适当的计算处理,将差频△F变换成代表绝对高度的直流电压,再送到相关的系统。
二、LRRA系统方块图1、电源LRRA—1接收P18—1上电子汇流条BUS—1的115V AC;LRRA—2接收P6—1电子汇流条BUS的115V AC。
2、信号处理LRRA R/T通过发射天线向地面发射射频调频信号,并通过接收天线接收地面的回波信号。
在收发机里,接收与发射信号进行混频得到代表绝对高度的信号输出。
高度信号输出到EFIS符号发生器SG、近地警告计算机、自动油门A/T计算机、飞机控制计算机FMC和偏航阻尼YD计算机。
飞行数据采集组件(FDAU)通过符号发生器获得无线电高度。
收发机包含有一些探测器,它们对无线电高度进行监控,在一些特定的高度上输出控制逻辑信号。
例如在无线电高度10FT,输出一个发动机反推解锁控制信号。
决断高度DH的选择与复位由EFIS控制板进行,它送出信号到符号发生器,并显示在EADI上。
3、测试LRRA自测试在收发机(R/T)组件面板上用测试按钮启动,还可以在EFIS BITE中进行。
三、LRRA系统—1功能图1、概述这张功能图说明了33A和34N飞机无线电高度系统1的工作情况,系统2的工作情况也相同。
对于3T0飞机而言系统工作原理是一样的,区别在于LRRA输出到高度指示器,而33A、34N飞机则输出到EFIS符号产生器。
2、电源LRRA 的R/T使用115V AC,功率要求50瓦。
相位互锁程序钉用来使两个或三个LRRA系统同时工作时,避免相互影响。
程序钉使各系统的调制器工作不同步,这样就可以防止系统间的相互影响。
3、发射信号(低于2500英尺高度)电源一加上,发射机就产生一个线性调频的射频信号到发射天线,这个射频RF信号的频率范围为4250~4350MHZ,频率变化率为100HZ/秒。
从射频振荡器(RF OSC)取样一个信号,一路直接送到混频器,另一路经300FT 延时线到混频器,两个信号经混频后得到的差频信号就是基准信号1,它代表300FT高度,作为计算实际无线电高度的基准。
4、接收信号(低于2500英尺高度)发射信号经地面反射,△T时间延时后,被接收天线送到混频器(MIXER),与取样的发射信号混频得到比例于无线电高度的差频信号,这个差频信号经过高度处理形成直流电压信号,送到EFIS符号发生器以及相关的系统。
在一些特定的无线电高度上,解锁电路的继电器闭合,送出接地逻辑信号到相关的系统,如反推解锁,AID(AIRPLANE INSRALLED DELAY)延时电路形成内部高度补偿,使飞机主起落架刚触电时,LRRA指零高度,而当起落架支柱被压缩以及前轮着地时指示负值(-2~-8FT)。
5、接收信号(大于2500英尺高度)高度大于2500FT,高度处理器和监控处理器输出自身模拟的高度信号用来使接收机维持工作状态,使监控电路继续输出无线电高度有效信号(RADIO ALT V ALID)。
6、旗电路旗电路包括与门1等电路,与门1输出通常是高电位逻辑(无线电高度有效),与门1输入包括电源监控、高度处理器的比较器和监控处理器输出的处理器有效性信号。