断路器失灵保护若干问题分析
- 格式:doc
- 大小:28.00 KB
- 文档页数:5
断路器常见故障及分析断路器是电气系统中常见的保护设备,用于保护电路和设备免受过载、短路和接地故障的影响。
然而,断路器本身也会发生各种故障。
本文将探讨一些常见的断路器故障及其分析。
常见的断路器故障包括断电、跳闸和失灵等。
断电是指断路器无法打开,电流无法通过的情况。
跳闸是指断路器在额定电流以下时自动断开电路的情况。
失灵是指断路器无法正常工作,无法提供应有的保护功能。
一、断电故障:1.断路器触点氧化:长期使用后,断路器内部的触点可能会受潮或氧化,导致接触不良,从而引起断电故障。
解决方法是清洁或更换触点。
2.过载保护失效:当电路中的负载超过断路器额定电流时,断路器应该自动跳闸断开电路,以保护电路和设备免受危害。
如果过载保护失效,断路器将无法断开电路,从而引起断电故障。
解决方法是重新设置合适的过载保护参数或更换断路器。
3.短路保护失效:当电路存在短路故障时,断路器应该自动跳闸断开电路,以避免设备受损。
如果短路保护失效,断路器将无法断开电路,从而引起断电故障。
解决方法是重新设置合适的短路保护参数或更换断路器。
二、跳闸故障:1.过载:如果电路中的负载超过断路器的额定电流,断路器将自动跳闸断开电路,以保护电路和设备免受损害。
解决方法是重新评估电路的负载情况,确保不超过断路器的额定电流。
2.短路:短路故障是指电路的两个相或电源之间出现直接连接,电流瞬间过大。
断路器应该能够快速地跳闸以避免设备受损。
解决方法是重新评估电路的连接,并确保电路中没有直接短接的部分。
三、失灵故障:1.断路器机械部件损坏:断路器的机械部件如弹簧、弹片等可能会因长期使用而损坏,导致断路器失灵。
解决方法是更换损坏的机械部件。
2.整定装置故障:断路器的整定装置是用来设置断路器的过载和短路保护参数的。
如果整定装置故障,断路器将无法正确地进行保护。
解决方法是重新设置整定装置或更换断路器。
3.电气故障:断路器的电气部件如继电器、热释放器等可能会因电气故障而失灵。
断路器失灵保护分析摘要断路器失灵保护是指当某一相的故障电流无法通过该断路器时,其保护动作跳开其他相的断路器,以确保电网中不会再出现同一故障。
目前,电网中常采用断路器失灵保护。
对于电压型的断路器而言,当系统发生故障时,通过重合闸装置可以迅速将故障切除。
但若系统发生单相接地短路或三相短路时,由于故障电流较小,此时若不利用重合闸装置来切除故障,将导致事故扩大。
因此在实际工作中,要求断路器失灵保护与重合闸装置配合使用。
失灵保护的动作原理是当某一相的断路器失灵时,将会导致该相的电压降低、电流增大。
该电压降低、电流增大后将使故障点的电弧熄灭,从而保证系统的稳定运行。
所以失灵保护必须配合重合闸装置一起使用。
一、概述电力系统中,电压型断路器在正常情况下都能可靠切断故障电流,当线路或设备发生故障时,由于断路器失灵,电流无法流过,断路器就不能切断故障电流。
此时若线路或设备未被短路,线路和设备的故障仍能迅速排除,故障点也可能很快被熄灭。
如果线路或设备发生了短路,由于电流较小,则必须由断路器跳闸来切除故障。
此时若只有一台断路器失灵时,由于电网仍能正常运行,断路器跳闸后还可能使故障进一步扩大。
为了保证电网的安全可靠运行,应设置断路器失灵保护。
(1)对于高压系统来说,断路器失灵保护是必不可少的保护装置。
由于短路电流较大,在系统运行方式发生变化时可能引起绝缘破坏、事故扩大、继电保护装置误动或拒动等情况发生。
(2)对于中、低压系统来说,在一些地方电网中还没有装设保护装置时也常采用失灵保护。
(3)由于线路或设备的故障可能造成继电保护装置的误动或拒动,使电网失稳或导致事故扩大等严重后果,因此对于线路或设备发生故障后必须设置失灵保护。
二、失灵保护的动作特性(1)当某相的断路器失灵时,其保护装置将迅速的跳开其他相的断路器。
由于失灵保护动作特性具有特殊性,所以它与一般的保护相比,具有以下几点特性:①灵敏性:即动作电流大于动作电压,继电器动作速度快,继电器在一段时间内能可靠地动作。
断路器失灵保护分析针对断路器失灵保护中存在的一些问题,对失灵保护的设置和组成元件进行分析。
标签:断路器;拒动;保护0 前言在电网规模不断扩大的现代社会,当出现某种故障需要及时切除故障设备时,如发生断路器拒动,将扩大故障范围,引起设备损坏。
在继电保护的配置中,遵循近端保护的原则,断路器失灵保护得到了普遍采用。
1 断路器失灵保护的设置断路器出现非全相运行时,三相电流严重不平衡,此时断路器如发生一相拒动,造成发电机组与系统单相联系的非正常运行状态。
虽然由此产生的负序电流会引起负序电流保护动作,但由于断路器拒动,无法切除故障,长期运行必将引起发电机转子损坏。
断路器失灵保护是指当某一设备出现故障需要切除,但其自身无法实现,可以启动失灵保护,通过切除其他相关断路器来达到切除故障的目的。
2 断路器失灵保护讨论由于发电厂主接线的不同,高压侧断路器操作机构的差异,各发电厂的断路器失灵保护的配置不尽相同,在此对失灵保护的一些问题进行分析和探讨。
2.1 失灵保护复合电压闭锁元件随着电网的不断发展,虽然复合电压闭锁可防止失灵保护误动,但其弊端也逐渐显现出来。
虽然增加复合电压闭锁可以使过电流元件的灵敏度提高,但在断路器非全相时,运行系统基本处于正常状态,系统母线电压变化不大,对母线三相电压影响不大,也不能产生较大的零序电压,不能使母线电压闭锁的电压继电器启动。
所以复合电压闭锁功能不仅不能发挥作用,反而会造成失灵保护拒动,扩大事故范围。
为了减少非全相状态下产生的负序电流对发电机转子的影响,在断路器非全相运行时应尽快解除复合电压闭锁,以防止出现重大电力系统事故。
现在新建大型机组多采用3 / 2主接线形式。
由于变压器内部阻抗的存在,当变压器低压侧发生故障时,会在变压器高压侧产生较高的残压,零序电压和低电压判据反而使失灵保护无法出口。
此时若高压侧断路器发生拒动,失灵保护无法启动。
为了以较少的时间切除故障设备,建议取消变压器高压断路器失灵保护的复合电压闭锁功能。
关于主变断路器失灵保护动作联跳各侧断路器问题的探讨变电管理所何维摘要:按照贵州电网继电保护反事故措施实施细则的要求,"变压器的断路器失灵时,失灵保护应动作于断开本变压器各侧的断路器",否则故障得不到快速切除,对电网运行造成严重安全威胁。
本文主要结合遵义供电局500kV鸭溪变2010年5月2日500kV第三串联络5032断路器失灵保护动作时未联跳1号主变三侧断路器进行分析,总结经验教训,与同行分享。
关键词:继电保护失灵联跳断路器1 引言继电保护是电力系统的重要组成部分,是保证电网安全稳定运行的重要技术手段,电力系统的事故速度快,涉及面广,会给国民经济和人民生活造成很大影响。
纵观国内外的重大事故,无一例外地表现为在电网局部某一环节发生单一故障,未能迅速隔离的同时,由于继电保护不合要求的动作,再加上随之出现的其他不正常因素的综合效应,而导致系统失稳、大面积停电等事故。
2011年5月2日02时21分,因500kV鸭溪变附近发生强雷大雨天气,引发4台500kV SAS-550电流互感器故障,在24秒内相继发生500kV I组母线差动保护、500kV鸭福II回线路保护、500kV鸭烽线线路保护、1号主变差动保护、鸭福I回线路保护等动作跳闸,,造成遵义电网单独运行,与贵州主网解列。
其中500kV第三串联络5032C相电流互感器发生内部故障,造成500kV鸭烽线线路保护、5032断路器失灵保护、1号主变保护相继动作隔离故障,5032失灵保护动作后未瞬时联跳1号主变三侧断路器,由1号主变差动保护动作跳闸,延长了故障切除时间,不满足继电保护反措要求。
2、事故分析事故发生后,检修人员对500kV第三串联络5032电流互感器,500kV鸭烽线、5032、5033断路器保护、1号主变保护装置进行了全面检查,判断本次事故的原因是上海MWB互感器厂2006年出厂的SAS-550型产品内部电容屏结构设计上存在缺陷,绝缘裕度不够,在频繁的雷电波侵入情况下, 500kV电流互感器绝缘放电击穿导致。
220kV线路断路器失灵保护存在的问题分析摘要:通过对新建电厂各个设计方案的分析,阐述了断路器失灵保护启动回路的设计过程。
进而对其逻辑启动方式的进行了进一步的探讨,包括各种失灵启动方案的更改和失灵保护联调功能的完善。
提出了较合理的失灵启动方案和措施。
关键字:220kV断路器,失灵保护,联跳回路。
1断路器失灵保护概念断路器失灵保护是指故障电气设备的继电保护动作发出跳闸命令而断路器拒动时,利用故障设备的保护动作信息与拒动断路器的电流信息构成对断路器失灵的判别,能够以较短的时限切除同一厂站内其他有关的断路器,使其停电范围限制在最小,从而保证整个电网的稳定运行,避免造成相关故障元件的严重烧损和电网的崩溃瓦解事故。
2220kV断路器失灵保护启动回路设计方案及特点2.1方案一,线路断路器失灵保护启动原理接线如图1所示,WXH-803和RCS-902分别为线路第1套保护和第2套保护,TJa1,TJb1,TJc1为线路保护跳闸接点,SLDJ-1为线路断路器保护WDLK-863失灵动作接点。
第一套保护WXH-803跳闸启动失灵接点引入断路器保护WDLK-863后需要失灵保护动作后的接点才开出到第一套母线保护;第二套保护RCS-902跳闸启动失灵接点又是直接三相并联开出到第二套母线保护;两套保护失灵启动接点开出方式不一致。
2.2方案二,线路断路器失灵保护原理接线如图2所示,WXH-803和RCS-902分别为线路第1套保护和第2套保护,TJa1,TJb1,TJc1,TJa2,TJb2,TJc2为线路保护跳闸接点。
第一套光纤差动线路保护WXH-803跳闸启动失灵接点三相分别开出到第一套、第二套母线保护;第二套光纤距离保护RCS-902跳闸启动失灵接点三相并联分别开出到第一套、第二套母线保护;失灵保护由WXH-803 、RCS-902保护装置跳闸接点直接启动失灵,无电流判据。
2.3方案三,线路断路器失灵保护原理接线如图3所示,WXH-803和RCS-902分别为线路第1套保护和第2套保护,TJa1,TJb1,TJc1,TJa2,TJb2,TJc2为线路保护跳闸接点,SLDJ-1,SLDJ-2为线路断路器保护WDLK-863失灵动作接点。
500kV断路器失灵保护误动作跳闸故障分析摘要:高压电短路保护通常会选择处在220千伏或者220千伏以上的电力系统进行保护,主要是对断电器跳闸进行近距离的基础防护设备。
断电器失灵保护以及电气设备继电保护,两者之间有着密切联系。
在实际的生活中,通过使用失灵保护系统来对高压电路设备安装失灵保护开关和出口等两套装备。
主线路的连接作用与回路电源存在差异,继电保护装置在产生异常时,会做出跳闸指令,在该种情况下,出现故障的工作单位会做出保护指令,与断电系统中的电流信息产生呼应,帮助工作人员判断故障位置,检测问题缘由。
当系统内部出现故障问题后,依靠500千伏的断电器失灵保护系统可以较好稳定断电周围状况,保护电网的正常运转,降低发电器和变压器出现故障的原因,防止元件出现损伤。
基于此,本篇文章对500kV断路器失灵保护误动作跳闸故障进行研究,以供参考。
关键词:500kV断路器;失灵保护误动作;跳闸故障;处理措施引言在超高压电网系统内部,断路器失灵保护系统是为跳闸系统做故障分析,作为就近保护设备,在电网系统中运用广泛。
使得出现故障的部位能够及时解决问题,做出跳闸指令,保护周围装置。
断路器失灵保护系统能够有效阻隔断电器与其他相邻电路之间的联系,将停电范围控制在合理区间内,失灵保护是为了有效保管断电器之间的电流回路,保障所得数据准确可靠。
本篇文章针对500千伏断路器指令保护系统所出问题进行有效分析,按照故障类型做出及时整改,保障断路器失灵保护系统能够发挥其应有效果。
1断路器失灵保护原理失灵保护系统是当电力系统出现问题时,电路中的断路失灵保护系统及时作出跳闸指令,防止电路中依然通过故障电流,此类状况主要是在复合电压闭锁后进行启动,延缓出口跳闸时间,对故障电流及时清除。
失灵保护系统,主要是做出保护动作并对电流进行分辨,依靠电压闭锁元件所组成的跳闸回路装置。
2 500kV线路断路器失灵保护在失灵保护系统中,通过依靠500千伏的线路断路器,以线路逐一或者主二的保护路线,完成保护动作节点和外部节点的连接,为断路器做好保护基础。
关于断路器失灵保护的分析摘要:本文介绍了双母接线和3/2接线方式下断路器失灵保护的配置原则,以及不同的逻辑原理、基本构成和装置时间定值的整定。
介绍了应用断路器失灵保护改进的一些措施。
关键词:失灵保护;断路器;继电保护引言:当输电线路、变压器或母线或其他电气设备发生短路时,保护装置动作发出跳闸命令,但故障设备的断路器可能由于断路器跳闸线圈断线,直流电源消失及操作回路出现问题,导致断路器拒动,断路器失灵保护利用故障设备的保护动作信息与拒动断路器的电流信息构成对断路器失灵的判别,能够以较短的时限切除变电站内其他相关的断路器,使停电范围限制在最小,从而保证整个电网的稳定运行。
1、断路器失灵保护工作原理1.1、断路器失灵的定义:当系统发生故障,相应的保护装置保护动作而其断路器操作失灵拒绝跳闸时,通过相应保护装置的作用于本变电站相邻断路器跳闸,称为断路器失灵保护。
断路器失灵保护是近后备中防止断路器拒动的一项有效措施。
1.2、判断断路器失灵应有两个主要条件:①有保护对断路器发过跳闸命令;②该断路器在一段时间里一直有电流。
断路器失灵保护起动元件就是基于上述原理构成。
2、断路器失灵保护的配置原则2.1 220kv双母或单母分段接线方式中,将失灵保护做在母差保护装置中,某线路断路器失灵,失灵保护应跳开失灵断路器所在母线上的所有断路器,其跳闸对象与母差保护跳闸对象完全一致,所以将失灵保护与母线保护做在同一套装置里面。
这样做的另外一好处就是节省二次电缆。
2.2 3/2接线中,失灵保护按断路器设计,失灵保护包含在断路器保护装置里面,3/2接线中如果边断路器失灵,失灵保护除需要跳开边断路器所在母线的断路器外,还需要跳开本串中断路器,并起动远方跳闸装置跳开对侧断路器。
如果中断路器失灵,失灵保护要求跳同一串上相邻的两个边断路器,并分别起动远方跳闸装置跳开两条线路对侧断路器,因此,3/2接线中失灵保护不做在母差保护装置中,与重合闸一起做成一套断路器保护随断路器设计。
断路器失灵保护问题分析及改进内蒙古包头市 014030摘要:失灵保护作为一种有效的近后备保护,在工程中得到了广泛的应用。
只要其回路接线准确,设计方案合理,即能有效防止拒动和误动,从而快速、选择性地切除故障。
关键词:断路器;失灵保护;问题;改进策略随着经济的发展与人民生活水平的提高,电力系统的可靠性要求越来越高,所以电网的安全运行较重要。
断路器失灵保护作为变压器和断路器的重要继电保护,对电网的安全稳定运行具有重要意义。
一、断路器失灵保护1、概念。
当电力系统发生故障时,保护装置保护动作发出跳闸命令,需跳开的断路器拒绝动作时,此情况为断路器失灵。
断路器失灵故障有:直流电源消失、装置控制回路故障、断路器跳闸线圈的断线故障等。
断路器失灵保护作用是,当断路器拒动时,能以较短时限切除同一发电厂或变电站相关断路器,使停电范围最小。
2、基本原理。
断路器失灵保护中,双母线与3/2接线的跳闸对象与母差保护有所不同,通常双母线接线的断路器失灵保护由四部分构成,即失灵启动元件、延时元件、复合电压闭锁元件、运行方式识别元件。
其中,母线运行方式识别元件能明确切除哪条母线来实现失灵保护。
延时元件体现在对特定时间段内断路器电流情况的确认,包括零序、负序电流等,通过断路器相关跳闸、返回时间等要素分析,确定断路器失灵原因,以便采取针对性措施。
复合电压闭锁元件能结合断路器失灵实际,最大程度避免出口继电器误动,促进失灵保护的顺利实现。
失灵启动元件在断路器失灵保护中发挥着重要作用,当电力系统运行中存在跳闸命令且线路与元件有故障,保护动作出口继电器常开接点呈闭合状态时,或断路器某段时间内至少有一相电流或零序电流时,相应电流元件有动作,此时可判断断路器失灵。
而失灵启动元件主要作用在于检查保护所发出跳闸命令及断路器电流状态,以更好实现断路器失灵保护。
3、重要性。
随着电网的日趋复杂,电网安全性变得越来越重要,继电保护的拒动给电网带来的危害越来越大。
断路器失灵保护若干问题分析摘要结合应用于现场的各种断路器失灵保护情况,论述断路器失灵保护的一些特殊问题。
通过采用高可靠性的失灵保护装置,合理接线整定,严格按规则操作,可极大地提高失灵保护的正确动作率,为电网的安全运行做出应有的贡献。
关键词断路器失灵;保护;问题断路器失灵保护是指故障电气设备的继电保护动作发出跳闸命令而断路器拒动时,利用故障设备的保护动作信息与拒动断路器的电流信息构成对断路器失灵的判别,能够以较短的时限切除同一厂站内其他有关的断路器,使停电范围限制在最小,从而保证整个电网的稳定运行,避免造成发电机、变压器等故障元件的严重烧损和电网的崩溃瓦解事故。
断路器拒动是电网故障情况下又叠加断路器操作失灵的双重故障,允许适当降低其保护要求,但必须以最终能切除故障为原则。
在现代高压和超高压电网中,断路器失灵保护作为一种近后备保护方式得到了普遍采用。
1失灵保护的基本构成及作用失灵保护由电庄闭锁元件、保护动作与电流判别构成的启动回路、时间元件及跳闸出口回路组成。
启动回路是保证整套保护正确工作的关键之一,必须安全可靠,应实现双重判别,防止单一条件判断断路器失灵,以及因保护触点卡涩不返回或误碰、误通电等造成的误启动。
启动回路包括启动元件和判别元件;2个元件构成“与”逻辑。
启动元件通常利用断路器自动跳闸出口回路本身,可直接用瞬时返回的出口跳闸继电器触点,也可与出口跳闸继电器并联的、瞬时返回的辅助中间继电器触点,触点动作不复归表示断路器失灵。
判别元件以不同的方式鉴别故障确未消除。
现有运行设备采用相电流(线路)、零序电流(变压器)的“有流”判别方式。
保护动作后,回路中仍有电流,说明故障确未消除。
时间元件是断路器失灵保护的中间环节,为了防止单一时间元件故障造成失灵保护误动,时间元件应与启动回路构成“与”逻辑后,再启动出口继电器。
失灵保护的电压闭锁一般由母线低电压、负序电压和零序龟压继电器构成。
当失灵保护与母差保护共用出口跳闸回路时,它们也共用电压闭锁元件。
发变组断路器非全相启动失灵保护技术问题分析摘要:当1相和2相的高压侧断路器被切断时,由于不平衡的电力传输,会导致发动机的不正常工作,从而引起发动机的负载增加,进而导致发动机的转子出现严重的损坏。
为了确保发电机的正常运转,我们建议在其高压侧设备上装备一个完整的防火装置,并在必要时提供一个故障预警系统。
本文将深入研究这些技术难点。
关键词:变组断路器;非全相运行;启动故障保护功能0引言根据《继电保护技术规程》以及《25项工作重点标准执行指导(2009版)》(简称《二十五项反措》),在大型机组-变压器-线路组断路器上安装非全相断路器及启动故障断路器,旨在有效阻断发电机与变流器之间的持续性故障,以确保安全可靠。
鉴于一次性接头的使用以及断路器的类型,这种全相保护及启动失灵保护的应用仍然面临着许多挑战。
1发电机非全相运行分析1.1发变组高压侧断路器长期非全相运行3种常见的非全相运行现象包括:①当机组处理分配和合配时,如果断路器和隔离开关的质量不合格,可能会导致操作部件的破裂,从而导致整个系统的不正常工作;②当系统出现意外,如保险装置的触点被触碰,或者是主断路器的错误跳闸,导致主断路器无法完成三相分配,但是灭火装置的触点被触碰,从而导致汽轮机的主汽门无法打开,从而导致发电机的失磁,从而导致整个系统的不正常工作;③当发电机-变压器-线路组的输电线路出现短时间的单相故障时,可能会导致整个系统的不正常工作。
由于特殊情况,在单次操纵之后,由于无法完成重新连接,导致了持续的不稳定状态。
1.2当两个发电机处于非全相状态时,它们会产生不平衡的电流(1)高压侧断路器1相运行(即2相断开)对于一台600MW的单元接线机组,其主变采用Y0/A-11的连接形式,而且没有设置任何的出口断路器,因此,当B相的B相没有被切断时,A相也没有被切断,而当C相被切断时,由于发电机的灭磁开关被打开,使得发电机没有了任何的电力,这时,B相的电流就会被引入到低压的B相,从而形成一个由B相的线圈所形成的电场。
断路器失灵保护若干问题研究发布时间:2021-08-23T09:55:36.737Z 来源:《当代电力文化》2021年4月11期作者:张延垚[导读] 在电网中断路器是十分关键的设备,其发挥着失灵保护的作用,可是由于种种因素张延垚内蒙古电力(集团)有限责任公司包头供电局内蒙古包头 014030摘要:在电网中断路器是十分关键的设备,其发挥着失灵保护的作用,可是由于种种因素,其作用很难得到更加充分的体现,因此必须对断路器中的部分设备加以完善,在这其中最为关键的为完善电流判别元件,如此不但能够有效的保持灵敏度,还能够促进正常的运转。
本文针对断路器失灵保护存在的问题进行了相关探究,以供于参考。
关键词:断路器;失灵保护;问题研究对于断路器失灵保护的影响因素有很多,在这其中的关键点为电流判别元件在进行整定中没有充分的遵从整定规范,最为关键的为无法有效的避开正在运行的电流,无法全面的避开是由于不管在哪种情况下,必须让元件的灵敏性得到保障,不然就很难发挥出其作用,可是也是因此使得元件长期处在动作中,让断路器很难发挥出保护误动的功能。
一、线路失灵保护存在的问题在常规的断路器失灵保护中,一般运用相电流元件当作断路器没有断开的判别元件,此判别元件在电器的触点和保护触点的相互配合下,就形成了单相跳闸以及三相跳闸在启动过程中的失灵回路,为了避免保护出口触点卡住不存在返回情况,就需要加装判别元件,再或者由于误碰和误通电等状况,让开关出现失灵保护误启动,从而促进失灵保护工作更加顺利。
可是在整定实践中,针对系统运行模式和母联开关跳开以后,其线路末端发生事故时,相电流元件依然存在着充分的灵敏度,所以,如果其定值要避开正常运行的负荷电流是十分困难的,如此就会造成线路在正常运行的过程中,电流判别元件都是在动作中,因此,对于防止误动,没有发挥出把关的效果。
实际上,在失灵保护值,在节能型加装复合电压闭锁之前,系统中存在传动保护过程中,因为没有对启动失灵的连线进行断开,引发失灵保护误动作现象。
2.对于变压器失灵保护,可用“电流判别+保护出口+复合电压闭锁触点”相串联构成与门的方式解锁。
电流判别元件可采用零序电流和相电流并联的方式(或门)构成;保护出口为跳高压侧开关的出口;复合电压闭锁触点应为低压侧的复合电压触点,电压触点动作后应延时返回。
电压闭锁触点中包括低压侧电压,主要是防止低压侧故障时高压侧复合电压元件没有灵敏度而不能开放失灵保护;而延时返回主要是考虑如果变压器差动保护动作低压开关跳开后,低压母线的电压可能会立即恢复正常(例如变压器低压侧有小电源或变压器低压侧并列运行),从而没有起到开放闭锁的作用。
延时的时间应保证即使是发生低压侧区内故障,差动保护或低压侧后备保护能有足够的时向启动失灵保护跳开故障变压器所在母线上的所有元件,即延时时间应大于低压侧保护出口后跳低压开关与跳三侧开关的整定时间之差(一般为0.3 s~0. 5 s),加上失灵保护启动后跳开故障变压器母线上所有元件时间(一般为0.5s),考虑留有一定的裕度,一般取3s即可。
采用上述方式保证了误传动时有电压把关,而区外故障电压开放时有“电流判别”和“保护出口”把关。
该方法的优点是在高压开关三相失灵时也能解锁。
此外,变压器低压开关检修时,低压母线可能失去电压,此时解锁回路中的电压闭锁将开放,因此,还可在解锁回路中串人压板,以备断开该解锁回路。
3.电流判别元件灵敏度低的问题
断路器失灵保护的电流判别元件应满足在系统正常运行及故障线路开关断开后不动作,同时在线路末端发生各种故障时有足够的灵敏
度,这样才能使电流判别元件起到出口把关的作用。
可以采取以下2种方法:
1)用电流突变量启动元件对3个相电流元件从逻辑上进行闭锁;
2)用电流突变量启动元件控制失灵启动电流继电器动作的正电源。
这样,系统正常运行时,由于电流突变量启动元件不动作,开关失灵电流判别元件不会动作;系统发生故障时,电流突变量启动元件动作后展宽一个时间(大于后备保护的时间,例如7s)开放电流判别回路。
电流突变量启动元件(由正序和负序电流组成)应能保证本线路末端发生故障时有足够的灵敏度,能可靠启动。
按上述方法构成的失灵保护电流判别回路,在正常运行时由电流突变量元件保证其不会动作,在开关断开后由相电流元件保证其不会动作,从而提高了系统正常运行时失灵保护的安全性。
当断路器失灵时,用于判别该断路器失灵的电流判别元件必须可靠动作才能保证失灵保护动作出口。
对于发电机、变压器,当发生内部匝间短路故障时,尽管差动保护可以动作出口,但高压侧断路器处的电流测量元件感受到的故障电流不太大,达不到断路器失灵的“有流”电流判别元件动作值。
这样,就无法保证高压侧断路器失灵时失灵保护正确动作。
由于发电机、变压器内部匝间短路故障时,高压侧断路器处的电流测量元件感受到的故障电流大小很不确定,与短路匝数的关系很大。
因此,不太可能使“有流”判别方式的电流判别元件能灵敏地反应这种故障并区别有故障与无故障。
因此,笔者认为,此电流判别元件的定值应整定得很小,只要断路器有电流流过就动作,在断路器跳开后可靠返回。
随着微机保护应用范围的不断拓展,断路器失灵电流判别元件的定值精度会很高,而且、此电流判别元件用软件实现,可以很好地避免类似于电流继电器接点粘连造成的电流元件接点的不正确动作状态。
失灵电流判别元件的定值应与线路微机保护中习惯称呼的“无流鉴别元件”具有相同的整定值,甚至可以不需要1用户整定。
四、应用断路器失灵保护应注意的几个问题
1.非电量保护作为断路器失灵保护的启动量不合适。
主变重瓦斯、压力释放、发电机断水保护出口不应启动失灵保护。
因为非电量保护接点动作和返回时间均较慢,启动失灵保护可靠性差;非电量保护动作时,有时电流不会快速增加很多,达不到失灵启动电流值,此时失灵保护不会启动。
发电机断水保护出口设计为启动失灵保护的建议取消。
2.后备保护不能直接启动失灵保护。
将发电机反时限对称过负荷保护、反时限不对称过负荷保护、过激磁保护设计成出口启动失灵,这是不合适的,是原理上的错误。
“程序跳闸”的概念是,保护动作出口时先关汽轮机主汽门,待发电机发生逆功率并达,到逆功率定值且主汽门关闭接点闭合,通过程序逆功率保护完成解列灭磁。
汽轮机主汽门关闭和发电机发生逆功率是一个复杂的物理过程,一般超过1s。
而失灵保护动作时间一般整定0. 3 s跳母联,0.5s跳主断路器。
因此,用保护启动程序跳闸的同时去启动失灵的做法,一旦发生发变组故障必然引起失灵保护误动跳闸,扩大事故推围。
3.辅助保护不应启动失灵保护。
如主变冷却器全停保护作为主变压器的辅助保护,该保护一旦动作解列灭磁,在短时间内保护接点不会返回,必须人为恢复冷却器工作或备用电源后,保护接点才能返回,易引起保护误动。
因此,此类保护不要启动失灵。
有些电厂设计为启动失灵保护,建议改正。
4.别发变组失灵保护与线路失灵保护的不同。
首先,由于大型发变组保护启动失灵保护的种类繁多,各种保护的原理不相同,因此,各种保护动作和返回时间均不相同,有快有慢。
其次,发变组一般采用三相联动开关,比线路分相操作开关动作时间长,如LW6-220型SF6三相联动开关分闸时间不大于38 ms,LW6-220型SF6分相操作开关分闸时间不大于28 ms,因此,实际应用时应对元件启动失灵保护与线路启动失灵保护加以区别,以提高保护的可靠性。
五、结语
大机组断路器失灵保护投人率较低的原因是多方面的,其中断路器失灵保护设计不规范引起失灵保护动作可靠性低是造成失灵保护不能正常投人的主要原因。
对失灵保护的要求是:
1.某断路器的保护确已启动而不返回;
2.判断该断路器确实未被断开;
3.增加故障判别元件,同时,为了提高可靠性,判别元件的接点应接于出口跳闸回路中,并采取“一对一”的接线方式,即每一跳闸回路串有一对判别元件触点,避免一对判别元件触点控制几个跳闸回路;
4.失灵保护动作后应闭锁重合闸,避免再重合于故障。