中学生标准学术能力诊断性测试2020年3月测试(理科数学)
- 格式:pdf
- 大小:398.32 KB
- 文档页数:2
2020年高三数学中学生标准学术能力诊断性测试(1月)试题 理本试卷共150分,考试时间120分钟。
一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若集合A ={x|-1<x<2},B ={-2,0,1,2},则A ∩B =A.ΦB.{0,1}C.{0,1,2}D.{-2,0,1,2}2.若(2+i)z =5,则z 的虚部为A.-1B.1C.-iD.i3.已知双曲线2221(0)2x y b b-=>的两条渐近线互相垂直,则b = A.1 B.2 C.3 D.24.由两个圆柱组合而成的几何体的三视图如图所示,则该几何体的体积为A.3πB.2π C.π D.2π 5.函数f(x)=(x 2-2x)e x 的图象可能是6.已知关于x 的不等式ax 2-2x +3a<0在(0,2]上有解,则实数a 的取值范围是 A.3,3⎛⎫-∞ ⎪ ⎪⎝⎭ B.4,7⎛⎫-∞ ⎪⎝⎭ C.33⎛⎫+∞ ⎪ ⎪⎝⎭D.4,7⎛⎫+∞ ⎪⎝⎭ 7.已知a ,b 为实数,则0<b<a<1是log a b>log b a 的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件8.已知随机变量ξ,η的分布列如下表所示。
则A.,E E D D ξηξη<<B.,E E D D ξηξη<>C.,E E D D ξηξη<=D.,E E D D ξηξη==9.在△ABC 中,若2AB BC BC CA CA AB ⋅=⋅=⋅u u u r u u u r u u u r u u u r u u u r u u u r ,则AB BC =u u u r u u u r A.1 B.22 C.3 D.6 10.在矩形ABCD 中,已知AB =3,AD =4,E 是边BC 上的点,EC =1,EF//CD ,将平面EFDC 绕EF 旋转90°后记为平面α,直线AB 绕AE 旋转一周,则旋转过程中直线AB 与平面α相交形成的点的轨迹是A.圆B.双曲线C.椭圆D.抛物线11.已知函数f(x)=(lnx -1)(x -2)i-m(i =1,2),e 是自然对数的底数,存在m ∈RA.当i =1时,f(x)零点个数可能有3个B.当i =1时,f(x)零点个数可能有4个C.当i =2时,f(x)零点个数可能有3个D.当i =2时,f(x)零点个数可能有4个12.已知数列{a n }的前n 项和为S n ,且满足a n (2S n -a n )=1,则下列结论中①数列{S n 2}是等差数列; ②2n a n < ③a n a n +1<1 A.仅有①②正确 B.仅有①③正确 C.仅有②③正确 D.①②③均正确二、填空题:本大题共4小题,每小题5分,共20分。
数学试题一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U={x∈Z|x2﹣2x﹣3≤0},集合A={0,1,2},则∁U A=()(A){﹣1,3} (B){﹣1,0} (C){0,3} (D){﹣1,0,3} 2.复数z=(2+i)(1+i)的共轭复数为()(A)3﹣3i(B)3+3i(C)1+3i(D)1﹣3i3.已知函数f(x)=x3+a sin x,a∈R.若f(﹣1)=2,则f(1)的值等于()(A)2 (B)﹣2 (C)1+a(D)1﹣a4.如图,在正方体ABCD﹣A1B l C1D1中,已知E,F,G分别是线段A1C1上的点,且A1E =EF=FG=GC1.则下列直线与平面A1BD平行的是()(A)CE(B)CF(C)CG(D)CC15.已知实数x,y满足,则z=2x+y的最大值为()(A)1 (B)2 (C)3 (D)46.若非零实数a,b满足2a=3b,则下列式子一定正确的是()(A)b>a(B)b<a(C)|b|<|a| (D)|b|>|a|7.已知sin(),则sinα的值等于()(A)(B)(C)(D)8.执行如图所示的程序框图,则输出的n的值为()(A)1 (B)2 (C)3 (D)49.在平面直角坐标系xOy中,已知点A(0,﹣2),N(l,0).若动点M满足,则的取值范围是()(A)[0,2] (B)[0,2] (C)[﹣2,2] (D)[﹣2,2] 10.“幻方’’最早记载于我国公元前500年的春秋时期《大戴礼》中.“n阶幻方(n≥3,n∈N*)”是由前,n2个正整数组成的﹣个n阶方阵,其各行各列及两条对角线所含的n个数之和(简称幻和)相等,例如“3阶幻方”的幻和为15(如表所示).则“5阶幻方”的幻和为()(A)75 (B)65 (C)55 (D)4511.已知双曲线C1(a>0,b>0)的左,右焦点分别为F1,F2,抛物线y2=2px (p>0)与双曲线C有相同的焦点.设P为抛物线与双曲线C的一个交点,cos∠PF1F2,则双曲线C的离心率为()(A)或(B)或3 (C)2或(D)2或312.已知函数f(x),,<.若函数f(x)的极大值点从小到大依次为a1,a2,…,a n,并记相应的极大值为b1,b2,…,b n,则(a i+b i)的值为()(A)250+2449 (B)250 +2549 (C)249+2449 (D)249+2549二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡上.13.在(2+x)5的展开式中,x2的系数为.(用数字作答)14.已知公差大于零的等差数列{a n}中,a2,a6,a12依次成等比数列,则的值是.15.某学习小组有4名男生和3名女生.若从中随机选出2名同学代表该小组参加知识竞赛,则选出的2名同学中恰好1名男生1名女生的概率为.16.三棱柱ABC﹣A1B1C1中,AB=BC=AC,侧棱AA1⊥底面ABC,且三棱柱的侧面积为3,若该三棱柱的顶点都在同一个球O的表面上,则球O的表面积的最小值为.三、解答题:本大题共5小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)已知△ABC中,角A,B,C所对边的长分别为a,b,c,且a cos B b+(C)(Ⅰ)求角A的大小;(Ⅱ)求sin2B+sin2C+sin B sin C的值.18.(本小题满分12分)如图,在四棱锥P﹣ABCD中,底面ABCD为菱形,△P AD为正三角形,平面P AD上平面ABCD,E,F分别是AD,CD的中点.(Ⅰ)证明:BD⊥平面PEF;(Ⅱ)若∠BAD=60°,求二面角B﹣PD﹣A的余弦值.19.(本小题满分12分)某保险公司给年龄在20~70岁的民众提供某种疾病的一年期医疗保险,现从10000名参保人员中随机抽取100名作为样本进行分析,按年龄段[20,30),[30,40),[40,50),[50,60),[60,70]分成了五组,其频率分布直方图如图所示;参保年龄与每人每年应交纳的保费如表所示.据统计,该公司每年为这一万名参保人员支出的各种费用为一百万元,(Ⅰ)用样本的频率分布估计总体分布,为使公司不亏本,求z精确到整数时的最小值x0;(Ⅱ)经调查,年龄在[60,70]之间的老人每50人中有1人患该项疾病(以此频率作为概率).该病的治疗费为12000元,如果参保,保险公司补贴治疗费10000元.某老人年龄66岁,若购买该项保险(x取(Ⅰ)中的x0),针对此疾病所支付的费用为X元;若没有购买该项保险,针对此疾病所支付的费用为Y元,试比较X和Y的期望值大小,并判断该老人购买此项保险是否划算?20.(本小题满分12分)在平面直角坐标系xOy中,已知椭圆C:l(a>b>0)的短轴长为2,直线l与椭圆C相交于A,B两点,线段AB的中点为M.当M与0连线的斜率为时,直线l的倾斜角为.(Ⅰ)求椭圆C的标准方程;(Ⅱ)若|AB|=2,P是以AB为直径的圆上的任意一点,求证:|OP|.21.(本小题满分12分)已知函数f(x)=xlnx﹣2ax2+3x﹣a,a∈Z.(Ⅰ)当a=1时,判断x=1是否是函数f(x)的极值点,并说明理由;(Ⅱ)当x>0时,不等式f(x)≤0恒成立,求整数a的最小值,22.(本小题满分10分)在平面直角坐标系xOy中,曲线C的参数方程为(α为参数).以坐标原点O为极点,z轴正半轴为极轴建立极坐标系,直线l的极坐标方程为ρsin(θ).(Ⅰ)求曲线C的普通方程和直线l的直角坐标方程;(Ⅱ)设点M(0,1).若直线l与曲线C相交于A,B两点,求|MA|+|MB|的值.23.已知函数f(x)=x2﹣a|x﹣1|﹣1,a∈R.(Ⅰ)当a=4时,求函数f(x)的值域;(Ⅱ)∃x0∈[0,2],f(x0)≥a|x0+1|,求实数a的取值范围.1.U={x∈Z|x2﹣2x﹣3≤0}={x∈Z|﹣1≤x≤3}={﹣1,0,1,2,3},则∁U A═{﹣1,3},答案(A)2.∵z=(2+i)(1+i)=1+3i,∴.答案(D)3.∵函数f(x)=x3+a sin x,a∈R.f(﹣l)=2,∴f(﹣1)=(﹣1)3+a sin(﹣1)=﹣1﹣a sin1=2,∴1+a sin1=﹣2,∴f(l)=1+a sin1=﹣2.答案(B)4.如图,连接AC,使AC交BD与点O,连接A1O,CF,在正方体ABCD﹣A1B l C1D1中,由于A1F AC,又OC AC,可得:A1F OC,即四边形A1OCF为平行四边形,可得:A1O∥CF,又A1O⊂平面ABD,CF⊄平面ABD,可得CF∥平面AB (D)答案(B)5.作出实数x,y满足表示的平面区域,如图所示:由z=2x+y可得y=﹣2x+z,则z表示直线y=﹣2x+z在y轴上的截距,截距越大,z越大作直线2x+y=0,然后把该直线向可行域平移,当直线经过B时,z最大由可得B(2,0),此时z=4.答案(D)6.令2a=3b=t,则t>0,t≠1,∴a=log2t,b=log3t,∴|a|﹣|b||lgt|•>0,∴|a|>|b|.答案(C)7.∵sin(),∴sinα=﹣cos(α)=﹣cos2()=﹣[1﹣2sin2()]=﹣[1﹣2×()2].答案(A)8.根据程序框图:执行循环前:a=0,b=0,n=0,执行第一次循环时:,a=1,b=2,所以:92+82≤40不成立.继续进行循环,…,当a=4,b=8时,62+22=40,所以:n=1,由于a≥5不成立,执行下一次循环,当a=5时,输出结果n=2答案(B)9.设M(x,y),由动点M满足,得,化简得:x2+(y﹣2)2=8,由圆的参数方程得:M(2cosθ,2sinθ),则2cosθ∈[﹣2,2],答案(D)10.由1,2,3,4…24,25的和为325,又由“n阶幻方(n≥3,n∈N*)”的定义可得:“5阶幻方”的幻和为65,答案(B)11.过P分别向x轴和抛物线的准线作垂线,垂足分别为M,N,不妨设PF1=m,PF2=n,则F1M=PN=PF2=PF1cos∠PF1F2,∵P为双曲线上的点,则PF1﹣PF2=2a,即m2a,故m=7a,n=5(A)又F1F2=2c,在△PF1F2中,由余弦定理可得,化简可得c2﹣5ac+6a2=0,即e2﹣5e+6=0,解得e=2或e=3.答案(D)12.∵f(x),,<的极大值点从小到大依次为a1,a2,…,a n,相应的极大值为b1,b2,…,b n,∴a1=2,a2=4,…,即是以2为首项,以2为公差的等差数列,且共有50项,即n=50,但是最后一项不是极大值,满足题意的共有49项,∴a n=2n,∵b1=f(2)=1,b2=f(4)=2f(2)=2…是以1为首项,以2为公比的等比数列,b n=2n﹣1,则(a i+b i)a i b i=2449+249.答案(C)13.二项展开式的通项为T r+1=25﹣r C5r x r令r=2得x2的系数为23C52=80答案80.14.公差d大于零的等差数列{a n}中,a2,a6,a12依次成等比数列,可得a62=a2a12,即为(a1+5d)2=(a1+d)(a1+11d),化为a1=7d,则.答案.15.某学习小组有4名男生和3名女生.从中随机选出2名同学代表该小组参加知识竞赛,基本事件总数n21,选出的2名同学中恰好1名男生1名女生包含的基本事件个数m12,∴选出的2名同学中恰好1名男生1名女生的概率为p.答案.16.根据题意,如图,设AB=BC=AC=a,AA1=b,该三棱柱的外接球的半径为R,球心O在底面ABC上的射影为O′,O′为底面三角形△ABC的外心,则AO′a,OO′AA1,则R2,又由三棱柱的侧面积为3,则3ab=3,变形可得ab,则R2221,即外接球半径的最小值为1,其表面积的最小值S=4πR2=4π;答案4π17.(I)由正弦定理得s in A cos B sin A+sin C,又sin C=sin(A+B).∴sin A cos B sin A+sin A cos B+cos A sin(B)即cos A sin B sin B=0,∴cos A,∵0<A<π,∴A.(II)∵A,∴由余弦定理可得:a2=b2+c2+bc,∵,∴sin2B+sin2C+sin B sin C=()2+()2=()2=sin2A.18.证明:(Ⅰ)连结AC,∵P A=PD,且E是AD的中点,∴PE⊥AD,∵平面P AD⊥平面ABCD,平面P AD∩平面ABCD=AD,∴PE⊥平面ABCD,∵BD⊂平面ABCD,∴BD⊥PE,又ABCD为菱形,且E,F为棱的中点,∴EF∥AC,BD⊥AC,∴BD⊥EF,又BD⊥PE,PE∩EF=E,∴BD⊥平面PEF.解:(Ⅱ)∵四边形ABCD是菱形,且∠BAD=60°,∴EB⊥AD,分别以EA,EB,EP所在直线为x,y,z轴,建立空间直角坐标系,设AD=1,则D(,,),B(0,,0),P(0,0,),(,,0),(,,),设平面PBD的法向量(x,y,z),则,∴,取x,得(,,),平面APD的法向量(0,1,0),∴cos<,>,由图得二面角B﹣PD﹣A的平面角是锐角,∴二面角B﹣PD﹣A的余弦值为.19.(Ⅰ)由(0.007+0.016+a+0.025+0.020)×10=1,解得a=0.032.保险公司每年收取的保费为:10000×(0.07x+0.16×2x+0.32×3x+0.25×4x+0.20×5x)=10000×3.35x.∴要使公司不亏本,则10000×3.35x≥1000000,即3.35x≥100,解得x29.85,∴x0=30.(Ⅱ)①若该老人购买了此项保险,则X的取值为150,2150.P(X=150),P(Y=2150).∴E(X)147+43=190元.②若该老人没有购买此项保险,则Y的取值为0,12000.∵P(Y=0),P(Y=12000),所以E(Y)240元,所以E(Y)>E(X).∴年龄为66的该老人购买此保险比较划算.20.(Ⅰ)解:由已知得,b=1,设A(x1,y1),B(x2,y2),由,两式作差,得.由已知条件,知当时,,∴,即a.∴椭圆标准方程为;(Ⅱ)证明:当直线l的斜率不存在时,|OP|=1<,不等式成立;当直线l的斜率存在时,设l:y=kx+m.联立,得(2k2+1)x2+4kmx+2m2﹣2=0.△=16k2﹣8m2+8>0.,.∴M(,),.由|AB|,化简得,.∴.令4k2+1=t≥1,则|OM|2.当且仅当t时取“=”.∴|OM|.∵|OP|≤|OM|+1,∴|OP|,当且仅当时取“=”.综上,|OP|.21.(Ⅰ)当a=1时,f′(x)=lnx﹣4x+4,令F(x)=f′(x)=lnx﹣4x+4,则,∴当x>时,F′(x)<0,即f′(x)在(,+∞)内为减函数,且f′(1)=0,∴当x∈(,1)时,f′(x)>0,当x∈(1,+∞)时,f′(x)<0,∴f(x)在(,1)内是增函数,在(1,+∞)内是减函数,综上,x=1是函数f(x)的极大值点.(Ⅱ)由题意得f(1)≤0,即a≥1,现证明当a=1时,不等式f(x)≤0成立,即xlnx﹣2x2+3x﹣1≤0,即证lnx﹣2x+30,令g(x)=lnx﹣2x+3,则g′(x),∴当x∈(0,1)时,g′(x)>0,当x∈(1,+∞)时,g′(x)<0,∴g(x)在(0,1)内单调递增,在(1,+∞)内单调递减,∴g(x)的最大值为g(1)=0,∴当x>0时,不等式f(x)≤0成立,综上,整数a的最小值为1.22.(Ⅰ)由,得(x﹣2)2+y2=4,由ρsin(θ),得ρsinθ+ρcosθ=1,∴直线l的直角坐标方程为x+y=1.(Ⅱ)设直线l的参数方程为(t为参数),代入(x﹣2)2+y2=1得t2+31=0,设A,B对应的参数为t1,t2,∴t1+t2=﹣3<0,t1t2=1>0,t1<0,t2<0,∴|MA|+|MB|=|t1|+|t2|=|t1+t2|=323.(Ⅰ)当a=4时,f(x)=x2﹣4|x﹣1|﹣1,,<,当x≥1时,f(x)=x2﹣4x+3=(x﹣2)2﹣1≥﹣1,即此时f(x)≥﹣1,当x<1时,f(x)=x2+4x﹣5=(x+2)2﹣9≥﹣9,即此时f(x)≥﹣9,综上f(x)≥﹣9,即函数f(x)的值域为[﹣9,+∞).(Ⅱ)由f(x)≥a|x+1|等价为x2﹣a|x﹣1|﹣1≥a|x+1|,即a(|x+1|+|x﹣1|)≤x2﹣1,即a在区间[0,2]内有解,当0≤x≤1时,a,当0≤x≤1时,0.此时a≤0,当1<x≤2时,a(x),当1<x≤2时,0<(x),此时a,综上a,即实数a的取值范围是(﹣∞,].。
中学生标准学术能力诊断性测试2023年3月测试数学试卷本试卷共150分,考试时间120分钟。
一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}2430A x x x =−+<,2112x B y y −−⎧⎫⎪⎪⎛⎫==⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则A B =A .[)2,3B .()1,3C .[)2,+∞D .()3,+∞2. 设z 是纯虚数,若31iz++是实数,则z 的虚部为A .3−B .1−C .1D .33. 已知函数()()()()cos 0,f x x x ωϕωϕωϕπ=+−+><,则“函数()f x 是偶函数”是“=3πϕ−”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4. 若圆()()22320x a y −+−=上有四个点到直线210x y −+=则实数a 的取值范围是A .1317,,22⎛⎫⎛⎫−∞−+∞ ⎪ ⎪⎝⎭⎝⎭B .1317,22⎛⎫− ⎪⎝⎭C .37,,22⎛⎫⎛⎫−∞−+∞ ⎪ ⎪⎝⎭⎝⎭D .37,22⎛⎫−⎪⎝⎭ 5. 若111111777n n n nn n n C C C −−+++++++是9的倍数,则自然数n 为A .4的倍数B .3的倍数C .奇数D .偶数6. 现将0-9十个数字填入右方的金字塔中,要求每个数字都使用一次,第一行的数字中最大的数字为a ,第二行的数字中最大的数字为b ,第三行的数字中最大的数字为c ,第四行的数字中最大的数字为d ,则满足a b c d <<<的填法的概率为A .110B .15C .215D .257. 在矩形ABCD 中,已知24AB AD ==,E 是AB 的中点,将ADE ∆沿直线DE 翻折成1A DE ∆,连接1AC .当二面角1A DE C −−的平面角的大小为60︒时,则三棱锥1A CDE −外接球的表面积为 A .563πB .18πC .19πD .533π8. 已知0a >且1a ≠,若集合{}22log a A x x x =<,1ln ln 2B x y x x ⎧⎫⎛⎫==+−⎨⎬ ⎪⎝⎭⎩⎭,且A B ≠⊂, 则实数a 的取值范围是A .14e 10,1,e 4⎛⎤⎛⎫ ⎥⎪⎝⎭⎝⎦B .14e10,e ,4⎡⎫⎛⎫+∞⎪⎢ ⎪⎝⎭⎣⎭C .12e 1,11,e 4⎛⎤⎛⎫ ⎥ ⎪⎝⎭⎝⎦D .12e1,1e ,4⎡⎫⎛⎫+∞⎪⎢ ⎪⎝⎭⎣⎭二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分. 9. 设0,0a b >>,满足321a b +=,下列说法正确的是A .ab 的最大值为124B .21a b+的最小值为 C .22a b +的最小值为113D .2294a b +的最小值为110.已知等差数列{}n a 的前n 项和为n S ,满足12321a a a ++=,525S =,下列说法正确的是A .23n a n =+B .210n S n n =−+C .{}n S 的最大值为5S D . 11n n a a +⎧⎫⎨⎬⎩⎭的前10项和为1099−11.已知ABC ∆的内角,,A B C 所对边的长分别为,,ab c ,已知4,6b c ==,ABC ∆的面积S 满足()()228b c S a +=+,点O 为ABC∆的外心,满足AO AB AC λμ=+,则下列结论正确的是(第7题图)(第6题图)A .=6SB .10CB AO ⋅=C .2213AO=D .23λ=−12.已知()()1122,,,P x y Q x y 是椭圆229144x y +=上两个不同点,且满足121292x x y y +=−,则下列说法正确的是A . 1122233233x y x y +−++−的最大值为6+B . 1122233233x y x y+−++−的最小值为3C . 11223535x y x y −++−+的最大值为D . 11223535x y x y −++−+的最小值为10−三、填空题:本题共4小题,每小题5分,共20分.13.已知点M 为抛物线28y x =上的动点,点N 为圆()2245x y +−=上的动点,则点M 到y 轴的距离与点M 到点N 的距离之和最小值为.14.已知()f x 为R 上的偶函数,函数()()2=h x x f x 在[)0,+∞上单调递增,则不等式()()()()2211330x f x x f x −−−++>的解集为.15.用0,1,2,3,4,5这六个数字组成无重复数字的六位数,要求任意两个偶数数字之间至少有一个奇数数字,则符合要求的六位数的个数有 个.16.若关于x 的不等式()e23xk x x −<+对任意的()0,x ∈+∞恒成立,则整数k 的最大值为.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)在数列{}n a 中,149a =,()()()2313912n n n n a n a ++⋅+=+. (1)求{}n a 的通项公式;(2)设{}n a 的前n 项和为n S ,证明:525443n nn S +<−⋅. 18.(12分)已知ABC ∆的内角,,A B C 的对边分别为,,a b c ,且2cos 2b A a c −=.(1)求角B ;(2)设ABC ∠的角平分线BD 交AC 于点D ,若BD =2,求ABC ∆的面积的最小值. 19.(12分)如图所示,在三棱锥A BCD −中,满足BC CD ==,点M 在CD 上,且5DM MC =,ABD ∆为边长为6的等边三角形,E 为BD 的中点,F 为AE 的三等分点,且2AF FE =.(1)求证:FM面ABC ;(2)若二面角A BD C −−的平面角的大小为23π,求直线EM 与面ABD 所成角的正弦值. 20.(12分)为提高学生的数学应用能力和创造力,学校打算开设“数学建模”选修课,为了解学生对“数学建模”的兴趣度是否与性别有关,学校随机抽取该校30名高中学生进行问卷调查,其中认为感兴趣的人数占70%.(1)根据所给数据,完成下面的22⨯列联表,并根据列联表判断是否有85%的把握认为学生对“数学建模”选修课的兴趣度与性别有关?(2)若感兴趣的女生中恰有4名是高三学生,现从感兴趣的女生中随机选出3名进行二次访谈,记选出高三女生的人数为X ,求X 的分布列与数学期望.附:()()()()()22n ad bc K a b c d a c b d −=++++,其中n a b c d =+++.21.(12分)已知双曲线C 以20x ±=为渐近线,其上焦点F 坐标为()0,3.(1)求双曲线C 的方程;(2)不平行于坐标轴的直线l 过F 与双曲线C 交于,P Q 两点,PQ 的中垂线交y 轴于点T ,问TFPQ是否为定值,若是,请求出定值,若不是,请说明理由. 22.(12分)设()()ex xf x x =∈R .(1)求()f x 的单调性,并求()f x 在12x =处的切线方程;(2)若()()()e ln 1x f x k x ⋅≤⋅+在()1,x ∈+∞上恒成立,求k 的取值范围.(第19题图)中学生标准学术能力诊断性测试2023年3月测试数学参考答案一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对但不全的得2分,有错选的得0分.三、填空题:本题共4小题,每小题5分,共20分.132 14.(),1−∞− 15.10816.1四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分) (1)()()()23+1391=2n n n n a n a +⋅++()()()()12233221n nn a n a n n +++∴=++即()()()()122321321n nn a n a n n +++=⋅++ ····································································· 2分 又()()12312111a +=+,所以数列()()221n n a n ⎧⎫+⎪⎪⎨⎬+⎪⎪⎩⎭是首项为13,公比为13的等比数列 从而()()21321n nn a n +⎛⎫= ⎪⎝⎭+,则()()2123n nn a n +=+⋅ ·················································· 5分 (2)()()2111+123233n nn n n n n n a n n +++==⋅<+⋅+··························································· 6分 21233133 12+12333323131233331两式相减得:12111111229311+121+3333333131n n n n n n n T −++⎡⎤⎛⎫−⎢⎥ ⎪⎝⎭+⎢⎥⎣⎦=+++−=−−111211152513636233n n n n n −++⎡⎤++⎛⎫=+−−=−⎢⎥ ⎪⋅⎝⎭⎢⎥⎣⎦················································ 9分 从而525443n n n T +−⋅=,故525443nnn S +<−⋅ ····················································· 10分 18.(12分)(1)由已知及正弦定理得:2sin cos sin 2sin B A A C ⋅−=又在ABC ∆中,()sin sin sin cos cos sin C A B A B A B =+=+ ························· 2分 2sin cos sin 2sin cos 2cos sin B A A A B A B ∴−=+即2sin cos =sin A B A −又sin 0A ≠,1cos 2B ∴=− ········································································ 4分 又0B π<<,2=3B π∴,即角B 的大小为23π·············································· 5分 (2)13sin 24ABC S ac B ac ∆== ····································································· 6分 BD 是ABC ∠的角平分线,而ABC ABDBCD S S S ∆∆∆=+11sin 60sin 6022AB BD BD BC =⨯⨯⨯︒+⨯⨯⨯︒ 即()44ac BD a c =⋅⋅+,ac BD a c =+∴ ················································· 8分 2BD =,()2ac a c ∴=+2a c ac +≥,ac ∴≥,即16ac ≥ ···············································10分 4a c ==1sin 162S ac B =⋅≥= 1219.(12分)(1)在BE 上取一点N ,使得12BN NE =,连接FN ,NM 6BD =,116BN BD ∴==,2NE =,3ED =12AF FE =,12BN AF NE FE ∴== 则FNAB ··························································································· 2分FN ⊄面ABC ,AB ⊂面ABC ,FN∴面ABC15BN CM ND MD ==,NM BC ∴ ······························································· 4分NM ⊄面ABC ,BC ⊂面ABC ,NM∴面ABCFNNM N =,∴面FNM面ABCFM ⊂面FNM ,FM∴面ABC ·························································· 5分 (2)AE BD ⊥,CE BD ⊥所以二面角A BD C −−的平面角为23AEC π∠= ············································ 6分 又AECE E =,BD ∴⊥面AECBD ⊂面ABD ,∴面ABD ⊥面AEC面ABD面=AEC AE ,过点C 作CH AE ⊥,则CH ⊥面ABD则sin3CH CE π=⋅=()2233332CE =−=,CH ∴==······························· 8分即C 到面ABD 的距离为256MD CD =,M ∴到面ABD 的距离为5624⨯= ······························ 9分322232EMEM+−=⇒=···············································11分∴EM与面ABD=·········································12分(其他方法酌情给分)20.(12分)(1)列联表如下:·····················2分()2230125490.4082 2.0721614219K⨯⨯−⨯=≈<⨯⨯⨯所以没有85%的把握认为学生对“数学建模”选修课的兴趣度与性别有关 ············5分(2)由题意可知X的取值可能为0,1,2,3则()3539542CP XC===···········································································6分()21453910121C CP XC=== ············································································7分()5243912145C CP XC=== ············································································8分()34391321CP XC===················································································9分X()5105140123422114213E X =⨯+⨯+⨯+⨯= ··············································· 12分 21.(12分)(1)因为双曲线C以20x =为渐近线设双曲线方程为()()22x x λ=,即2245x y λ−= ························· 1分()0,3F ,0λ∴< ,即:22154y x λλ−=−−954λλ∴−−=,9920λ∴−=,即20λ=− ····················································· 3分 所以双曲线C 的方程为:22145y x −= ··························································· 4分 (2)设直线:3l y kx =+,()11,P x y ,()22,Q x y()22225420534203y x kx x y kx ⎧−=⇒+−=⎨=+⎩ 化简得:()225430250k x kx −++=··························································· 6分 此方程的两根为12,x x ,则12212230542554k x x k x x k ⎧+=−⎪⎪−⎨⎪=⎪−⎩PQ ∴==()2220154k k +==− ·············································· 8分 PQ 中点M 坐标为221512,5454kk k −⎛⎫− ⎪−−⎝⎭······················································· 9分 22121155454k ⎛⎫02275422754则22227151535454k TF k k +=+=−− ···························································· 11分 ()22221515543420154k TF k PQ k k +−∴==+− ········································································ 12分 22.(12分)(1)令()()2e e 10e e x xxx x xf x −−'==> ··································································· 1分 1x ∴<,即函数()f x 的单调递增区间为(),1−∞,函数()f x 的单调递减区间为()1,+∞·········································· 2分当12x =时,121122e f ⎛⎫== ⎪⎝⎭,∴切点为12⎛ ⎝ 又12111222e ef ⎛⎫'==⎪⎝⎭,()f x ∴在12x =处的切线方程为:12y x y x ⎫=−⇒=⎪⎭················································· 4分 (2)()2e ln 1ex x k x ≤⋅+ ,ln 1ln 1ln 1e e e x x x x x k k x +++≤⋅=⋅ ()1,x ∈+∞,ln 1ln 10ex x ++∴>,ln 1e ln 1e x x xk x +∴≥+ ··············································· 6分 由(1)可知()=ex xf x 在()1,+∞上单调递减,下证:ln 1x x >+即证:ln 1x x −>在()1,x ∈+∞恒成立 令()ln g x x x =−,则()1110x g x x x−'=−=>1111 9 11()f x 在()1,x ∈+∞上单调递减()()ln 1f x f x ∴<+,即ln 1ln 1e ex x x x ++<,ln 1e 1ln 1e x x x x +∴<+ ································· 11分 1k ∴≥ ·································································································· 12分。
第1页 共4页 第2页 共4页中学生标准学术能力诊断性测试2022年3月测试理科数学试卷本试卷共150分,考试时间120分钟。
一、选择题:本题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合()()}{110A x x x =+−<,}{0B y y =>,则()B A=RA .∅B .[)0,1C .(1,0)−D .(]1,0−2. 已知双曲线12222=−bx ay 的一条渐近线过点(2,1),则此双曲线的离心率为A .3B .23 C .5 D .253. 若复数z 满足()1i 2i 1z +=−(i 为虚数单位),则下列说法正确的是A .z 的虚部为3i 2B.2z =C .3z z +=D .z 在复平面内对应的点在第二象限4. 设0,0>>b a ,则“49≤+b a ”是“94≤ab ”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5. 已知函数()x f 的图象如图所示,则该函数的解析式可能是A .()2ln(1cos )f x x =+B .()2ln(1cos )f x x x =⋅−C .()2ln(1sin )f x x =+D .()2ln(1sin )f x x x =⋅−6. 为了得到函数sin(2)3y x π=+的图象,可以将函数cos 24y x π⎛⎫=+ ⎪⎝⎭的图象A .向左平移524π个单位B .向右平移524π个单位C .向左平移2π个单位D .向右平移2π个单位7. 已知61(0)ax a x ⎛⎫+> ⎪⎝⎭的展开式中含2−x 的系数为60,则61ax x ⎛⎫− ⎪⎝⎭的展开式中的常数项为A .160−B .160C .80D .80− 8. 如图所示,已知四边形ABCD 是由一个等腰直角三角形ABC 和一个有一内角为30︒的直角三角形ACD 拼接而成,将ACD ∆绕AC 边旋转的过程中,下列结论中不可能成立的是 A .AB CD ⊥B .AD BC ⊥ C .AB BD ⊥ D .CD BC ⊥9. 已知随机变量ξ的分布列如下表所示,且满足()0=ξE ,则下列方差值中最大的是A .()D ξB .()D ξC .(21)D ξ+D .(32)D ξ−10.已知椭圆()2222:10x y C a b ab+=>>的离心率为33,过左焦点F 作一条斜率为(0)k k >的直线,与椭圆交于B A ,两点,满足FB AF 2=,则实数k 的值为 A .1B .2C .3D .211.对任意的(]12,1,2x x∈,当12x x <时,1212ln 02x a x x x −+<恒成立,则实数a 的取值范围是A .(2)+∞,B .[)2,+∞C .(4)+∞,D .[)4,+∞12.设数列}{n a 的前n 项和为n S ,满足()212n n na S n a *+=∈N ,则下列说法正确的是(第5题图)(第8题图)第3页 共4页 第4页 共4页A .202120221a a ⋅<B .202120221a a ⋅>C .202222022−<aD .202222022>a二、填空题:本题共4小题,每小题5分,共20分.13.在长方体1111D C B A ABCD −中,已知2=AB ,t BC =,若在线段AB 上存在点E ,使得ED EC ⊥1,则实数t 的取值范围是 .14.平面向量,a b 满足:1,23a a b a b =+=−⋅,设向量,a b 的夹角为θ,则θsin 的最大值为 . 15.已知实数b a ,满足ba b a44221+=++,则b a t 22+=的取值范围是 .16.电影院一排有八个座位,甲、乙、丙、丁四位同学相约一起观影,他们要求坐在同一排,问恰有两个连续的空座位的情况有 种.三、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17.(12分)在ABC ∆中,角C B A 、、的对边分别为c b a 、、,若2=b ,且42cos c a C −=.(1)求角B 的大小;(2)若ABC ∆是锐角三角形,求ABC ∆面积的取值范围.18.(12分)已知数列}{n a 满足11=a ,且123()n a a a a n n *⋅⋅⋅⋅⋅⋅⋅=∈N .(1)求数列}{n a 的通项公式;(2)设()()()()11,22,1n nn na n n nb na n ⎧⋅−⋅+≥⎪=⋅⎨⎪=⎩,且数列}{nb 的前n 项和为n S ,若()23+−≥n S n λ恒 成立,求λ的取值范围.19.(12分)如图所示,在四棱锥ABCD P −中,平面⊥PAB 平面ABCD ,四边形ABCD 是边长为2的菱形,120,1,ABC PB PB AB ∠=︒=⊥. (1)求证:平面⊥PBD 平面PAC ;(2)求平面PAD 与平面PBC 所成锐二面角的大小. 20.(12分)已知实数y x ,满足()222e e 2x y x y +−+=.(1)若0=x 时,试问上述关于y 的方程有几个实根?(2)证明:使方程()222e e 2x y x y +−+=有解的必要条件为:20x −≤≤. 21.(12分)如图所示,已知抛物线2:2E y px =,其焦点与准线的距离为6,过点()0,4M 作直线21,l l 与E 相交,其中1l 与E 交于B A ,两点,2l 与E 交于D C ,两点,直线AD 过E 的焦点F ,若AD ,BC 的斜率为1k ,2k . (1)求抛物线E 的方程; (2)问21k k 是否为定值?如是,请求出此定值;如不是,请说明理由.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.作答时请写清题号.22.(10分)[选修:坐标系与参数方程]以直角坐标系的原点O 为极点,以x 轴正半轴为极轴,且两个坐标系取相等的长度单位,已知 直线l 的参数方程为cos (0)2sin 2x t αt y t απα=⎧≤<⎨=+⎩为参数,,曲线C 的极坐标方程为θθρsin 8cos 2=.(1)求曲线C 的直角坐标方程;(2)设直线l 与曲线C 相交于B A ,两点,当α变化时,求AB 的最小值. 23.(10分)[选修:不等式选讲]设函数()22+−=x x x f .(1)若()3442>++−x x x f ,求x 的取值范围;(2)若2≤−a x ,求证:()()a af x f 46+≤−.(第21题图)(第19题图)中学生标准学术能力诊断性测试2022年3月测试理科数学参考答案一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.二、填空题:本题共4小题,每小题5分,共20分.13.(]1,014.1313315.⎥⎦⎤ ⎝⎛+21031, 16.720三、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分. 17.(12分)(1)解:由余弦定理可得:4244cos 22c a aca C −=−+=,……………….………………….……….…2分整理得ac c a −+=224,解得2124cos22=−+=acc a B,……………….……………….……….…4分()0,B ∈π,故3B π=……………….………………….…………….…………….…….……….…5分 (2)由(1)可知:sin 2b B==,所以有:C c A a sin 34,sin 34==故16162161sin sin sin sin sin sin 333322ac A C A A A A A ⎛⎫⎛⎫=⋅=π−=⋅+ ⎪ ⎪ ⎪⎝⎭⎝⎭)288118π4cos sin 2cos 2sin 233222363A A A A A A ⎛⎫⎛⎫=+=−+=−+ ⎪ ⎪ ⎪⎝⎭⎝⎭………….8分ABC ∆是锐角三角形,022032A C A ππ⎧<<⎪⎪⎨π⎪<=−<⎪⎩,可得:,62A ππ⎛⎫∈ ⎪⎝⎭,………………………9分 52,666A πππ⎛⎫−∈ ⎪⎝⎭,所以1sin 2,162A π⎛⎫⎛⎤−∈ ⎪ ⎥⎝⎭⎝⎦,故⎥⎦⎤ ⎝⎛∈4,38ac ……………….………………11分 故ABC ∆的面积1sin 234S ac π==,则3S ∈⎝⎦……………………………….…12分 18.(12分)(1)解:123()n a a a a n n *⋅⋅⋅⋅⋅⋅⋅=∈N当2≥n 时,有:11221−=⋅⋅⋅⋅⋅⋅⋅−−n a a a a n n ,……………………………………………………2分 两式作商,可得:当2≥n 时,1−=n n a n ,……………………………………………….………3分又由11=a ,得()⎪⎩⎪⎨⎧=≥−=1,12,1n n n na n ………………………………………………………….………4分(2)当2≥n 时,()()nnn n n n n n nb 212111+=⋅+⋅−⋅−=,当1=n 时,111221===a b ,所以对任意的n *∈N ,均有n n n b 21+=,………………………5分n n n S 21232221++⋅⋅⋅++=①,1322123222+++⋅⋅⋅++=n n n S ②,利用错位相减法:①-②:n-123n 11111421111111122222212n n n S n n ++⎡⎤⎛⎫−⎢⎥ ⎪⎝⎭++⎢⎥⎣⎦=++++−=+−−=1212123++−−n nn ,求得nn n n S 212131+−−=−, ……………………………………………………8分由()23+−≥n S n λ得()nn n 223⋅++≥λ,……………………………………………………………9分令()()nn n n g 223⋅++=,则()()()()14132322n nn g n n n g n n ++++⋅=++⋅()()()224123n n n ++=<+,………………………………………………11分 因为()0>n g ,所以有:()()n g n g <+1,即随着n 增大,()n g 减小,()()max 213g n g λ≥==……………………………………………………….……………………12分19.(12分)(1)证明: 平面⊥PAB 平面ABCD ,面 PAB 面AB ABCD =,且AB PB ⊥,∴⊥PB 平面ABCD ,………………………………………………………………………………2分 ⊂AC 面ABCD ,∴PB AC ⊥,由菱形性质知BD AC ⊥, B BD PB = ,∴⊥AC 平面PBD ,…………………………………………………………………………………4分又⊂AC 平面PAC ,∴平面⊥PBD 平面PAC …………………………………………………5分 (2)如图,设CD 的中点为E , 121==CD CE ,60BCE ∠=︒,2BC =,CE BE ⊥∴,AB BE ⊥∴, 平面⊥PAB 平面ABCD ,面 PAB 面AB ABCD =,且AB BE ⊥, ⊥∴BE 面PAB ,………………………………………………….…………………………………7分以点B 为原点,以直线BA 、BP 、BE 为x y z 、、轴,如图所示建立空间直角坐标系, 可得()0,0,0B ,()2,0,0A ,()0,1,0P,(1,C −,(1,D 设平面PAD 的一个法向量为(),,m x y z =,而()()1,0,3,2,1,0AD AP =−=−,由0m AD m AP ⎧⋅=⎪⎨⋅=⎪⎩,得⎩⎨⎧=+−=+−0203y x z x ,取3=x , 得()3,m =,……………………………………………………………………………….…9分设平面PBC 的一个法向量为(),,n a bc =,且()0,1,0BP =,(1,BC =−,由00n BP n BC ⎧⋅=⎪⎨⋅=⎪⎩,得⎩⎨⎧=+−=030c a b ,取3=a ,得()3,0,1n =, …………………….……11分设平面PAD 与平面PBC 所成锐二面角为θ,则311cos cos ,23m n m n m nθ⋅+====+⋅,所以60θ=︒,故平面PAD 与平面PBC 所成锐二面角为60︒……………………………………….……………12分 注:其他解法酌情给分. 20.(12分)(1)解:将0=x 代入得:()221e 2y y −+=,不妨记()2221eyf y y y =−++,()'2222e y fy y =−+,……………………….………………2分易知()'fy 在R 上递增,且()'00f =,可得:当0y <时,()'0fy <;当0y >时,()'0f y >,即:()f y 在(),0−∞单调递减,()0,+∞单调递增;……………………………….………………4分 由于()()00f y f ≥=,故0=x 时关于y 的方程有唯一的根 …………………………….………5分(2)先证e 1xx ≥+,令()()e 1x g x x =−+,则()'e 1x gx =−,当0x <时,()'0gx <,()g x 单调递减;0x >时,()'0g x >,()g x 单调递增;()()00g x g ≥=,所以有e 1xx ≥+恒成立, ……………………….………………………………8分由()()()22e 2e 1e 10xxxyy y −−−+=−−≥,可得:()()2e 2e 1xxy y −≥−−………………10分 所以有:()()()2222222e e2e 1122e 21xyxxx yx y y x x x =+−+≥+−−++=+≥++,所以220x x +≤,即20x −≤≤……………………….……………………………………………12分21.(12分)(1)解:抛物线E :px y 22=,焦点⎪⎭⎫⎝⎛0,2p F ,准线:2p x −=,∴焦点与准线的距离为6=p ,则抛物线E 的方程为:x y 122=…….…………………………….3分 (2)设()1216,3t t A ,()2226,3t t B ,()3236,3t t C ,()4246,3t t D ,41242141123366t t tt t t k +=−−=,同理3222t t k +=,∴413232412122t t t t t t t t k k ++=++=① ….………………….……………………………………………………5分 ()211142:63AD l y t x t t t −=−+,….…………….………………………………………………………6分 将()0,3F 代入可得:141−=⋅t t ②….……………………………………….…………………………7分 ()21211326:t x t t t y l AB −+=−,将()0,4M 代入可得:3421−=⋅t t③同理:3443−=⋅t t ④,….………………………………….…………………………………………8分 由②③④可知:3434,34,11431214t t t t t t t =−=−=−=……………………………………………10分代入①:341134134341111111121=−⎪⎪⎭⎫ ⎝⎛−=−+−=t t t t t t t t k k∴21k k 为定值,值为34………………………………….……………………………………………12分(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.作答时请写清题号. 22.(10分)(1)解:由θθρsin 8cos 2=,得()θρθρsin 8cos 2=,所以曲线C 的直角坐标方程为y x 82= ……………………………………………………………3分 (2)将直线l 的参数方程代入y x 82=,得()()2sin 8cos 2+=αt αt ,化简得:016sin 8cos 22=−⋅−⋅t t αα,0>∆恒成立……………………………………………5分 设B A ,两点对应的参数分别为21,t t ,则⎪⎪⎩⎪⎪⎨⎧−=⋅=+ααα221221cos 16cos sin 8t t t t ,…………………………………………………………………………………7分所以()αααα22222122121cos 8cos 64cos sin 84=+⎪⎭⎫⎝⎛=−+=−=t t t t t t AB ………………………9分 当0=α时,AB 的最小值为8 ……………………………………………………………………10分 23.(10分)(1)解:函数()22+−=x x x f ,代入()3442>++−x x x f ,可得:363>+x , ……………2分所以363>+x ,或363−<+x ,可知x 的取值范围是{}1,3−>−<x x x 或 …………………………………………………………4分(2)因为2≤−a x ,所以()()()2222f x f a x x a a −=−+−−+()22x a x a =−−−()()1x a x a =−+− …………………………………………………………6分1x a x a =−⋅+−21x a ≤+−()()221x a a =−+− …………………………………………8分()221x a a ≤−+−4221a ≤+−()4221a ≤++64a =+…………………………………10分。
中学生标准学术能力诊断性测试2024年3月测试数学参考答案一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对但不全的得2分,有错选的得0分.三、填空题:本题共4小题,每小题5分,共20分.13.16 14.−818515.45164516.a b +四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分) (1)tan 2C ==−−C C 1tan 42tan 32 ········································································· 2分解得=C tan 3,故=C 10cos ·································································· 4分 (2)222a b c ab C ab ab +=+=+≥52cos 16210·············································· 6分解得≤+ab 980 ·················································································· 8分 由(1)知=Csin故=≤∆S ab C ABC 2sin 1······························································· 10分故∆ABC .18.(12分)(1)对于≥n 2时,++=+=++a n a n a n n n n 4128241)()( ······································ 2分 =+⨯=a a 2,41611,+=⨯=⨯−a n a n n n n n 432,324 ··································································· 3分 经验算,a 1符合上述结果,故=⨯−a n n n324 ················································· 4分 (2)设=+=+⨯−⨯b n a n n n n nnn33643,则−=+−⨯+⨯−S n n n n nn2164311816)()( ························································· 6分设=⨯T n n n43,438312343T n =⨯+⨯+⨯++⨯n n 123,23413438312343T n =⨯+⨯+⨯++⨯+n n ····················································· 7分作差得到123124343434343n n T n =−⨯−⨯−⨯−−⨯+⨯+n ······························ 8分故−=+⨯=−⨯+−⨯−++T n n n n n n 1323213361311)()( ·········································· 10分 (n nn n S T=+−−+⨯−n21611816)()故=++⨯−−⨯−+S n n n n n n 22556213183312)( ················································ 12分 19.(12分)(1)圆C 1的方程可变形为−+=x y 2422)( ···························································· 2分 故C 1的圆心坐标为2,0)(,半径为2······························································· 4分 (2)设M x y M M ,)(,因为点M 是AB 的中点,∴⊥C M AB 1,∴⋅=−k k C M AB 11 ························································································ 6分故−−⋅=−x x y yM M M M 211 ················································································ 8分由此可得−++=x x y M M M 32022··································································· 10分 故轨迹方程为⎝⎭ ⎪−+=⎛⎫x y M M 243122,轨迹是以圆心为⎝⎭ ⎪⎛⎫2,03,半径为21的圆 ······· 12分 20.(12分)(1)解:+⨯+⨯++⨯+⨯+⨯=x y 10100.005100.0110100.019100.02100.0271,故+=x y 0.019························································································· 1分 ⨯−⨯=y x 200102001022,故−=y x 0.011 ························································································· 2分 解得==x y 0.004,0.015 ············································································ 3分 (2)①学院毕业生年薪在30,80)[区间的人数比例为:++++0.020.0270.0150.010.005)(⨯=1077%,故同类型合作办学高校毕业生平均年薪最高为30万元········································ 5分 ②对于单个毕业生,其年薪高于50万的概率=++⨯=P 0.0050.010.015100.3)(, 故随机变量⎝⎭⎪⎛⎫ξB 10~4,3, 故==−=ξP 010.30.24014)()( ·································································· 6分 ==⨯−⨯=ξP C 110.30.30.4116413)()( ························································ 7分 ==⨯−⨯=ξP C 210.30.30.26464222)()( ······················································ 8分 ==⨯−⨯=ξP C 310.30.30.0756433)()( ······················································· 9分===ξP 40.30.00814)( ········································································· 10分ξ的分布列为:ξ的数学期望=⨯=ξE 0.34 1.2)( ······························································· 12分21.(12分) (1)()()f x '==−++−−−−+x a x ax a x ax a x xx x e e 2424e e 2222)()()( ······················· 2分当=a 1时,'=−+−f x x x xe2522)(,'=−f 02)( ············································ 4分 又()01f =,故曲线=y f x )(在f 0,0)()(处的切线方程为=−+y x 21 ············ 5分(2)()f x '===−++−−+−x a x a x a x x xe e 0242222)()()(,解得知==x x a 22,12··················································································· 7分 若a f x >4,)(在⎝⎭⎪−∞+∞⎛⎫a 2,2,,)(递减,⎝⎭ ⎪⎛⎫a 22,递增 ······································· 8分 极大值⎝⎭⎪=⎛⎫f a aa e 2>02··············································································· 9分 若a =4,函数单调递减,无极大值 ····························································· 10分 若a f x <4,)(在⎝⎭ ⎪−∞+∞⎛⎫a 2,,2,)(递减,⎝⎭⎪⎛⎫a 2,2递增 ····································· 11分 极大值=−f a e2>082)( ············································································ 12分 综上,f x )(的极大值恒为正数. 22.(12分)(1)椭圆+=E y x 4:122的左,右焦点分别为F F ,12))(,设⊥A m n AF AF ,,12)(,故(AF AF m nm n ⋅=−−−−−=3,3,012)() ··············· 1分即+=m n 322 ··························································································· 2分又+=n m 4122,解得==m n 33························································· 3分∴A 点坐标为⎝⎭⎛33, ············································································ 4分(2)设P 点坐标为p ,0)(,则可得Q 点坐标为p 2( ································· 5分(,02223OP OQ p p p p ⋅==−+=−−+⎝⎭ ⎛222() ················· 7分当=p 2时,OP OQ ⋅取最大值,最大值为3 ················································ 8分(3)A 点坐标为⎝⎭,B 点坐标为⎝⎭⎛,点O 到线段AB 的距离=h 1 ····································································· 9分若=S S 212,则点M 到线段AB 的距离应为=h 2故M 点的纵坐标为6或2,代入椭圆方程,解得M 点的横坐标为±3或±1 ······························································· 11分故M 点的坐标为:⎝⎭ ⎛或⎝⎭±⎛ ·············································· 12分。