第二章-3 飞行动力学-飞机的横侧运动+飞机方程
- 格式:ppt
- 大小:631.50 KB
- 文档页数:12
飞机运动的动力学、弹道学和控制1. 飞机运动的动力学
1.1 飞机的六度自由运动
- 平动运动:沿x、y、z三个坐标轴的平动
- 转动运动:绕x、y、z三个坐标轴的转动
1.2 飞机的空气动力学
- 升力原理
- 阻力原理
- 机动力学方程
2. 飞机的弹道学
2.1 弹道运动的基本概念
- 初始条件
- 空气阻力
- 重力加速度
2.2 弹道方程
- 二维平面弹道方程
- 三维空间弹道方程
2.3 弹道修正
- 风阻修正
- 重力修正
3. 飞机的控制
3.1 飞机的控制面
- 升降舵
- 方向舵
- 副翼
3.2 飞行控制系统
- 自动驾驶仪
- 飞行控制计算机
- actuators
3.3 控制律设计
- PID控制
- 最优控制
- 自适应控制
本文概述了飞机运动的动力学、弹道学和控制的基本理论和方法。
动力学部分介绍了飞机六度自由运动和空气动力学原理;弹道学部分阐述了弹道运动基本概念、弹道方程及修正方法;控制部分则涉及飞机控制面、飞行控制系统和控制律设计等内容。
这为深入研究飞机运动及其控制奠定了基础。
第二章 直升机飞行动力学2.1 坐标系及运动参量与固定翼飞机相似,直升机在空中作6个自由度运动,即作为质点的三个线运动:升降运动,前飞与后退运动及左右侧向运动;以及作为刚体的角运动:俯仰运动,偏航运动及滚转运动。
为描述直升机自身运动需建立机体坐标系及速度坐标系,为建立直升机相对于地面的运动几何,需建立地面坐标系。
2.1.1 坐标系1.机体坐标系机体坐标系(OXYZ )与机体固连,如图2-1所示,原点O 为飞机重心,纵轴OX 在直升机对称平面内,通过重心,与机身纵轴一致,沿机头方向为正,立轴OZ 通过重心,在机身对称平面内与桨毂轴平行,向下为正,横轴OY 通过重心O 与XOZ 平面垂直。
若左旋直升机,按左手定则,指向左为正,若右旋直升机则按右手定则,指向右为正。
图2-1为右旋直升机的机体轴系。
θφψE Z E X (北)(地图2-1 机体坐标系及与地面坐标系之间关系2.速度坐标轴系速度坐标系(a a a OX Y Z )描述直升机空速相对于机体轴的关系,如图2-2所示,原点O 设在飞机重心,a OX 轴与空速向量k V 一致,前飞为正。
a OZ 在直升机对称平面内,垂直于a OX 轴,向下为正,a OY 垂直于a a X OZ 平面,直升机右旋时向右为正。
由速度坐标系可建立飞机的迎角α与侧滑角β。
机身迎角α为k V 在机身对称平面XOZ 的投影与OX 夹角,侧滑角β为k V 与对称平面XOZ 的夹角,k V 在X 轴右边时侧滑角β为正。
图2-2 速度坐标系 3.地面坐标系地面坐标系(E E E OX Y Z )相对于地球表面不动,如图2-3所示,原点O 设在地面上某点(可设在起飞点),纵轴E OX 应指北,或指向应飞航向,立轴E OZ 垂直向下为正,E OY 轴与E E OX Y 平面垂直,指向由右手定则决定。
由图可知,地面坐标系可建立直升机相对于地面飞行的航迹倾斜角γ及航迹偏转角χ。
航迹角γ是指直升机的地速d V 与地平面夹角,向上为正。
飞机动力学模型公式飞机动力学模型是研究飞机运动和飞行性能的重要工具。
它基于物理原理和数学模型,描述了飞机在不同飞行阶段的运动规律和动力特性。
本文将从人类视角出发,以生动的语言描述飞机动力学模型,使读者能够感受到仿佛亲身体验飞行的情感。
我们来了解飞机的基本构造。
飞机通常由机翼、机身、机尾和发动机组成。
机翼是飞机最重要的部件之一,它提供了升力,使飞机能够离开地面并在空中飞行。
机身是飞机的主要结构部分,承载着乘客和货物以及各种系统和设备。
机尾包括水平尾翼和垂直尾翼,用于保持飞机的稳定性和操纵性。
接下来,让我们来了解飞机的基本飞行原理。
飞机的升力是通过机翼产生的。
当飞机在空中飞行时,机翼上方的气压较低,下方的气压较高,由此产生了升力。
升力的大小取决于机翼的形状、面积以及飞机的速度和飞行姿态。
除了升力,飞机还需要产生推力才能前进。
推力主要由发动机提供,它通过喷射高速气流或推进螺旋桨来推动飞机向前运动。
推力的大小取决于发动机的性能和工作状态。
在飞行过程中,飞机还需要克服阻力。
阻力是飞机运动过程中受到的空气阻碍力,它包括气动阻力、重力和滑行阻力等。
飞机需要消耗能量来克服阻力,保持飞行的速度和高度。
为了控制飞机的运动,飞行员需要操纵飞机的姿态和舵面。
飞机的姿态包括俯仰、滚转和偏航,分别控制飞机的上下、左右和旋转运动。
舵面则是飞机上的可移动部件,通过改变其位置来改变飞机的姿态和方向。
飞机动力学模型以上述原理为基础,通过建立数学方程和模拟算法,描述了飞机的运动和性能。
它可以预测飞机在不同环境条件下的飞行特性,如起飞距离、爬升率、巡航速度和降落过程等。
飞机动力学模型在飞机设计、飞行控制和飞行仿真等领域具有重要应用价值。
飞机动力学模型是研究飞机运动和飞行性能的重要工具,它基于物理原理和数学模型,描述了飞机在不同飞行阶段的运动规律和动力特性。
通过模拟和预测飞机的运动和性能,飞机动力学模型在飞机设计和飞行控制中发挥着重要作用。