由三视图复原几何体小技巧
- 格式:doc
- 大小:41.04 KB
- 文档页数:3
由物体的三视图想象几何体现状的途径有哪些
难易度:★★
关键词:画立体图形
答案:
①根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,以及几何体的长、宽、高;②从实线和虚线想象几何体看得见部分和看不见部分的轮廓线;③熟记一些简单的几何体的三视图对复杂几何体的想象会有帮助;④利用由三视图画几何体与有几何体画三视图的互逆过程,反复练习,不断总结方法。
【举一反三】
典例:某物体的三视图如图:
(1)此物体是什么体;
(2)求此物体的全面积.
思路引导:注意立体图形三视图的看法,圆柱的全面积的计算.考查立体图形的三视图,圆柱的全面积的求法及公式的应用.(1)根据三视图的知识,主视图以及左视图都为矩形,俯视图是一个圆,故可判断出该几何体为圆柱.(2)根据圆柱的体积公式可得,
20π×40+2×π×102=1000π.
标准答案:该几何体为圆柱.(2)1000π.
1。
论三视图还原的方法和技巧摘要:高考数学试题中出现一类由已知三视图求几何体相关量的题型,其目的是考查学生的识图及空间想象能力。
而对于空间想象能力弱的学生来说,处理三视图还原的问题非常棘手。
为了帮助学生更好地掌握三视图还原成实物图,从简单几何体出发总结了一些常见几何体三视图还原的规律和方法。
关键词:三视图还原;简单几何体;组合体;外轮廓线;长方体;直三棱柱中图分类号:TH126 文献标识码:A 文章编号:1671-5551(2016)30-0124-02高考数学试题中出现一类由已知三视图求几何体相关量的题型,其目的是考查考生的识图及空间想象能力。
要求考生识别三视图所表示的几何体模型,利用斜二测画法画出直观图,并能准确地计算出几何体的相关量。
对于空间想象能力稍差的考生来说,处理这类问题非常棘手。
难点就在于三视图的还原,紧接着是三视图中给出的数量和点线位置关系与实物图中的数量和点线面位置关系如何对应。
纵观近几年的高考试题,三视图考查的主要是一些常见阿德简单几何体和简单组合体。
为了帮助学生更好地掌握三视图还原成实物图,本文从简单几何体出发总结了一些常见几何体三视图还原的规律和方法。
1 简单几何体的三视图还原规律“万变不离其宗”,要掌握组合体的三视图还原首先就要搞清楚简单几何体的三视图还原规律,简单几何体主要包括柱体(圆柱、棱柱)、锥体(圆锥、棱锥)、台体(圆台、棱台)、球体。
它们的三视图还原规律如下:(1)三视图中如果有两个识图是矩形,那么该几何体为柱体。
若第三个视图是圆形,该几何体为圆柱,否则为棱柱。
(2)三视图中如果有两个视图是三角形,那么该几何体为锥体。
若第三个视图是圆形,则该几何体为圆锥,否则为棱锥。
(3)三视图中如果有两个视图是梯形,那么该几何体为台体,若第三个视图是圆形,则该几何体为圆台,否则为棱台。
球体的三视图都是圆形,最容易识别。
根据以上规律,可以快速地还原简单几何体的三视图。
2 简单组合体的三视图还原方法简单组合体有两种基本的组成形式;(1)将简单几何体拼接成组合体,称为叠加式;(2)从简单几何体中切掉或挖掉部分构成的组合体,称为切割式。
2019专题通过三视图找几何体原图的方法方法一:直接法【例1】【2017课标II,理4】如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为()A. 90πB.63πC.42πD.36π【点评】思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.由三视图还原几何体的方法:方法二:拼凑法【例2】【2017北京,文6】某三棱锥的三视图如图所示,则该三棱锥的体积为( )A. 60B.30C.20D.10解题步骤:第一步:画出正视图,第二步:平移俯视图到恰当的位置(长对正,高平齐),使它和正视图在一起,第三步:把侧视图顺时针旋转090再平移到恰当的位置(高平齐,宽相等),使它和正视图、俯视图在一起,第四步:调整它们的位置,找到顶点,找到原图.【点评】利用拼凑法找原图时,关键是第四步,结合三视图从那些顶点里找到原几何体的顶点. 这需要有空间观察力和分析能力.【例3】【2017北京,理7】某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为( )A.32B.23C.22D.2【解析】如下图所示,按照拼凑法得到三视图对应的原图是图中的四棱锥P ABCD -.该四棱锥的最长棱的长度为PC ,22222222(22)223PA PC =+==+=,故选B.方法三:模型法:三视图不容易观察出原图时使用.第一步:画出一个长方体或正方体或其他几何体;第二步:补点;第三步:结合三视图排除某些点;第四步:确定那些排除的点附近的点是否是几何体的顶点;第五步:结合实线虚线和确定的点找到几何体的顶点,从而找到符合三视图的原图. ①三视图基础【例4】. 某几何体的三视图如图所示,该几何体的体积为( )A. 16πB. 228π+C. 12πD. 14π 【答案】D【例5】 如图所示, 某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是283π, 则它的表面积是( )A. 17πB. 18πC. 20πD. 28π 【答案】A【解析】由题意可知三视图复原的几何体是一个球去掉18后的几何体,如图: 可得: 37428,2833R R ππ⨯==它的表面积是: 22734221784πππ⨯⋅+⨯⋅=【例6】. 如图为一个半球挖去一个圆锥后的几何体的三视图,则剩余部分与挖去部分的体积之比为( )A. 3:1B. 2:1C. 1:1D. 1:2②组合体的三视图问题【例7】.某几何体的三视图如图所示,则其表面积为( )A.172π B. 9π C. 192πD. 10π 【解析】由三视图可知几何体为圆柱与14球的组合体。
由三视图判断几何体
能量储备
由几何体的三种视图想象其立体形状可以从如下途径进行分析:
(1)根据主视图想象物体的正面形状及上、下和左、右位置,根据俯视图想象物体上面形状及左、右和前、后位置,再结合左视图验证该物体的左侧面形状,并验证上、下和前、后位置;
(2)从实线和虚线想象几何体看得见部分和看不见部分的轮廓线。
通关宝典
★基础方法点
方法点1:由三种视图还原几何体时,要了解简单的、常见的规则物体的三种视图,还要善于分析和想象。
例:如图527所示,是某一物体的三种视图,请说明它是一个什么形状的物体。
解:该物体是圆锥和圆柱的组合体,如图528所示。
分析:由三种视图可知,该物体的上半部分是圆锥,下半部分是圆柱,所以该物体是圆锥和圆柱的组合体
方法点2:主视图能体现物体的左右长度、上下高度;俯视图能体现物体的左右长度、前后宽度;左视图能体现物体的上下高度、前后宽度.通过观察三种视图可以想象出几何体的立体图形.
例:已知一个几何体的三种视图如图5220所示,则该几何体是( )
解析:A图的主视图、左视图均为等腰三角形,B图的左视图、俯视图均为矩形,C图的俯视图的外轮廓线为四边形,由此可排除A,B,C选项.答案:D,
蓄势待发
考前攻略
中考题和教材习题都是考查根据视图判断几何体的形状,只不过教材习题是根据两种视图与画出的几何体进行对照,比较容易判断,而中考题是根据三种视图直接分析和想象出几何体,难度有所增加,通常采用排除法进行选择。
完胜关卡。
§1.2.2 空间几何体的三视图(二)由三视图还原成示意图一、教学内容分析本节课是《普通高中课程标准实验教科书·数学必修二》(人教A版)第一章第二节第二课《§1.2.2空间几何体的三视图》。
三视图是空间几何体的一种表示形式,是立体几何的基础之一。
学好三视图为学习直观图奠定基础,同时有利于培养学生空间想象能力,几何直观能力的,有利于培养学生学习立体几何的兴趣。
由于三视图与人们的实际生活有着紧密的联系,对指导人们从事社会生产、生活具有十分重要的意义,所以这一内容也成了近几年新课程高考的一个热点。
二、学生学习情况分析学生在义务教育阶段已经学习过三视图的基本作法,但只要求能作简单几何体的三视图,如长方体、正方体以及一些正方体的组合等,主要停留在形的认识上,而对于三视图的概念还不清晰。
学生在义务教育阶段只接触了从空间几何体到三视图的单向转化,还无法准确将三视图还原成实物模型。
对于三视图的学习,复习回顾三视图,让学生体会作三视图刻画空间几何体的必要性,然后由学生自己动手画三视图,在学生原有知识的基础上进行新知识的建构,引出三视图的作图方法与规范要求引入新课。
三、设计思想参照《新课程实施标准》,在本课的教学中我努力实践以下两点:1、教学中,通过对实物模型及多媒体课件所呈现的空间几何体(由简单到复杂,逐步变化)的整体观察,帮助学生认识其结构特征,巩固和提高义务教育阶段有关三视图的学习和理解。
采用多媒体的教学手段,加强直观性和启发性,增大课堂容量,提高课堂效率。
2、本节课是以理论是为实践服务的宗旨掌握数学知识、交流合作的模式发展数学能力、自主探究的方式解决数学问题为教学模式,学生在教师营造的“可探索”环境里,积极参与、通过自己的观察,想象,思考,实践,主动发现规律、获得知识,体验成功。
四、教学目标(一)知识与技能::①巩固和提高有关三视图的学习和理解,进一步掌握三视图画法规则②能正确通过简单组合体的三视图还原物体的示意图,能识别三视图所表示的空间几何体(二)过程与方法目标:① 通过学生自己动手画几何体的三视图、观察各种三视图间的关系,进一步培养学生的空间想象能力,画图能力。
论三视图还原几何体技巧作者:马柳芳来源:《新课程·中学》2017年第05期摘要:三视图是新课改新增加的一个知识点,也是近几年高考的热点,主要考查学生的空间想象力。
对于空间想象力较弱的学生来说,由三视图还原几何体是个大难点。
关键词:三视图;还原步骤;长方体;拉升三视图是历届全国卷高考题中必考的知识点,利用三视图求几何体表面积或体积的题型居多,其本质就是由三视图还原几何体。
如何还原几何体是教学中的重点也是难点,大部分考生因为没有掌握好还原方法,而高考失分,尤为可惜。
本文将介绍一种还原技巧,以便考生能轻松突破三视图这类题型。
技巧:用长方体还原棱锥、棱柱等几何体。
学生需掌握理解三视图的要领“九字真言”——长对正,高平齐,宽相等。
“长对正”指的是俯视图要和正视图的长一样;“高平齐”说的是正视图和侧视图的高一致,而这里的高也正好是这个几何体的高;“宽相等”则是俯视图的宽和侧视图的宽相等。
还原三步骤:1.画好一个长(正)方体,在长(正)方体的底部画出俯视图。
2.根据正视图和侧视图对应垂直关系和节点,由“长对正,宽相等”确定俯视图中对应点垂直拉升线条。
拉升长度则由“高平齐”确定。
3.将垂直拉升线段的点结合正侧视图及俯视图连线,隐去辅助线条即可得到还原的几何体。
(具体操作见以下两个实例)例1还原过程如下:1.先画一个长方体,然后把俯视图三角形画在长方体底面,如图1;2.由正视图长的两个端点确定了B、D点不动,A、C两点不确定,如图2;3.再由侧视图确定了A点不动,而C点,则拉升到C′位置,如图3;4.ABCDC′各顶点连线,有些实线改为虚线即可,如图4。
例2还原过程如下:1.先画一个正方体,然后把俯视图三角形画在长方体底面,如图5;2.由正视图长的两个端点确定了C点拉升到C′(C点舍),A、B两点不确定,如图6;3.再由侧视图确定了A点拉升到A′点(A点舍),而B点,则拉升线段到B′位置,如图7;4.将A′B′C′B各顶点连线,有些实线改为虚线即可,如图8。
三视图还原——xyz 定位法一、首先要掌握简单几何体的三视图。
正方体、长方体、三棱柱、四棱柱、三棱锥、四棱锥、圆柱、圆锥、圆台和球的三视图分别是什么要熟悉掌握。
二、掌握简单组合体的组合形式。
简单组合体主要有拼接和挖去两种形式。
三、三视图之间的关系。
几何体的长:正视图、俯视图的长;几何体的宽:俯视图的高、侧视图的长;几何体的高:正视图、侧视图的高。
(口诀:主俯定长,俯左定宽,主左定高)(下面)左视左侧(后面)正视左侧(左面)正视右侧(右面)左视右侧(前面)(下面)四、清楚三视图各个线段说表示几何体位置,如上图所表示。
五、由三视图画出直观图的步骤和思考方法。
1、组合类题型,往往很简单,基本可以通过简单想象直接还原;2、有两个视角为三角形,为椎体特征。
选择底面还原(求体积可不用还原);3、凡是想不出来的,可用xyz 坐标定位法还原。
前面俯视左侧(左面)【类型一】:(三线交汇)例2:【类型二】:例3:连接这五个点的四棱锥,不满足俯视图。
而顶点又必须在这五点交点中,所以当点数超过4个,可能不需要全部连接,则这些点有所取舍。
第一法:俯视图看到的面不可以为上面四个点构成的整个四边形,而是中间有一条折痕,故只能说左半边三角形乡下折。
即舍弃前面左上方的点。
故得,第二:唯一法:正视图看,已标记下面的点必不可少;从俯视图看,上面有3个点必不可少;故只能舍弃前面左上方的点。
第三:口诀:实线两端的点保留,虚线两端的点待定。
从俯视图一看,便知道答案了。
取舍关键:墙角点是取舍的备选。
练习【类型三】:(八点齐飞,直观图不唯一)例4此题八点齐飞,通过类型二中的第三取舍法,我们很容易就能还原出来。
答案:然而,我们发现这个三视图也可以看成,是上图中的三棱锥与另外一个三棱锥组合而成。
如下图所示:M为顶点的三棱锥(四种)与上图的组合。
同理,还有其他两种形式,此处就不一一画图了。
由此得出,上题中的三视图至少有5种不同的直观图。
【三视图题目几点技巧】1,部分椎体求体积,直接用公式(可以不还原)2,斜二测画法与原图面积比例为定值(可以不还原)3,三视图中,和视线垂直的线段,长度不变。
高考在考查三视图方面出题有两个方向,一是给出三视图及相关数据,求几何体的体积、表面积、内切球体积或外接球体积等;二是给出几何体,确定其中一个视图的图形.由于第二点比较简单,所以高考中考查的较少.高考中对给出三视图求相关体积、面积等题型考查较多,一般以小题形式出现,分值为5分,该类型题的本质是考查三视图还原几何体,所以能快速准确的将三视图还原几何体,是解决这类问题的关键.王康民老师给大家介绍几种快速还原几何体的方法.先来复习一下三视图的相关知识:位置主在上,俯在下,左在右大小长对正,高平齐,宽相等虚实看的见的为实线,看不见的为虚线我来介绍两种快速又好用的三视图还原方法.当然,我默认大家已经掌握了基本几何体的三视图形状,这一点很重要,没有掌握的同学请麻利的自己去翻课本或者小册子.一.升点升线法1.升点法题目特征:当主视图和侧视图的顶部都是点时,采用升点法.如:还原如图所示的三视图的直观图.分析:观察三视图知主视图和侧视图的顶部都是点,则该图形可由俯视图的一个点升高形成,升的高度为主、侧视图的高2.用斜二测法画出俯视图,如下图所示:再根据其主视图为直角三角形,且直角在左侧,所以确定上升的点只能是点A,上升高度为2,三视图还原为下图所示.方法总结主、侧视图顶为点,上升点法1、俯视画图;2、主、侧找最高点;3、在俯视图上将找到的点上升(上升高度为主视图的高)2.升线法当主视图和侧视图的顶部为一点一线时,采用升线法.如:分析观察三视图知主视图和侧视图的顶部为一点一线,则该图形可由俯视图的一条线升高形成,升的高度为主、侧视图的高.用斜二测法画出俯视图,如下图所示.根据其主视图为正方形,左视图为直角三角形,且顶点在其左侧,所以确定上升的直线为线段AB,上升高度为主视图的高,如下图(左)所示.连接上顶点和下底面对应点,三视图还原为上图(右)所示.方法总结主、侧视图顶为一点一线,以点为基准升线.1、俯视画图;2、主、侧找升高线;3、升高直线(上升高度为主视图的高),连接对应点即可二.长方体中找点找面法我们所学的立体图形中,有锥、柱、台、球及组合体,像柱体和球的三视图还原就靠你自己了,简单到我都不想说.好,那就不说吧.我们通过研究锥体和台体的三视图还原来介绍这种方法.1.锥体的三视图还原锥体的三视图的特点是三个视图中有两个三角形.也就是说,我们在看到三视图的时候,如果其中有两个是三角形,我们能确定其为锥体.并且你要去还原它的主观图,这两个三角形就是关键!如:三视图如图所示.分析:首先三视图中有三个三角形,所以可以确定该几何体是一个椎体.俯视图就是该椎体的底面,大家要知道,一个椎体,如果底面确定了,再确定了顶点,则这个锥体就确定了.这个顶点是由主视图和侧视图的上顶点确定的,确定这个点是关键.第一步,我们取三个视图的长、宽、高分别为长、宽、高做出一个长方体,本题画出的正好是一个正方体,如图1所示.图1 图2 图3第二步:把主视图放到立方体正对着我们的这个面上,如图2所示.主视图的上顶点为图2中的顶点A,但该点不一定是锥体的顶点,由于主视图是由正前方看过去的,所以锥体的顶点应该在直线AA1上;再把侧视图放到立方体的右侧面上,如图3所示(注意侧视图是从左往右看的,不要画反了哦)侧视图的上顶点为图3中的顶点B,同理,锥体的顶点应该在直线AB上.所以直线AA1与直线AB的交点A即为锥体的顶点.第三步:将俯视图画在立方体中,由确定的底面和顶点,连接顶点与底面的各个顶点,锥体就确定了,如下图所示.直观图还原完成.步骤:1.三视图中有两个视图为三角形,确定该几何体为锥体,剩下的视图为该锥体的底面.2.将主视图和侧视图画在对应的立方体中,根据各自上顶点的投影线找其交点,确定锥体的顶点.3.俯视图作为底面,连接各顶点,锥体便还原出来了.方法:两个三角形→锥体.1、确定底面;2、确定顶点(主、侧视图上顶点的投影线交点).3、各顶点连线.【变式训练】三视图如图所示,还原几何体的主观图.【提示】将侧视图作为锥体的底面,利用主视图和俯视图寻找顶点即可.【答案】如下图所示.2.台体的三视图还原台的特点是三视图中有两个梯形,剩下的视图作为台的下底面,还原时找上底面是关键。
第2课时由三视图复原几何体1.进一步明确三视图的意义,由三视图想象出原型;(重点)2.由三视图得出实物原型并进行简单计算.(重点)一、情境导入同学们独立完成以下几个问题:1.画三视图的三条规律,即______视图、______视图长对正;______视图、______视图高平齐;______视图、______视图宽相等.2.如下列图,分别是由假设干个完全相同的小正方形组成的一个几何体的主视图和俯视图,那么组成这个几何体的小正方体的个数是多少?二、合作探究探究点一:由三视图描述几何体【类型一】由三视图确定几何体根据图①②的三视图,说出相应的几何体.解析:根据三视图想象几何体的形状,关键要熟练掌握直棱柱、圆锥、球等几何体的根本三视图.解:图①是直三棱柱,图②是圆锥和圆柱的组合体.方法总结:先根据各个视图想象从各个方向看到的几何体形状,再来确定几何体的形状.变式训练:见《》本课时练习“课堂达标训练〞第1题【类型二】由三视图确定正方体的个数一个几何体,是由许多规格相同的小正方体堆积而成的,其主视图、左视图如下列图,要摆成这样的图形,最少需用________个小正方体.解析:根据主视图、左视图是分别从物体正面、左面看,所得到的图形,结合此题进行分析即可.根据三视图可得第二层有2个小正方体,根据主视图和左视图可得第一层最少有4个小正方体,故最少需用7个小正方体.故答案为7.方法总结:由三视图判断几何体由多少个立方体组成时,先由俯视图判断底面的行列组成;再从主视图判断每列的高度(有几个立方体),并在俯视图中按照左、中、右的顺序用数字标出来;然后由左视图判断行的高度,在俯视图中按照上、中、下的顺序用数字标出来;最后把俯视图中的数字加起来.变式训练:见《 》本课时练习“课堂达标训练〞 第5题 探究点二:三视图的相关计算如图是某工件的三视图,其中圆的半径是10cm ,等腰三角形的高是30cm ,那么此工件的体积是( )A .1500πcm 3B .500πcm 3C .1000πcm 3D .2000πcm 3解析:由三视图可知该几何体是圆锥,底面半径和高.解:∵底面半径为10cm ,高为30cm.∴体积V =13π×102×30=1000π(cm 3).应选C.方法总结:依据三视图“长对正,高平齐,宽相等〞的原那么,正确识别几何体,再进行有关计算.变式训练:见《 》本课时练习“课堂达标训练〞第8题 三、板书设计本节课是在学习了简单几何体的三视图的根底上,反过来几何体的三视图想象出几何体,既是对三视图知识的完善,又是三视图知识的简单应用,培养了学生的空间想象能力,使学生初步体会到由平面图形到立体图形的转化也是一种数学方法.1.4 二次函数与一元二次方程的联系1.通过探索,理解二次函数与一元二次方程之间的联系,会用二次函数图象求一元二次方程的近似解;(重点)2.通过研究二次函数与一元二次方程的联系体会数形结合思想的应用.(难点)一、情境导入小唐画y =x 2-6x +c 的图象时,发现其顶点在x 轴上,请你帮小唐确定字母c 的值是多少?二、合作探究探究点一:二次函数与一元二次方程的联系【类型一】 二次函数图象与x 轴交点情况的判断以下函数的图象与x 轴只有一个交点的是( ) A .y =x 2+2x -3 B .y =x 2+2x +3 C .y =x 2-2x +3 D .y =x 2-2x +1解析:选项A 中b 2-4ac =22-4×1×(-3)=16>0,选项B 中b 2-4ac =22-4×1×3=-8<0,选项C 中b 2-4ac =(-2)2-4×1×3=-8<0,选项D 中b 2-4ac =(-2)2-4×1×1=0,所以选项D 的函数图象与x 轴只有一个交点.应选D.变式训练:见《 》本课时练习“课后稳固提升〞第1题【类型二】 利用函数图象与x 轴交点情况确定字母的取值范围(2021·武汉模拟)二次函数y =kx 2-6x +3的图象与x 轴有交点,那么k 的取值范围是( )A .k <3B .k <3且k ≠0C .k ≤3D .k ≤3且k ≠0解析:∵二次函数y =kx 2-6x +3的图象与x 轴有交点,∴方程kx 2-6x +3=0(k ≠0)有实数根,即Δ=36-12k ≥0,k ≤3.由于是二次函数,故k ≠0,那么k 的取值范围是k ≤3且k ≠0.应选D.方法总结:二次函数y =ax 2+bx +c ,当b 2-4ac >0时,图象与x 轴有两个交点;当b 2-4ac =0时,图象与x 轴有一个交点;当b 2-4ac <0时,图象与x 轴没有交点.变式训练:见《 》本课时练习“课堂达标训练〞第4题【类型三】利用抛物线与x 轴交点坐标确定一元二次方程的解(2021·苏州中考)假设二次函数y =x 2+bx 的图象的对称轴是经过点(2,0)且平行于y 轴的直线,那么关于x 的方程x 2+bx =5的解为( )A.⎩⎪⎨⎪⎧x 1=0,x 2=4B.⎩⎪⎨⎪⎧x 1=1,x 2=5C.⎩⎪⎨⎪⎧x 1=1,x 2=-5D.⎩⎪⎨⎪⎧x 1=-1,x 2=5解析:∵对称轴是经过点(2,0)且平行于y 轴的直线,∴-b2=2,解得b =-4.解方程x 2-4x =5,解得x 1=-1,x 2=5.应选D.方法总结:此题容易出错的地方是不知道二次函数的图象与一元二次方程的解的关系导致无法求解.变式训练:见《 》本课时练习“课堂达标训练〞第1题 探究点二:用二次函数的图象求一元二次方程的近似解利用二次函数的图象求一元二次方程-x 2+2x -3=-8的实数根(精确到0.1). 解析:对于y =-x 2+2x -3,当函数值为-8时,对应点的横坐标即为一元二次方程-x 2+2x -3=-8的实数根,故可通过作出函数图象来求方程的实数根.解:在平面直角坐标系内作出函数y =-x 2+2x -3的图象,如图.由图象可知方程-x 2+2x -3=-8的根是抛物线y =-x 2+2x -3与直线y =-8的交点的横坐标,左边的交点横坐标在-1与-2之间,另一个交点的横坐标在3与4之间.(1)先求在-2和-1之间的根,利用计算器进行探索:x - - - - - y-----因此x ≈-是方程的一个实数根. (2)另一个根可以类似地求出:x y-----x ≈是方程的另一个实数根.方法总结:用二次函数的图象求一元二次方程满足精确度的实数根的方法:(1)作出函数的图象,并由图象确定方程解的个数;(2)由图象与y =h 的交点的位置确定交点横坐标的取值范围;(3)利用计算器求方程的实数根.变式训练:见《 》本课时练习“课堂达标训练〞第8题 探究点三:二次函数与一元二次方程在运动轨迹中的应用某学校初三年级的一场篮球比赛中,如图,队员甲正在投篮,球出手时距地面209米,与篮框中心的水平距离为7米,当球出手后水平距离为4米时到达最大高度4米,设篮球运行轨迹为抛物线,篮框距地面3米.(1)建立如下列图的平面直角坐标系,问此球能否准确投中?(2)此时,假设对方队员乙在甲面前1米处跳起盖帽拦截,乙的最大摸高为米,那么他能否获得成功?解析:这是一个有趣的、贴近学生日常生活的应用题,由条件可得到出手点、最高点(顶点)和篮框的坐标,再由出手点、顶点的坐标可求出函数表达式;判断此球能否准确投中的关键就是判断代表篮框的点是否在抛物线上;判断盖帽拦截能否获得成功,就是比较当x =1时函数y 的值与最大摸高米的大小.解:(1)由条件可得到出手点、最高点和篮框的坐标分别为A (0,209),B (4,4),C (7,3),其中B 是抛物线的顶点.设二次函数关系式为y =a (x -h )2+k ,将点A 、B 的坐标代入,可得y =-19(x -4)2+4.将点C 的坐标代入上式,得左边=3,右边=-19(7-4)2+4=3,左边=右边,即点C在抛物线上.所以此球一定能投中;(2)将x =1代入函数关系式,得y =3.因为>3,所以盖帽能获得成功. 变式训练:见《 》本课时练习“课后稳固提升〞第7题 三、板书设计教学过程中,强调学生自主探索和合作交流,通过观察二次函数与x 轴的交点个数,讨论一元二次方程的根的情况,体会知识间的相互转化和相互联系.。
三视图复原几何体小技巧
由三视图复原成几何体,一般采用下面的步骤:
第一步:把俯视图用斜二侧画法画出来,并画出z 轴;
俯视图
主视图
主视
左视图
俯
视
z
第二步:让左视图与xoz 面平行,下底边与俯视图对应边重合,沿y 轴滑动(或让主视图与yoz 面平行,下底边与俯视图对应边重合,沿x 轴滑动),放在合适的位置上。
第三步:让主视图与yoz 面平行,下底边与俯视图对应边重合,沿x 轴滑动,(或让左视图与xoz 面平行,下底边与俯视图对应边重合),沿y 轴滑动放在合适的位置上。
通过上面三个步骤,就可以画出或判断出是什么几何体了。
z
z。