飞机纵向运动的动稳定性
- 格式:pdf
- 大小:501.29 KB
- 文档页数:36
1什么是定常流以及什么是非常流?答:在流场中的任何一点处,流体微团的流动参数(速度、压力、温度、密度)随时间变化为非定常流。
在流场中的任何一点处,流体微团的流动参数(速度、压力、温度、密度)不随时间变化为定常流。
2同一流管:截面积大,流速小,压力大。
截面积小,流速大,压力小.。
3结合连续方程和伯努利方程可以得出结论:不可压缩、理想流体定常流动时,在管道剖面面积减小的地方,流速增大,流体的动压增大,静压减小。
在管道剖面面积增大的地方,流速减小,流体的动压减小,静压增大。
4附面层的特点附面层分为层流附面层和紊流附面层,层流在前,紊流在后。
层流与紊流之间的过渡区称为转捩点。
5摩擦阻力由于紧贴飞机表面的空气受到阻碍作用而流速降低到零,根据作用力与反作用力定律,飞机必然受到空气的反作用。
这个反作用力与飞行方向相反,称为摩擦阻力。
摩擦阻力是由于空气有粘性而产生的阻力,存在于附面层内。
6减小摩擦阻力的措施采用层流翼型;附面层控制;保持机体表面的光滑清洁。
尽可能减小飞机暴露在气流中的表面面积,也有助于减小摩擦阻力。
7压差阻力是由处于流动空气中的物体的前后的压力差,导致气流附面层分离,从而产生的阻力减小飞机上的压差阻力的措施尽量减小飞机及各部件的迎风面积。
应尽可能把暴露在气流中的所有部件都做成流线型飞行时,除了气动部件外其他部件的轴线应尽量与气流方向平行。
8飞机的各个部件,如机翼、机身、尾翼的单独阻力之和小于把它们组合成一个整体所产生的阻力,这种由于各部件气流之间的相互干扰而产生的额外阻力,称为干扰阻力减小干扰阻力的措施适当安排各部件之间的相对位置。
在部件结合处安装整流罩。
使结合部位光滑,减小流管的收缩和扩张。
9由于翼尖涡的诱导,导致气流下洗,在平行于相对气流方向出现阻碍飞机前进的力,这就是诱导阻力。
增大机翼的展弦比;增设翼尖小翼采用梯形的机翼平面形状10结论总阻力随着速度增大,先增大后减小。
诱导阻力是随着飞行速度的提高而逐渐减小。
飞机的稳定性能飞机在空中飞行,要求纵向运动应具有静稳定性,即绕飞机横轴的运动静稳定性;而且也要求飞机绕横轴和竖轴运动也具有静稳定性。
从机头贯穿机身到机尾的轴叫纵轴(Ox轴),从左翼通过重心到右翼并与纵轴垂直的轴叫横轴(Oy轴)。
这两根轴同处在一个平面内,比如水平面内。
通过重心并和上述两根轴相垂直到轴叫竖轴(Oz轴)。
飞机在铅垂平面(即Oxz平面)内的运动,称为纵向运动;绕横轴Oy的转动叫俯仰运动;绕竖轴Oz的转动叫偏航运动;绕纵轴Ox的转动叫滚转运动。
为了满足飞机的纵向静稳定性,飞机焦点位置和飞机重心位置之间的关系必须满足ΔCm/ΔCL>0。
当飞机外形一定时,飞机焦点位置是确定的,反过来就要求在飞机使用过程中的重心位置必须位于允许重心变化的范围内才行。
重心的后限是由静稳定性要求确定的,它不能跑到飞机焦点位置的后面去。
重心也有前限,重心前移可以增加飞机的静稳定性,但并不是静稳定性越大越好。
例如,静稳定性过大,升降舵的操纵力矩就难以使飞机抬头增加迎角获得CL,max。
换句话讲,是操纵性要求限制了重心前限。
同要求飞机绕横轴的运动具有纵向静稳定性一样,要求飞机绕竖轴和纵轴运动也应具有静稳定性,并分别称为方向静稳定性和横向静稳定性。
飞机具有横向静稳定性是指处于纵向平衡状态的飞机,一旦受到外界的干扰,打破了原先对飞机纵轴的力矩平衡,产生绕纵轴Ox的倾斜角φ;当外界干扰消除后,飞机靠自身产生的一个恢复力矩,有自动减小倾斜角φ和恢复原先平衡的趋势。
保证飞机具有横向静稳定性的主要外形参数是机翼的后掠角和上反角。
跨声速或超声速飞机,为了减小激波阻力,大都采用了后掠角比较大的机翼,因此后掠角的横向静稳定性作用可能过大。
所以,可以采用下反角(负的上反角)的外形来削弱后掠机翼的横向静稳定性。
低、亚声速飞机大都为梯形直机翼,为了保证飞机的横向静稳定性要求,或多或少都有几度大小的上反角。
航空器的动态稳定性与控制在广袤的蓝天中,航空器自由翱翔。
然而,这看似轻松的飞行背后,隐藏着一系列复杂而关键的科学原理,其中航空器的动态稳定性与控制无疑是至关重要的方面。
要理解航空器的动态稳定性,首先得明白什么是稳定性。
简单来说,稳定性就是指物体在受到干扰后,是否能够恢复到原来的状态。
对于航空器而言,动态稳定性指的是其在飞行过程中,当受到气流变化、操纵输入或其他外部因素干扰时,能够自动趋向于恢复平衡状态的能力。
航空器的动态稳定性可以分为纵向稳定性、横向稳定性和方向稳定性。
纵向稳定性关乎飞机在俯仰方向上的稳定,也就是机头的上下运动。
比如,当飞机因为气流的影响而机头突然上仰时,如果飞机具有良好的纵向稳定性,它会自动产生一个恢复力矩,使机头重新回到水平位置。
横向稳定性则主要涉及飞机在滚转方向上的稳定,即机翼的左右倾斜。
方向稳定性则侧重于飞机在偏航方向上的稳定,也就是机头的左右转动。
这些稳定性的实现,离不开航空器自身的设计特点。
比如,机翼的形状、位置和面积,尾翼的大小和布局,机身的形状和重量分布等,都对稳定性有着重要的影响。
以机翼为例,上凸下平的形状使得气流在经过时产生压力差,从而产生升力。
同时,机翼的安装角度和位置也会影响飞机的稳定性。
如果机翼位置过高或过低,都可能导致稳定性变差。
控制,是实现和维持航空器稳定性的重要手段。
航空器的控制系统就像是驾驶员手中的“缰绳”,能够对飞机的姿态和运动进行精准的操控。
在现代航空器中,常见的控制面包括副翼、升降舵和方向舵。
副翼位于机翼的后缘,通过左右副翼的差动运动,可以实现飞机的滚转控制。
升降舵通常位于水平尾翼的后缘,用于控制飞机的俯仰运动。
方向舵则位于垂直尾翼的后缘,负责飞机的偏航控制。
除了这些传统的控制面,现代航空器还采用了一系列先进的控制技术。
比如电传操纵系统,它通过电子信号将驾驶员的操纵指令传递给控制面,相比传统的机械操纵系统,具有响应更快、精度更高、重量更轻等优点。