三角函数的单调性与值域
- 格式:pdf
- 大小:390.57 KB
- 文档页数:4
三角函数的单调区间与不等式三角函数是高中数学中重要的概念之一,它在数学和物理等领域有广泛的应用。
而了解三角函数的单调性及其与不等式的关系,对于解题和理解数学概念都极为重要。
本文将详细讨论三角函数的单调区间与不等式的相关内容。
一、正弦函数的单调性与不等式正弦函数是最常见的三角函数之一,其定义域为实数集合R,值域在[-1, 1]之间。
首先我们来研究正弦函数的单调性。
我们知道,正弦函数的一个周期是2π,那么我们可以利用周期性来研究其单调性。
在每个周期内,正弦函数在[0, π/2]、[π/2, π]、[π, 3π/2]、[3π/2, 2π]上的单调性是相同的。
首先来看在[0, π/2]区间内的单调性。
在这个区间内,正弦函数的值是递增的,即sin(x1) < sin(x2)当且仅当0 ≤ x1 < x2 ≤ π/2。
接下来是在[π/2, π]区间内的单调性。
在这个区间内,正弦函数的值是递减的,即sin(x1) > sin(x2)当且仅当π/2 ≤ x1 < x2 ≤ π。
同理,在[π, 3π/2]和[3π/2, 2π]区间内的正弦函数分别是递增和递减的。
根据上述的单调性分析,我们可以利用单调性来解不等式。
比如对于sin(x) > a这样的不等式,我们可以通过分析sin(x)和a的关系,得出x的取值范围。
二、余弦函数的单调性与不等式余弦函数也是一种常见的三角函数,其定义域和值域与正弦函数相同。
我们将讨论余弦函数的单调性及其与不等式的关系。
与正弦函数类似,余弦函数也具有周期性。
在每个周期内,余弦函数在[0, π]、[π, 2π]区间上的单调性是相同的。
在[0, π]区间内,余弦函数的值是递减的,即cos(x1) > cos(x2)当且仅当0 ≤ x1 < x2 ≤ π。
在[π, 2π]区间内,余弦函数的值是递减的,即cos(x1) < cos(x2)当且仅当π ≤ x1 < x2 ≤ 2π。
三角函数的图象与性质一、 考情分析1.能画出三角函数y =sin x ,y =cos x ,y =tan x 的图象,了解三角函数的周期性、单调性、奇偶性、最大(小)值;2.借助图象理解正弦函数、余弦函数在[0,2π]上,正切函数在⎝ ⎛⎭⎪⎫-π2,π2上的性质.二、 知识梳理1.用五点法作正弦函数和余弦函数的简图(1)正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,0),⎝ ⎛⎭⎪⎫3π2,-1,(2π,0).(2)余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),⎝ ⎛⎭⎪⎫π2,0,(π,-1),⎝ ⎛⎭⎪⎫3π2,0,(2π,1).2.正弦、余弦、正切函数的图象与性质(下表中k ∈Z )函数y =sin xy =cos xy =tan x图象定义域 R R {x |x ∈R ,且 x ≠k π+π2}值域 [-1,1] [-1,1] R 周期性 2π 2π π 奇偶性 奇函数 偶函数 奇函数 递增区间 ⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2 [2k π-π,2k π] ⎝ ⎛⎭⎪⎫k π-π2,k π+π2 递减区间 ⎣⎢⎡⎦⎥⎤2k π+π2,2k π+3π2 [2k π,2k π+π] 无 对称中心 (k π,0) ⎝ ⎛⎭⎪⎫k π+π2,0 ⎝ ⎛⎭⎪⎫k π2,0 对称轴方程x =k π+π2x =k π无[微点提醒] 1.对称与周期(1)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是14个周期.(2)正切曲线相邻两对称中心之间的距离是半个周期.2.对于y =tan x 不能认为其在定义域上为增函数,而是在每个区间⎝ ⎛⎭⎪⎫k π-π2,k π+π2(k ∈Z )内为增函数.三、 经典例题考点一 三角函数的定义域【例1】 (1)函数f (x )=-2tan ⎝ ⎛⎭⎪⎫2x +π6的定义域是( )A.⎩⎨⎧⎭⎬⎫x |x ≠π6B.⎩⎨⎧⎭⎬⎫x |x ≠-π12C.⎩⎨⎧⎭⎬⎫x |x ≠k π+π6(k ∈Z )D.⎩⎨⎧⎭⎬⎫x |x ≠k π2+π6(k ∈Z ) (2)不等式3+2cos x ≥0的解集是________.(3)函数f (x )=64-x 2+log 2(2sin x -1)的定义域是________. 【解析】 (1)由2x +π6≠k π+π2(k ∈Z ),得x ≠k π2+π6(k ∈Z ).(2)由3+2cos x ≥0,得cos x ≥-32,由余弦函数的图象,得在一个周期[-π,π]上,不等式cosx ≥-32的解集为⎩⎨⎧⎭⎬⎫x |-5π6≤x ≤56π,故原不等式的解集为⎩⎨⎧⎭⎬⎫x |-56π+2k π≤x ≤56π+2k π,k ∈Z .(3)由题意,得⎩⎨⎧64-x 2≥0,①2sin x -1>0,②由①得-8≤x ≤8,由②得sin x >12,由正弦曲线得π6+2k π<x <56π+2k π(k ∈Z ).所以不等式组的解集为⎝ ⎛⎭⎪⎫-116π,-76π∪⎝ ⎛⎭⎪⎫π6,56π∪⎝ ⎛⎦⎥⎤13π6,8.规律方法 1.三角函数定义域的求法(1)以正切函数为例,应用正切函数y =tan x 的定义域求函数y =A tan(ωx +φ)的定义域转化为求解简单的三角不等式.(2)求复杂函数的定义域转化为求解简单的三角不等式. 2.简单三角不等式的解法(1)利用三角函数线求解. (2)利用三角函数的图象求解. 考点二 三角函数的值域与最值【例2】 (1)y =3sin ⎝ ⎛⎭⎪⎫2x -π6在区间⎣⎢⎡⎦⎥⎤0,π2上的值域是________.(2)函数f (x )=sin 2x +3cos x -34⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π2的最大值是________.(3)函数y =sin x -cos x +sin x cos x 的值域为________. 【解析】 (1)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x -π6∈⎣⎢⎡⎦⎥⎤-π6,5π6,sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-12,1,故3sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-32,3, 即y =3sin ⎝ ⎛⎭⎪⎫2x -π6的值域为⎣⎢⎡⎦⎥⎤-32,3.(2)由题意可得f (x )=-cos 2x +3cos x +14=-(cos x -32)2+1.∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴cos x ∈[0,1].∴当cos x =32,即x =π6时,f (x )max =1. (3)设t =sin x -cos x ,则t 2=sin 2x +cos 2x -2sin x cos x , sin x cos x =1-t 22,且-2≤t ≤2,所以y =-t 22+t +12=-12(t -1)2+1.当t =1时,y max =1;当t =-2时,y min =-12- 2.所以函数的值域为⎣⎢⎡⎦⎥⎤-12-2,1.规律方法 求解三角函数的值域(最值)常见三种类型:(1)形如y =a sin x +b cos x +c 的三角函数化为y =A sin(ωx +φ)+c 的形式,再求值域(最值); (2)形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值); (3)形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值).考点三 三角函数的单调性 角度1 求三角函数的单调区间【例3-1】 (1)函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间是( )A.⎣⎢⎡⎦⎥⎤k π12-π12,k π2+5π12(k ∈Z ) B.⎝ ⎛⎭⎪⎫k π12-π12,k π2+5π12(k ∈Z ) C.⎝ ⎛⎭⎪⎫k π+π6,k π+2π3(k ∈Z ) D.⎝ ⎛⎭⎪⎫k π-π12,k π+5π12(k ∈Z ) (2)函数y =sin ⎝ ⎛⎭⎪⎫-2x +π3的单调递减区间为________. 【解析】 (1)由k π-π2<2x -π3<k π+π2(k ∈Z ),得k π2-π12<x <k π2+5π12(k ∈Z ),所以函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间为⎝ ⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z ).(2)y =-sin ⎝⎛⎭⎪⎫2x -π3,它的减区间是y =sin ⎝ ⎛⎭⎪⎫2x -π3的增区间.令2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z .故其单调递减区间为⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈Z .角度2 利用单调性比较大小【例3-2】 已知函数f (x )=2cos ⎝ ⎛⎭⎪⎫x +π6,设a =f ⎝ ⎛⎭⎪⎫π7,b =f ⎝ ⎛⎭⎪⎫π6,c =f ⎝ ⎛⎭⎪⎫π4,则a ,b ,c 的大小关系是( ) A.a >b >c B.a >c >b C.c >a >bD.b >a >c【解析】 令2k π≤x +π6≤2k π+π,k ∈Z , 解得2k π-π6≤x ≤2k π+5π6,k ∈Z ,∴函数f (x )=2cos ⎝ ⎛⎭⎪⎫x +π6在⎣⎢⎡⎦⎥⎤-π6,5π6上是减函数,∵-π6<π7<π6<π4<5π6,∴f ⎝ ⎛⎭⎪⎫π7>f ⎝ ⎛⎭⎪⎫π6>f ⎝ ⎛⎭⎪⎫π4. 角度3 利用单调性求参数【例3-3】 (2018·全国Ⅱ卷)若f (x )=cos x -sin x 在[-a ,a ]是减函数,则a 的最大值是( ) A.π4B.π2C.3π4D.π【解析】 f (x )=cos x -sin x =2cos ⎝ ⎛⎭⎪⎫x +π4,由题意得a >0,故-a +π4<π4,因为f (x )=2cos ⎝ ⎛⎭⎪⎫x +π4在[-a ,a ]是减函数,所以⎩⎪⎨⎪⎧-a +π4≥0,a +π4≤π,a >0,解得0<a ≤π4,所以a 的最大值是π4.规律方法 1.已知三角函数解析式求单调区间:(1)求函数的单调区间应遵循简单化原则,将解析式先化简,并注意复合函数单调性规律“同增异减”;(2)求形如y =A sin(ωx +φ)或y =A cos(ωx +φ)(其中ω>0)的单调区间时,要视“ωx +φ”为一个整体,通过解不等式求解.但如果ω<0,那么一定先借助诱导公式将ω化为正数,防止把单调性弄错.2.对于已知函数的单调区间的某一部分确定参数ω的范围的问题,首先,明确已知的单调区间应为函数的单调区间的子集,其次,要确定已知函数的单调区间,从而利用它们之间的关系可求解,另外,若是选择题利用特值验证排除法求解更为简捷. 考点四 三角函数的周期性、奇偶性、对称性 角度1 三角函数奇偶性、周期性【例4-1】 (1)已知函数f (x )=2cos 2x -sin 2x +2,则( ) A.f (x )的最小正周期为π,最大值为3 B.f (x )的最小正周期为π,最大值为4 C.f (x )的最小正周期为2π,最大值为3 D.f (x )的最小正周期为2π,最大值为4(2)设函数f (x )=sin ⎝ ⎛⎭⎪⎫12x +θ-3cos ⎝ ⎛⎭⎪⎫12x +θ⎝ ⎛⎭⎪⎫|θ|<π2的图象关于y 轴对称,则θ=( )A.-π6B.π6C.-π3D.π3【解析】 (1)易知f (x )=2cos 2x -sin 2x +2=3cos 2x +1=3cos 2x +12+1=32cos 2x +52,则f (x )的最小正周期为π,当2x =2k π,即x =k π(k ∈Z )时,f (x )取得最大值,最大值为4. (2)f (x )=sin ⎝ ⎛⎭⎪⎫12x +θ-3cos ⎝ ⎛⎭⎪⎫12x +θ=2sin ⎝ ⎛⎭⎪⎫12x +θ-π3,由题意可得f (0)=2sin ⎝ ⎛⎭⎪⎫θ-π3=±2,即sin ⎝ ⎛⎭⎪⎫θ-π3=±1,∴θ-π3=π2+k π(k ∈Z ),∴θ=5π6+k π(k ∈Z ).∵|θ|<π2,∴k =-1时,θ=-π6.规律方法 1.若f (x )=A sin(ωx +φ)(A ,ω≠0),则 (1)f (x )为偶函数的充要条件是φ=π2+k π(k ∈Z ); (2)f (x )为奇函数的充要条件是φ=k π(k ∈Z ).2.函数y =A sin(ωx +φ)与y =A cos(ωx +φ)的最小正周期T =2π|ω|,y =A tan(ωx +φ)的最小正周期T=π|ω|.角度2 三角函数图象的对称性【例4-2】 (1)已知函数f (x )=a sin x +cos x (a 为常数,x ∈R )的图象关于直线x =π6对称,则函数g (x )=sin x +a cos x 的图象( ) A.关于点⎝ ⎛⎭⎪⎫π3,0对称B.关于点⎝ ⎛⎭⎪⎫2π3,0对称C.关于直线x =π3对称D.关于直线x =π6对称 (2)已知函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|≤π2,x =-π4为f (x )的零点,x =π4为y =f (x )图象的对称轴,且f (x )在⎝ ⎛⎭⎪⎫π18,5π36上单调,则ω的最大值为( )A.11B.9C.7D.5【解析】 (1)因为函数f (x )=a sin x +cos x (a 为常数,x ∈R )的图象关于直线x =π6对称, 所以f (0)=f ⎝ ⎛⎭⎪⎫π3,所以1=32a +12,a =33, 所以g (x )=sin x +33cos x =233sin ⎝ ⎛⎭⎪⎫x +π6,函数g (x )的对称轴方程为x +π6=k π+π2(k ∈Z ),即x =k π+π3(k ∈Z ),当k =0时,对称轴为直线x =π3,所以g (x )=sin x +a cos x 的图象关于直线x =π3对称.(2)因为x =-π4为f (x )的零点,x =π4为f (x )的图象的对称轴,所以π4-⎝ ⎛⎭⎪⎫-π4=T 4+kT 2,即π2=2k +14T=2k +14·2πω(k ∈Z ),所以ω=2k +1(k ∈Z ).又因为f (x )在⎝ ⎛⎭⎪⎫π18,5π36上单调,所以5π36-π18=π12≤T 2=2π2ω,即ω≤12,ω=11验证不成立(此时求得f (x )=sin ⎝ ⎛⎭⎪⎫11x -π4在⎝ ⎛⎭⎪⎫π18,3π44上单调递增,在⎝ ⎛⎭⎪⎫3π44,5π36上单调递减),ω=9满足条件,由此得ω的最大值为9.规律方法 1.对于可化为f (x )=A sin(ωx +φ)形式的函数,如果求f (x )的对称轴,只需令ωx +φ=π2+k π(k ∈Z ),求x 即可;如果求f (x )的对称中心的横坐标,只需令ωx +φ=k π(k ∈Z ),求x 即可. 2.对于可化为f (x )=A cos(ωx +φ)形式的函数,如果求f (x )的对称轴,只需令ωx +φ=k π(k ∈Z ),求x ;如果求f (x )的对称中心的横坐标,只需令ωx +φ=π2+k π(k ∈Z ),求x 即可. [方法技巧]1.讨论三角函数性质,应先把函数式化成y =A sin(ωx +φ)(ω>0)的形式.2.对于函数的性质(定义域、值域、单调性、对称性、最值等)可以通过换元的方法令t =ωx +φ,将其转化为研究y =sin t (或y =cos t )的性质.3.数形结合是本节的重要数学思想.4.闭区间上最值或值域问题,首先要在定义域基础上分析单调性;含参数的最值问题,要讨论参数对最值的影响.5.要注意求函数y =A sin(ωx +φ)的单调区间时A 和ω的符号,尽量化成ω>0时情况,避免出现增减区间的混淆.6.求三角函数的单调区间时,当单调区间有无穷多个时,别忘了注明k ∈Z .四、 课时作业1.(2021·宝鸡中学高一期中)函数π()tan 23f x x ⎛⎫=-⎪⎝⎭的单调递增区间为( ) A .πππ2π,()2623k k k ⎡⎤++∈⎢⎥⎣⎦ZB .πππ5π,()212212k k k ⎡⎤-+∈⎢⎥⎣⎦Z C .π5ππ,π()1212k k k ⎛⎫-+∈ ⎪⎝⎭Z D .π2ππ,π()63k k k ⎛⎫++∈ ⎪⎝⎭Z 【答案】C 【解析】()π2232k x k k Z ππππ-<-<+∈得:5212212k k x ππππ-<<+,所以函数π()tan 23f x x ⎛⎫=- ⎪⎝⎭的单调递增区间为π5ππ,π()1212k k k ⎛⎫-+∈ ⎪⎝⎭Z . 2.(2021·陕西省西安中学高一期中)设函数12sin y x =-,则函数的最大值及取到最大值时的x 取值集合分别为( ) A .3,|2,2x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭B .1,3|2,2x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭C .3,3|2,2x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭D .1,|2,2x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭【答案】C【解析】由于22sin 2,22sin 2,112sin 3x x x -≤≤-≤-≤-≤-≤, 所以当32,2x k k Z ππ=+∈时,函数12sin y x =-有最大值为3. 3.(2021·吉林省高三其他(文))下列函数中,是奇函数且在其定义域上是增函数的是( ) A .1y x=B .y tanx =C .x x y e e -=-D .2,02,0x x y x x +≥⎧=⎨-<⎩【答案】C【解析】对于A 选项,反比例函数1y x=,它有两个减区间, 对于B 选项,由正切函数y tanx =的图像可知不符合题意; 对于C 选项,令()x x f x e e -=-知()x x f x e e --=-, 所以()()0f x f x +-=所以()x x f x e e -=-为奇函数, 又x y e =在定义内单调递增,所以x y e -=-单调递增, 所以函数x x y e e -=-在定义域内单调递增;对于D ,令2,0()2,0x x g x x x +≥⎧=⎨-<⎩,则2,0()2,0x x g x x x -+≤⎧-=⎨-->⎩,所以()()0g x g x +-≠,所以函数2,02,0x x y x x +≥⎧=⎨-<⎩不是奇函数.4.(2021·武功县普集高级中学高一月考)函数y =)A .()2,266k k k Z ππ⎡⎤⎢⎥⎣⎦π-π+∈ B .()22,333k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦C .()2,233k k k Z 2π2⎡⎤⎢⎥⎣⎦ππ-π+∈ D .()2,233k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦【答案】C【解析】由2cos 10x +≥得:2222,33k x k k πππ-≤≤π+∈Z . 所以函数2cos 1y x =+的定义域是()2,233k k k Z 2π2⎡⎤⎢⎥⎣⎦ππ-π+∈.5.(2021·武功县普集高级中学高一月考)函数sin y x x =的部分图像是( )A .B .C .D .【答案】A【解析】:因为sin y x x =,所以()f x 为偶函数,其图象关于y 轴对称,故可以排除B ,D.又因为函数()f x 在()0,π上函数值为正,故排除C.6.(2019·呼玛县高级中学高一月考)若函数()sin()(0,0,)2πωϕωϕ=+>><f x A x A 的部分图像如图所示,则函数()f x 的解析式为( )A .()sin(2)6f x x π=+ B .()cos(2)6f x x π=+ C .()cos(2)3f x x π=+D .()sin(2)3f x x π=+【答案】D【解析】由函数的部分图像可知1A =,22T π=,故T π=,所以2ππω=即2ω=.由函数图像的对称轴为12x π=,所以22,122k k Z ππϕπ⨯+=+∈, 因2πϕ<,故3πϕ=,所以()sin 23f x x π⎛⎫=+⎪⎝⎭,故选D . 7.(2019·呼玛县高级中学高一月考)设cos 12a π=,41sin6b π=,7cos 4c π=,则( ) A .a c b >> B .c b a >> C .c a b >> D .b c a >>【答案】A 【解析】4155b sinsin 6sin sin cos 66663ππππππ⎛⎫==+=== ⎪⎝⎭,7c cos cos 44ππ== 因为3412πππ>>,且y cos 0,2x π=在(,)是单调递减函数,所以a c b >>,故选A8.(2019·延安市第一中学高三月考(理))已知函数()sin()(0)2f x x πωφωϕ=+><,图象相邻两条对称轴之间的距离为2π,将函数()y f x =的图象向左平移3π个单位后,得到的图象关于y 轴对称,那么函数()y f x =的图象( )A .关于点,012π⎛⎫-⎪⎝⎭对称 B .关于点,012π⎛⎫⎪⎝⎭对称 C .关于直线12x π=-对称D .关于直线12x π=对称 【答案】B【解析】因为相邻两条对称轴的距离为2π,故22T π=,T π=,从而2ω=. 设将()f x 的图像向左平移3π单位后,所得图像对应的解析式为()g x , 则()2sin 23g x x πφ⎛⎫=++⎪⎝⎭,因()g x 的图像关于y 轴对称,故()01g =±, 所以2sin 13πφ⎛⎫+=±⎪⎝⎭,2,32k k Z ππφπ+=+∈,所以,6k k Z πφπ=-∈, 因2πφ<,所以6πφ=-.又()sin 26f x x π⎛⎫=- ⎪⎝⎭,令2,62x k k Z πππ-=+∈,故对称轴为直线,23k x k Z ππ=+∈,所以C ,D 错误; 令2,6x k k π-=π∈Z ,故,212k x k Z ππ=+∈,所以对称中心为,0,212k k Z ππ⎛⎫+∈⎪⎝⎭,所以A 错误,D 正确.9.(2021·河北省故城县高级中学高一期中)关于函数sin(),2y x π=+在以下说法中正确的是( )A .[,]22ππ-上是增函数 B .[0,]π上是减函数 C .[,0]π-上是减函数 D .[,]-ππ上是减函数【答案】B【解析】sin()cos 2y x x π=+=,它在[0,]π上是减函数.10.(2021·上海高一课时练习)下列命题中正确的是( ) A .cos y x =在第一象限和第四象限内是减函数 B .sin y x =在第一象限和第三象限内是增函数C .cos y x =在,22ππ⎡⎤-⎢⎥⎣⎦上是减函数 D .sin y x =在,22ππ⎡⎤-⎢⎥⎣⎦上是增函数 【答案】D【解析】对于cos y x =,该函数的单调递减区间为:[]2,2,k k k Z πππ+∈,故A 错,C 错. 对于sin y x =,该函数的单调递增区间为:2,2,22k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦,故B 错,D 对.11.(2021·陕西省西安中学高三其他(理))关于函数()2sin sin 222x x f x x π⎛⎫=+- ⎪⎝⎭有下述四个结论: ①函数()f x 的图象把圆221x y +=的面积两等分 ②()f x 是周期为π的函数③函数()f x 在区间(,)-∞+∞上有3个零点④函数()f x 在区间(,)-∞+∞上单调递减 其中所有正确结论的编号是( ) A .①③④ B .②④C .①④D .①③【答案】C【解析】f (x )=2sin2x sin (2π+2x )﹣x =2sin 2x cos 2x﹣x =sin x ﹣x , 对于①,因为f (﹣x )=sin (﹣x )﹣(﹣x )=﹣sin x +x =﹣f (x ),所以函数f (x )为奇函数,关于原点对称,且过圆心,而圆x 2+y 2=1也是关于原点对称,所以①正确;对于②,因为f (x +π)=sin (x +π)﹣(x +π)=﹣sin x ﹣x ﹣π≠f (x ),所以f (x )的周期不是π,即②错误;对于③,因为()'f x =cos x ﹣1≤0,所以f (x )单调递减,所以f (x )在区间(﹣∞,+∞)上至多有1个零点, 即③错误; 对于④,()'fx =cos x ﹣1≤0,所以f (x )单调递减,即④正确.12.(2021·山西省高三其他(文))已知()()cos 0,2f x x πωϕωϕ⎛⎫=+><⎪⎝⎭的图象关于直线524x π=对称,把()f x 的图象向左平移4π个单位后所得的图象关于点,012π⎛⎫⎪⎝⎭对称,则ω的最小值为( ) A .2 B .3C .4D .6【答案】C【解析】因为()f x 的图象向左平移4π个单位后所得的图象关于点,012π⎛⎫⎪⎝⎭对称, 所以()f x 关于点,03π⎛⎫⎪⎝⎭对称, 又()f x 的图象既关于直线524x π=对称, 设()f x 的最小正周期为T ,则()()2153244k T k N ππ+-=∈, 即()21284k k N ππω+⎛⎫=⋅∈ ⎪⎝⎭,所以()84k k N ω=+∈,取0k =,得4ω=,13.(2021·上海高二课时练习)设直线的斜率(,1][1,)k ∈-∞-⋃+∞,则该直线的倾斜角α满足( ). A .44ππα-B .42ππα<或324ππα< C .04πα或34παπ<D .04πα或34παπ【答案】B【解析】因为tan k α=, 所以当1k ≤-时,324ππα<≤, 当1k时,42ππα≤<,即直线的倾斜角α满足42ππα<或324ππα<, 14.(2021·调兵山市第一高级中学高一月考)方程10sin x x =的根的个数是( ) A .6 B .7C .8D .9【答案】B【解析】分别作函数,10sin y x y x ==图象,如图,由图可得交点个数为7,所以方程10sin x x =的根的个数是715.(2021·福建省高三其他(文))图数()1cos f x x x x ⎛⎫=+ ⎪⎝⎭,[)(],00,x ππ∈-的图象可能为( )A .B .C .D .【答案】A【解析】由题知:()()11cos cos ()f x x x x x f x x x ⎛⎫⎛⎫-=---=-+=- ⎪ ⎪⎝⎭⎝⎭, 所以()f x 为奇函数,故排除B ,D. 又因为02x π⎛⎫∈ ⎪⎝⎭,时,()0f x >,故排除C.16.(2021·上海高一期中)函数sin cos y x x =⋅的最小正周期和最大值分别为( ) A .π,1 B .π,12C .2π,1D .2π,12【答案】B【解析】1sin cos =sin 22y x x x =⋅, 函数sin cos y x x =⋅的最小正周期22T ππ==, 1sin 21x -≤≤,∴111sin 2222x -≤≤, ∴函数sin cos y x x =⋅的最大值为12. 17.(2021·山西省高三其他(文))对于函数()()1122f x sinx cosx sinx cosx =+--.有下列说法:①()f x 的值城为[]1,1-;②当且仅当()24x k k Z ππ=+∈时,函数()f x 取得最大值;③函数()f x 的最小正周期是π;④当且仅当()222x k k k Z πππ⎛⎫∈+∈ ⎪⎝⎭,时,()0f x >.其中正确结论的个数是( )A .1B .2C .3D .4【答案】B【解析】因为()()1122cosx sinx cosx f x sinx cosx sinx cosx sinx sinx cosx≥⎧=+--=⎨<⎩,,,作出函数()f x 的图象,如图所示:所以,()f x 的值城为22⎡-⎢⎣⎦,①错误; 函数()f x 的最小正周期是2π,③错误; 当且仅当()24x k k Z ππ=+∈时,函数()f x 取得最大值,②正确;当且仅当()222x k k k Z πππ⎛⎫∈+∈ ⎪⎝⎭,时,()0f x >,④正确. 18.(多选题)(2021·海南省海南中学高三月考)已知函数()()sin f x A x =+ωϕ(0,0A ω>>)在1x =处取得最大值,且最小正周期为2,则下列说法正确的有( ). A .函数()1f x -是奇函数B .函数()1f x +是偶函数C .函数()2f x +在[]0,1上单调递增D .函数()3f x +是周期函数【答案】BCD【解析】因为()()sin f x A x =+ωϕ在1x =处取得最大值, 所以有2()2k k Z πωϕπ+=+∈,又因为()()sin f x A x =+ωϕ的最小正周期为2, 所以有22,0πωωπω=>∴=,因此()()sin sin 2cos 2f x A x A x k A x πωϕπππ⎛⎫=+=+-=- ⎪⎝⎭.选项A :设()()1cos[(1)]cos g x f x A x A x ππ=-=--=, 因为()cos[()]cos ()g x A x A x g x ππ-=-==, 所以()()1g x f x =-是偶函数,故本选项说法不正确; 选项B :设()()1cos[(1)]cos h x f x A x A x ππ=+=-+= 因为()cos[()]cos ()h x A x A x h x ππ-=-==, 所以()()1h x f x =+是偶函数,故本选项说法正确;选项C :设()()2cos[(2)]cos m x f x A x A x ππ=+=-+=-,因为[]0,1x ∈,所以[]0,x ππ∈,又因为0A >,所以函数()()2m x f x =+在[]0,1上单调递增,故本选项说法正确;选项D :设()()3cos[(3)]cos n x f x A x A x ππ=+=-+=, 函数()n x 最小正周期为:22ππ=,所以本选项说法正确.19.(2021·山东省微山县第一中学高一月考)已知函数()cos 6f x x π⎛⎫=+ ⎪⎝⎭,则( )A .2π为()f x 的一个周期B .()y f x =的图象关于直线43x π=对称 C .()f x 在,2ππ⎛⎫⎪⎝⎭上单调递减 D .()f x π+的一个零点为3π【答案】AD【解析】根据函数()6f x cos x π⎛⎫=+⎪⎝⎭知最小正周期为2π,A 正确.当43x π=时,443cos cos 03362f ππππ⎛⎫⎛⎫=+== ⎪ ⎪⎝⎭⎝⎭,由余弦函数的对称性知,B 错误;函数()6f x cos x π⎛⎫=+ ⎪⎝⎭在5,26ππ⎛⎫ ⎪⎝⎭上单调递减,在5,6ππ⎛⎫⎪⎝⎭上单调递增,故C 错误; ()76f x cos x ππ⎛⎫+=+⎪⎝⎭,73cos cos 03632f πππππ⎛⎫⎛⎫∴+=+== ⎪ ⎪⎝⎭⎝⎭,故D 正确.20.(2021·山东省高一期中)将函数()2sin 2f x x x =+12π个单位,再把各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数()g x 的图象,则下列说法中正确的是( )A .()f xB .()g x 是奇函数C .()f x 的图象关于点,06π⎛⎫- ⎪⎝⎭对称 D .()g x 在2,63ππ⎛⎫⎪⎝⎭上单调递减 【答案】CD【解析】函数2()sin 2sin 22sin(2)3f x x x x x x π=+=+,把函数图象向左平移12π个单位,得到2sin[2()]2sin(2)2cos 21232y x x x πππ=++=+=, 再把各点的横坐标伸长到原来的2倍(纵坐标不变),得到()2cos g x x =. ①故()f x 函数的最大值为2,故选项A 错误. ②函数()2cos g x x =为偶函数,故选项B 错误. ③当6x π=-时,2sin 20663f πππ⎡⎤⎛⎫⎛⎫-=⨯-+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以()f x 的图象关于点,06π⎛⎫- ⎪⎝⎭对称,故选项C 正确.④由于()2cos g x x =,在[]2,2k k πππ+,()k Z ∈上单调递减,故函数()g x 在2,63ππ⎛⎫⎪⎝⎭上单调递减.故选项D 正确.21.(2021·上海高一期中)函数()tan 6f x x π=的单调递增区间为________【答案】(63,63)k k -+,k ∈Z 【解析】由622x k k πππππ-+<<+,k Z ∈,解得6363k x k -<<+,k Z ∈,故函数的单调增区间为()63,63k k -+,k Z ∈,22.(2021·河北省故城县高级中学高一期中)已知函数()sin()f x x π=-,()cos()g x x π=+,有以下结论:①函数()()y f x g x =的最小正周期为π; ②函数()()y f x g x =的最大值为2;③将函数()y f x =的图象向右平移2π个单位后得到函数()y g x =的图象; ④将函数()y f x =的图象向左平移2π个单位后得到函数()y g x =的图象.其中正确结论的序号是____________. 【答案】①④【解析】()sin()sin f x x x π=-=-,()cos()cos g x x x π=+=-. 因为1()()(sin )(cos )sin cos sin 22y f x g x x x x x x ==-⋅-=⋅=, 所以1()()sin 22y f x g x x ==的最小正周期为:22ππ=,故结论①正确; 因为1()()sin 22y f x g x x ==的最大值为12,所以结论②不正确;因为函数()y f x =的图象向右平移2π个单位后得到函数的解析式为: ()sin()cos 22y f x x x ππ=-=--=,所以结论③不正确;因为函数()y f x =的图象向左平移2π个单位后得到函数的解析式为: ()sin()cos ()22y f x x x g x ππ=+=-+=-=,所以结论④正确.23.(2021·宝鸡中学高一期中)函数()sin()f x A x B ωϕ=++的一部分图象如图所示,其中0A >,0>ω,π||2ϕ<.(1)求函数()y f x =解析式;(2)求[0,π]x ∈时,函数()y f x =的值域; (3)将函数()y f x =的图象向右平移π4个单位长度,得到函数()y g x =的图象,求函数()y g x =的单调递减区间.【解析】(1)根据函数()sin()f x A x B ωϕ=++的一部分图象,其中0A >,0>ω,π||2ϕ<, ∵40A B A B +=⎧⎨-+=⎩,∴22A B =⎧⎨=⎩;∵12π5ππ44126T ω=⋅=-,∴2ω=, 再根据π46f ⎛⎫= ⎪⎝⎭,可得ππ22π62k ϕ⨯+=+,k ∈Z ,∴π2π6k ϕ=+,k ∈Z ,∵π||2ϕ<,∴π6ϕ=,∴函数()y f x =的解析式为π()2sin 226f x x ⎛⎫=++ ⎪⎝⎭; (2)∵[]0,πx ∈,∴ππ13π2,666x ⎡⎤+∈⎢⎥⎣⎦,∴πsin 2[1,1]6x ⎛⎫+∈- ⎪⎝⎭, ∴函数()y f x =的值域为[]0,4; (3)将函数()y f x =的图象向右平移π4个单位长度, 得到函数πππ()2sin 222sin 22463g x x x ⎡⎤⎛⎫⎛⎫=-++=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象,对于函数π()2sin 223g x x ⎛⎫=-+ ⎪⎝⎭, 令ππ3π2π22π232k x k +≤-≤+,k ∈Z , 求得5π11πππ1212k x k +≤≤+,k ∈Z , 故函数()g x 的单调减区间为5π11ππ,π1212k k ⎡⎤++⎢⎥⎣⎦,k ∈Z .24.(2021·山西省平遥中学校高一月考)已知函数()4sin cos 3f x x x π⎛⎫=+ ⎪⎝⎭. (1)求函数()f x 的最小正周期及单调增区间; (2)求函数()f x 在区间,46ππ⎡⎤-⎢⎥⎣⎦上的值域和取得最大值时相应的x 的值.【解析】(1)()4sin cos cos sin sin 33f x x x x ππ⎛⎫=- ⎪⎝⎭22sin cos x x x =-)sin 21cos 2x x =-+sin 2x x =2sin 23x π⎛⎫=+ ⎪⎝⎭.∴22T ππ==. 由222232k x k πππππ-+≤+≤+,k Z ∈得:51212k x k ππππ-+≤≤+,k Z ∈ ∴单调增区间为()5,1212k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦.(2)∵46x ππ-≤≤,∴22633x πππ-≤+≤. ∴1sin 2123x π⎛⎫-≤+≤ ⎪⎝⎭,即12sin 223x π⎛⎫-≤+≤ ⎪⎝⎭.∴函数()f x 在区间,46ππ⎡⎤-⎢⎥⎣⎦上的值域为[]1,2- 且当232x ππ+=,即12x π=时,()max 2f x =. 25.(2021·武功县普集高级中学高一月考)在已知函数()sin(),f x A x x R ωϕ=+∈(其中0,0,02A πωϕ>><<)的图象与x 轴的交点中,相邻两个交点之间的距离为2π,且图象上一个最低点为2,23M π⎛⎫- ⎪⎝⎭. (1)求()f x 的解析式;(2)当,122x ππ⎡⎤∈⎢⎥⎣⎦时,求()f x 的值域. 【解析】(1)依题意,由最低点为2,23M π⎛⎫-⎪⎝⎭,得2A =,又周期T π=,∴2ω=. 由点2,23M π⎛⎫-⎪⎝⎭在图象上,得42sin 23πϕ⎛⎫+=- ⎪⎝⎭, ∴4232k ππϕπ+=-+,k Z ∈,1126k k Z πϕπ∴=-+∈,. ∵0,2πϕ⎛⎫∈ ⎪⎝⎭,∴6πϕ=,∴()2sin 26f x x π⎛⎫=+ ⎪⎝⎭. 由222262k x k πππππ-≤+≤+,k Z ∈,得36k x k k Z ππππ-≤≤+∈,.∴函数()f x 的单调增区间是(),36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦. (2),122x ππ⎡⎤∈⎢⎥⎣⎦,∴72,636x πππ⎡⎤+∈⎢⎥⎣⎦. 当262x ππ+=,即6x π=时,()f x 取得最大值2; 当7266x ππ+=,即2x π=时,()f x 取得最小值1-,故()f x 的值域为[]1,2-.。
三角函数的图象与性质教学目标:1、掌握正、余弦函数的定义域和值域;2、进一步理解三角函数的周期性和奇偶性的概念,会求它们的周期,会判断它们的奇偶性;3、能正确求出正、余弦函数的单调区间教学重点:正、余弦函数的性质教学难点:正、余弦函数的单调性知识要点:1、定义域:函数sin y x =及cos y x =的定义域都是(),-∞+∞,即实数集R2、值域:函数sin y x =,x R ∈及cos y x =,x R ∈的值域都是[]1,1-理解:(1)在单位圆中,正弦线、余弦线的长都是等于或小于半径的长1的,所以sin 1x ≤,cos 1x ≤,即1sin 1x -≤≤,1cos 1-≤≤。
(2)函数sin y x =在2,()2x k k Z ππ=+∈时,y 取最大值1,当22x k ππ=-,()k Z ∈时,y 取最小值-1;函数cos y x =在2x k π=,()k Z ∈时,y 取最大值1,当2x k ππ=+,()k Z ∈时,y 取最小值-1。
正弦函数s i n y x =,x R ∈和余弦函数cos y x =,x R ∈是周期函数,2k π(0)k Z k ∈≠且都是它们的周期,最小正周期是2π。
4、奇偶性正弦函数sin y x =,x R ∈是奇函数,余弦函数cos y x =,x R ∈是偶函数。
理解:(1)由诱导公式()sin sin x x -=-,cos()cos x x -=可知以上结论成立;(2)反映在图象上,正弦曲线关于原点O 对称,余弦曲线关于y 轴对称。
5、单调性(1)由正弦曲线可以看出:当x 由2π-增大到2π时,曲线逐渐上升,sin x 由-1增大到1;当x 由2π增大到32π时,曲线逐渐下降,sin x 由1减至-1,由正弦函数的周期性知道:①正弦函数sin y x =在每一个闭区间2,222k k ππππ⎡⎤-++⎢⎥⎣⎦()k Z ∈上,都从-1增大到1,是增函数; ②在每一个闭区间32,222k k ππππ⎡⎤++⎢⎥⎣⎦()k Z ∈上,都从1减小到-1,是减函数。
第20讲-三角函数的图象与性质一、 考情分析1.能画出三角函数y =sin x ,y =cos x ,y =tan x 的图象,了解三角函数的周期性、单调性、奇偶性、最大(小)值;2.借助图象理解正弦函数、余弦函数在[0,2π]上,正切函数在⎝ ⎛⎭⎪⎫-π2,π2上的性质.二、 知识梳理1.用五点法作正弦函数和余弦函数的简图(1)正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,0),⎝ ⎛⎭⎪⎫3π2,-1,(2π,0).(2)余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),⎝ ⎛⎭⎪⎫π2,0,(π,-1),⎝ ⎛⎭⎪⎫3π2,0,(2π,1).2.正弦、余弦、正切函数的图象与性质(下表中k ∈Z )函数y =sin xy =cos xy =tan x图象定义域 R R {x |x ∈R ,且 x ≠k π+π2}值域 [-1,1] [-1,1] R 周期性 2π 2π π 奇偶性 奇函数 偶函数 奇函数 递增区间 ⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2 [2k π-π,2k π] ⎝ ⎛⎭⎪⎫k π-π2,k π+π2 递减区间 ⎣⎢⎡⎦⎥⎤2k π+π2,2k π+3π2 [2k π,2k π+π] 无 对称中心 (k π,0) ⎝ ⎛⎭⎪⎫k π+π2,0 ⎝ ⎛⎭⎪⎫k π2,0 对称轴方程x =k π+π2x =k π无[微点提醒] 1.对称与周期(1)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是14个周期.(2)正切曲线相邻两对称中心之间的距离是半个周期.2.对于y =tan x 不能认为其在定义域上为增函数,而是在每个区间⎝ ⎛⎭⎪⎫k π-π2,k π+π2(k ∈Z )内为增函数.三、 经典例题考点一 三角函数的定义域【例1】 (1)函数f (x )=-2tan ⎝ ⎛⎭⎪⎫2x +π6的定义域是( )A.⎩⎨⎧⎭⎬⎫x |x ≠π6B.⎩⎨⎧⎭⎬⎫x |x ≠-π12C.⎩⎨⎧⎭⎬⎫x |x ≠k π+π6(k ∈Z )D.⎩⎨⎧⎭⎬⎫x |x ≠k π2+π6(k ∈Z ) (2)不等式3+2cos x ≥0的解集是________.(3)函数f (x )=64-x 2+log 2(2sin x -1)的定义域是________. 【解析】 (1)由2x +π6≠k π+π2(k ∈Z ),得x ≠k π2+π6(k ∈Z ).(2)由3+2cos x ≥0,得cos x ≥-32,由余弦函数的图象,得在一个周期[-π,π]上,不等式cosx ≥-32的解集为⎩⎨⎧⎭⎬⎫x |-5π6≤x ≤56π,故原不等式的解集为⎩⎨⎧⎭⎬⎫x |-56π+2k π≤x ≤56π+2k π,k ∈Z .(3)由题意,得⎩⎨⎧64-x 2≥0,①2sin x -1>0,②由①得-8≤x ≤8,由②得sin x >12,由正弦曲线得π6+2k π<x <56π+2k π(k ∈Z ).所以不等式组的解集为⎝ ⎛⎭⎪⎫-116π,-76π∪⎝ ⎛⎭⎪⎫π6,56π∪⎝ ⎛⎦⎥⎤13π6,8.规律方法 1.三角函数定义域的求法(1)以正切函数为例,应用正切函数y =tan x 的定义域求函数y =A tan(ωx +φ)的定义域转化为求解简单的三角不等式.(2)求复杂函数的定义域转化为求解简单的三角不等式. 2.简单三角不等式的解法(1)利用三角函数线求解. (2)利用三角函数的图象求解. 考点二 三角函数的值域与最值【例2】 (1)y =3sin ⎝ ⎛⎭⎪⎫2x -π6在区间⎣⎢⎡⎦⎥⎤0,π2上的值域是________.(2)函数f (x )=sin 2x +3cos x -34⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π2的最大值是________.(3)函数y =sin x -cos x +sin x cos x 的值域为________. 【解析】 (1)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x -π6∈⎣⎢⎡⎦⎥⎤-π6,5π6,sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-12,1,故3sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-32,3, 即y =3sin ⎝ ⎛⎭⎪⎫2x -π6的值域为⎣⎢⎡⎦⎥⎤-32,3.(2)由题意可得f (x )=-cos 2x +3cos x +14=-(cos x -32)2+1.∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴cos x ∈[0,1].∴当cos x =32,即x =π6时,f (x )max =1. (3)设t =sin x -cos x ,则t 2=sin 2x +cos 2x -2sin x cos x , sin x cos x =1-t 22,且-2≤t ≤2,所以y =-t 22+t +12=-12(t -1)2+1.当t =1时,y max =1;当t =-2时,y min =-12- 2.所以函数的值域为⎣⎢⎡⎦⎥⎤-12-2,1.规律方法 求解三角函数的值域(最值)常见三种类型:(1)形如y =a sin x +b cos x +c 的三角函数化为y =A sin(ωx +φ)+c 的形式,再求值域(最值); (2)形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值); (3)形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值).考点三 三角函数的单调性 角度1 求三角函数的单调区间【例3-1】 (1)函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间是( )A.⎣⎢⎡⎦⎥⎤k π12-π12,k π2+5π12(k ∈Z ) B.⎝ ⎛⎭⎪⎫k π12-π12,k π2+5π12(k ∈Z ) C.⎝ ⎛⎭⎪⎫k π+π6,k π+2π3(k ∈Z ) D.⎝ ⎛⎭⎪⎫k π-π12,k π+5π12(k ∈Z ) (2)函数y =sin ⎝ ⎛⎭⎪⎫-2x +π3的单调递减区间为________. 【解析】 (1)由k π-π2<2x -π3<k π+π2(k ∈Z ),得k π2-π12<x <k π2+5π12(k ∈Z ),所以函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间为⎝ ⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z ).(2)y =-sin ⎝⎛⎭⎪⎫2x -π3,它的减区间是y =sin ⎝ ⎛⎭⎪⎫2x -π3的增区间.令2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z .故其单调递减区间为⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈Z .角度2 利用单调性比较大小【例3-2】 已知函数f (x )=2cos ⎝ ⎛⎭⎪⎫x +π6,设a =f ⎝ ⎛⎭⎪⎫π7,b =f ⎝ ⎛⎭⎪⎫π6,c =f ⎝ ⎛⎭⎪⎫π4,则a ,b ,c 的大小关系是( ) A.a >b >c B.a >c >b C.c >a >bD.b >a >c【解析】 令2k π≤x +π6≤2k π+π,k ∈Z , 解得2k π-π6≤x ≤2k π+5π6,k ∈Z ,∴函数f (x )=2cos ⎝ ⎛⎭⎪⎫x +π6在⎣⎢⎡⎦⎥⎤-π6,5π6上是减函数,∵-π6<π7<π6<π4<5π6,∴f ⎝ ⎛⎭⎪⎫π7>f ⎝ ⎛⎭⎪⎫π6>f ⎝ ⎛⎭⎪⎫π4. 角度3 利用单调性求参数【例3-3】 (2018·全国Ⅱ卷)若f (x )=cos x -sin x 在[-a ,a ]是减函数,则a 的最大值是( ) A.π4B.π2C.3π4D.π【解析】 f (x )=cos x -sin x =2cos ⎝ ⎛⎭⎪⎫x +π4,由题意得a >0,故-a +π4<π4,因为f (x )=2cos ⎝ ⎛⎭⎪⎫x +π4在[-a ,a ]是减函数,所以⎩⎪⎨⎪⎧-a +π4≥0,a +π4≤π,a >0,解得0<a ≤π4,所以a 的最大值是π4.规律方法 1.已知三角函数解析式求单调区间:(1)求函数的单调区间应遵循简单化原则,将解析式先化简,并注意复合函数单调性规律“同增异减”;(2)求形如y =A sin(ωx +φ)或y =A cos(ωx +φ)(其中ω>0)的单调区间时,要视“ωx +φ”为一个整体,通过解不等式求解.但如果ω<0,那么一定先借助诱导公式将ω化为正数,防止把单调性弄错.2.对于已知函数的单调区间的某一部分确定参数ω的范围的问题,首先,明确已知的单调区间应为函数的单调区间的子集,其次,要确定已知函数的单调区间,从而利用它们之间的关系可求解,另外,若是选择题利用特值验证排除法求解更为简捷. 考点四 三角函数的周期性、奇偶性、对称性 角度1 三角函数奇偶性、周期性【例4-1】 (1)已知函数f (x )=2cos 2x -sin 2x +2,则( ) A.f (x )的最小正周期为π,最大值为3 B.f (x )的最小正周期为π,最大值为4 C.f (x )的最小正周期为2π,最大值为3 D.f (x )的最小正周期为2π,最大值为4(2)设函数f (x )=sin ⎝ ⎛⎭⎪⎫12x +θ-3cos ⎝ ⎛⎭⎪⎫12x +θ⎝ ⎛⎭⎪⎫|θ|<π2的图象关于y 轴对称,则θ=( )A.-π6B.π6C.-π3D.π3【解析】 (1)易知f (x )=2cos 2x -sin 2x +2=3cos 2x +1=3cos 2x +12+1=32cos 2x +52,则f (x )的最小正周期为π,当2x =2k π,即x =k π(k ∈Z )时,f (x )取得最大值,最大值为4. (2)f (x )=sin ⎝ ⎛⎭⎪⎫12x +θ-3cos ⎝ ⎛⎭⎪⎫12x +θ=2sin ⎝ ⎛⎭⎪⎫12x +θ-π3,由题意可得f (0)=2sin ⎝ ⎛⎭⎪⎫θ-π3=±2,即sin ⎝ ⎛⎭⎪⎫θ-π3=±1,∴θ-π3=π2+k π(k ∈Z ),∴θ=5π6+k π(k ∈Z ).∵|θ|<π2,∴k =-1时,θ=-π6.规律方法 1.若f (x )=A sin(ωx +φ)(A ,ω≠0),则 (1)f (x )为偶函数的充要条件是φ=π2+k π(k ∈Z ); (2)f (x )为奇函数的充要条件是φ=k π(k ∈Z ).2.函数y =A sin(ωx +φ)与y =A cos(ωx +φ)的最小正周期T =2π|ω|,y =A tan(ωx +φ)的最小正周期T=π|ω|.角度2 三角函数图象的对称性【例4-2】 (1)已知函数f (x )=a sin x +cos x (a 为常数,x ∈R )的图象关于直线x =π6对称,则函数g (x )=sin x +a cos x 的图象( ) A.关于点⎝ ⎛⎭⎪⎫π3,0对称B.关于点⎝ ⎛⎭⎪⎫2π3,0对称C.关于直线x =π3对称D.关于直线x =π6对称 (2)已知函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|≤π2,x =-π4为f (x )的零点,x =π4为y =f (x )图象的对称轴,且f (x )在⎝ ⎛⎭⎪⎫π18,5π36上单调,则ω的最大值为( )A.11B.9C.7D.5【解析】 (1)因为函数f (x )=a sin x +cos x (a 为常数,x ∈R )的图象关于直线x =π6对称, 所以f (0)=f ⎝ ⎛⎭⎪⎫π3,所以1=32a +12,a =33, 所以g (x )=sin x +33cos x =233sin ⎝ ⎛⎭⎪⎫x +π6,函数g (x )的对称轴方程为x +π6=k π+π2(k ∈Z ),即x =k π+π3(k ∈Z ),当k =0时,对称轴为直线x =π3,所以g (x )=sin x +a cos x 的图象关于直线x =π3对称.(2)因为x =-π4为f (x )的零点,x =π4为f (x )的图象的对称轴,所以π4-⎝ ⎛⎭⎪⎫-π4=T 4+kT 2,即π2=2k +14T=2k +14·2πω(k ∈Z ),所以ω=2k +1(k ∈Z ).又因为f (x )在⎝ ⎛⎭⎪⎫π18,5π36上单调,所以5π36-π18=π12≤T 2=2π2ω,即ω≤12,ω=11验证不成立(此时求得f (x )=sin ⎝ ⎛⎭⎪⎫11x -π4在⎝ ⎛⎭⎪⎫π18,3π44上单调递增,在⎝ ⎛⎭⎪⎫3π44,5π36上单调递减),ω=9满足条件,由此得ω的最大值为9.规律方法 1.对于可化为f (x )=A sin(ωx +φ)形式的函数,如果求f (x )的对称轴,只需令ωx +φ=π2+k π(k ∈Z ),求x 即可;如果求f (x )的对称中心的横坐标,只需令ωx +φ=k π(k ∈Z ),求x 即可. 2.对于可化为f (x )=A cos(ωx +φ)形式的函数,如果求f (x )的对称轴,只需令ωx +φ=k π(k ∈Z ),求x ;如果求f (x )的对称中心的横坐标,只需令ωx +φ=π2+k π(k ∈Z ),求x 即可. [方法技巧]1.讨论三角函数性质,应先把函数式化成y =A sin(ωx +φ)(ω>0)的形式.2.对于函数的性质(定义域、值域、单调性、对称性、最值等)可以通过换元的方法令t =ωx +φ,将其转化为研究y =sin t (或y =cos t )的性质.3.数形结合是本节的重要数学思想.4.闭区间上最值或值域问题,首先要在定义域基础上分析单调性;含参数的最值问题,要讨论参数对最值的影响.5.要注意求函数y =A sin(ωx +φ)的单调区间时A 和ω的符号,尽量化成ω>0时情况,避免出现增减区间的混淆.6.求三角函数的单调区间时,当单调区间有无穷多个时,别忘了注明k ∈Z .四、 课时作业1.(2020·宝鸡中学高一期中)函数π()tan 23f x x ⎛⎫=-⎪⎝⎭的单调递增区间为( ) A .πππ2π,()2623k k k ⎡⎤++∈⎢⎥⎣⎦ZB .πππ5π,()212212k k k ⎡⎤-+∈⎢⎥⎣⎦Z C .π5ππ,π()1212k k k ⎛⎫-+∈ ⎪⎝⎭Z D .π2ππ,π()63k k k ⎛⎫++∈ ⎪⎝⎭Z 【答案】C 【解析】()π2232k x k k Z ππππ-<-<+∈得:5212212k k x ππππ-<<+,所以函数π()tan 23f x x ⎛⎫=- ⎪⎝⎭的单调递增区间为π5ππ,π()1212k k k ⎛⎫-+∈ ⎪⎝⎭Z . 2.(2020·陕西省西安中学高一期中)设函数12sin y x =-,则函数的最大值及取到最大值时的x 取值集合分别为( ) A .3,|2,2x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭B .1,3|2,2x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭C .3,3|2,2x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭D .1,|2,2x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭【答案】C【解析】由于22sin 2,22sin 2,112sin 3x x x -≤≤-≤-≤-≤-≤, 所以当32,2x k k Z ππ=+∈时,函数12sin y x =-有最大值为3. 3.(2020·吉林省高三其他(文))下列函数中,是奇函数且在其定义域上是增函数的是( ) A .1y x=B .y tanx =C .x x y e e -=-D .2,02,0x x y x x +≥⎧=⎨-<⎩【答案】C【解析】对于A 选项,反比例函数1y x=,它有两个减区间, 对于B 选项,由正切函数y tanx =的图像可知不符合题意;对于C 选项,令()x xf x e e -=-知()x x f x e e --=-,所以()()0f x f x +-=所以()x xf x e e -=-为奇函数,又x y e =在定义内单调递增,所以xy e -=-单调递增, 所以函数xxy e e -=-在定义域内单调递增;对于D ,令2,0()2,0x x g x x x +≥⎧=⎨-<⎩,则2,0()2,0x x g x x x -+≤⎧-=⎨-->⎩,所以()()0g x g x +-≠,所以函数2,02,0x x y x x +≥⎧=⎨-<⎩不是奇函数.4.(2020·武功县普集高级中学高一月考)函数y =的定义域是( )A .()2,266k k k Z ππ⎡⎤⎢⎥⎣⎦π-π+∈ B .()22,333k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦C .()2,233k k k Z 2π2⎡⎤⎢⎥⎣⎦ππ-π+∈ D .()2,233k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦【答案】C【解析】由2cos 10x +≥得:2222,33k x k k πππ-≤≤π+∈Z . 所以函数2cos 1y x =+的定义域是()2,233k k k Z 2π2⎡⎤⎢⎥⎣⎦ππ-π+∈. 5.(2020·武功县普集高级中学高一月考)函数sin y x x =的部分图像是( )A .B .C .D .【答案】A【解析】:因为sin y x x =,所以()f x 为偶函数,其图象关于y 轴对称,故可以排除B ,D.又因为函数()f x 在()0,π上函数值为正,故排除C.6.(2019·呼玛县高级中学高一月考)若函数()sin()(0,0,)2πωϕωϕ=+>><f x A x A 的部分图像如图所示,则函数()f x 的解析式为( )A .()sin(2)6f x x π=+B .()cos(2)6f x x π=+ C .()cos(2)3f x x π=+D .()sin(2)3f x x π=+【答案】D【解析】由函数的部分图像可知1A =,22T π=,故T π=,所以2ππω=即2ω=.由函数图像的对称轴为12x π=,所以22,122k k Z ππϕπ⨯+=+∈,因2πϕ<,故3πϕ=,所以()sin 23f x x π⎛⎫=+⎪⎝⎭,故选D . 7.(2019·呼玛县高级中学高一月考)设cos 12a π=,41sin6b π=,7cos 4c π=,则( ) A .a c b >> B .c b a >> C .c a b >> D .b c a >>【答案】A 【解析】4155b sinsin 6sin sin cos 66663ππππππ⎛⎫==+=== ⎪⎝⎭,7c cos cos 44ππ== 因为3412πππ>>,且y cos 0,2x π=在(,)是单调递减函数,所以a c b >>,故选A 8.(2019·延安市第一中学高三月考(理))已知函数()sin()(0)2f x x πωφωϕ=+><,图象相邻两条对称轴之间的距离为2π,将函数()y f x =的图象向左平移3π个单位后,得到的图象关于y 轴对称,那么函数()y f x =的图象( )A .关于点,012π⎛⎫- ⎪⎝⎭对称B .关于点,012π⎛⎫⎪⎝⎭对称C .关于直线12x π=-对称D .关于直线12x π=对称【答案】B【解析】因为相邻两条对称轴的距离为2π,故22T π=,T π=,从而2ω=. 设将()f x 的图像向左平移3π单位后,所得图像对应的解析式为()g x , 则()2sin 23g x x πφ⎛⎫=++⎪⎝⎭,因()g x 的图像关于y 轴对称,故()01g =±, 所以2sin 13πφ⎛⎫+=±⎪⎝⎭,2,32k k Z ππφπ+=+∈,所以,6k k Z πφπ=-∈, 因2πφ<,所以6πφ=-.又()sin 26f x x π⎛⎫=- ⎪⎝⎭,令2,62x k k Z πππ-=+∈,故对称轴为直线,23k x k Z ππ=+∈,所以C ,D 错误; 令2,6x k k π-=π∈Z ,故,212k x k Z ππ=+∈,所以对称中心为,0,212k k Z ππ⎛⎫+∈⎪⎝⎭,所以A 错误,D 正确.9.(2020·河北省故城县高级中学高一期中)关于函数sin(),2y x π=+在以下说法中正确的是( )A .[,]22ππ-上是增函数 B .[0,]π上是减函数 C .[,0]π-上是减函数 D .[,]-ππ上是减函数【答案】B【解析】sin()cos 2y x x π=+=,它在[0,]π上是减函数.10.(2020·上海高一课时练习)下列命题中正确的是( ) A .cos y x =在第一象限和第四象限内是减函数 B .sin y x =在第一象限和第三象限内是增函数 C .cos y x =在,22ππ⎡⎤-⎢⎥⎣⎦上是减函数 D .sin y x =在,22ππ⎡⎤-⎢⎥⎣⎦上是增函数 【答案】D【解析】对于cos y x =,该函数的单调递减区间为:[]2,2,k k k Z πππ+∈,故A 错,C 错. 对于sin y x =,该函数的单调递增区间为:2,2,22k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦,故B 错,D 对.11.(2020·陕西省西安中学高三其他(理))关于函数()2sinsin 222x x f x x π⎛⎫=+- ⎪⎝⎭有下述四个结论: ①函数()f x 的图象把圆221x y +=的面积两等分②()f x 是周期为π的函数③函数()f x 在区间(,)-∞+∞上有3个零点④函数()f x 在区间(,)-∞+∞上单调递减 其中所有正确结论的编号是( ) A .①③④ B .②④C .①④D .①③【答案】C【解析】f (x )=2sin2x sin (2π+2x )﹣x =2sin 2x cos 2x﹣x =sin x ﹣x , 对于①,因为f (﹣x )=sin (﹣x )﹣(﹣x )=﹣sin x +x =﹣f (x ),所以函数f (x )为奇函数,关于原点对称,且过圆心,而圆x 2+y 2=1也是关于原点对称,所以①正确;对于②,因为f (x +π)=sin (x +π)﹣(x +π)=﹣sin x ﹣x ﹣π≠f (x ),所以f (x )的周期不是π,即②错误;对于③,因为()'f x =cos x ﹣1≤0,所以f (x )单调递减,所以f (x )在区间(﹣∞,+∞)上至多有1个零点, 即③错误; 对于④,()'fx =cos x ﹣1≤0,所以f (x )单调递减,即④正确.12.(2020·山西省高三其他(文))已知()()cos 0,2f x x πωϕωϕ⎛⎫=+><⎪⎝⎭的图象关于直线524x π=对称,把()f x 的图象向左平移4π个单位后所得的图象关于点,012π⎛⎫⎪⎝⎭对称,则ω的最小值为( ) A .2 B .3C .4D .6【答案】C【解析】因为()f x 的图象向左平移4π个单位后所得的图象关于点,012π⎛⎫⎪⎝⎭对称, 所以()f x 关于点,03π⎛⎫⎪⎝⎭对称, 又()f x 的图象既关于直线524x π=对称, 设()f x 的最小正周期为T ,则()()2153244k T k N ππ+-=∈, 即()21284k k N ππω+⎛⎫=⋅∈ ⎪⎝⎭,所以()84k k N ω=+∈,取0k =,得4ω=,13.(2020·上海高二课时练习)设直线的斜率(,1][1,)k ∈-∞-⋃+∞,则该直线的倾斜角α满足( ). A .44ππα- B .42ππα<或324ππα< C .04πα或34παπ< D .04πα或34παπ【答案】B【解析】因为tan k α=, 所以当1k ≤-时,324ππα<≤, 当1k时,42ππα≤<,即直线的倾斜角α满足42ππα<或324ππα<, 14.(2020·调兵山市第一高级中学高一月考)方程10sin x x =的根的个数是( ) A .6 B .7C .8D .9【答案】B【解析】分别作函数,10sin y x y x ==图象,如图,由图可得交点个数为7,所以方程10sin x x =的根的个数是715.(2020·福建省高三其他(文))图数()1cos f x x x x ⎛⎫=+ ⎪⎝⎭,[)(],00,x ππ∈-的图象可能为( )A .B .C .D .【答案】A【解析】由题知:()()11cos cos ()f x x x x x f x x x ⎛⎫⎛⎫-=---=-+=- ⎪ ⎪⎝⎭⎝⎭, 所以()f x 为奇函数,故排除B ,D. 又因为02x π⎛⎫∈ ⎪⎝⎭,时,()0f x >,故排除C.16.(2020·上海高一期中)函数sin cos y x x =⋅的最小正周期和最大值分别为( ) A .π,1 B .π,12C .2π,1D .2π,12【答案】B【解析】1sin cos =sin 22y x x x =⋅, 函数sin cos y x x =⋅的最小正周期22T ππ==, 1sin 21x -≤≤,∴111sin 2222x -≤≤,∴函数sin cos y x x =⋅的最大值为12. 17.(2020·山西省高三其他(文))对于函数()()1122f x sinx cosx sinx cosx =+--.有下列说法:①()f x 的值城为[]1,1-;②当且仅当()24x k k Z ππ=+∈时,函数()f x 取得最大值;③函数()f x 的最小正周期是π;④当且仅当()222x k kk Z πππ⎛⎫∈+∈ ⎪⎝⎭,时,()0f x >.其中正确结论的个数是( ) A .1 B .2C .3D .4【答案】B【解析】因为()()1122cosx sinx cosx f x sinx cosx sinx cosx sinx sinx cosx≥⎧=+--=⎨<⎩,,,作出函数()f x 的图象,如图所示:所以,()f x 的值城为21,2⎡-⎢⎣⎦,①错误; 函数()f x 的最小正周期是2π,③错误; 当且仅当()24x k k Z ππ=+∈时,函数()f x 取得最大值,②正确;当且仅当()222x k k k Z πππ⎛⎫∈+∈ ⎪⎝⎭,时,()0f x >,④正确. 18.(多选题)(2020·海南省海南中学高三月考)已知函数()()sin f x A x =+ωϕ(0,0A ω>>)在1x =处取得最大值,且最小正周期为2,则下列说法正确的有( ). A .函数()1f x -是奇函数B .函数()1f x +是偶函数C .函数()2f x +在[]0,1上单调递增D .函数()3f x +是周期函数【答案】BCD【解析】因为()()sin f x A x =+ωϕ在1x =处取得最大值, 所以有2()2k k Z πωϕπ+=+∈,又因为()()sin f x A x =+ωϕ的最小正周期为2, 所以有22,0πωωπω=>∴=,因此()()sin sin 2cos 2f x A x A x k A x πωϕπππ⎛⎫=+=+-=- ⎪⎝⎭.选项A :设()()1cos[(1)]cos g x f x A x A x ππ=-=--=, 因为()cos[()]cos ()g x A x A x g x ππ-=-==, 所以()()1g x f x =-是偶函数,故本选项说法不正确; 选项B :设()()1cos[(1)]cos h x f x A x A x ππ=+=-+= 因为()cos[()]cos ()h x A x A x h x ππ-=-==, 所以()()1h x f x =+是偶函数,故本选项说法正确;选项C :设()()2cos[(2)]cos m x f x A x A x ππ=+=-+=-,因为[]0,1x ∈,所以[]0,x ππ∈,又因为0A >,所以函数()()2m x f x =+在[]0,1上单调递增,故本选项说法正确;选项D :设()()3cos[(3)]cos n x f x A x A x ππ=+=-+=, 函数()n x 最小正周期为:22ππ=,所以本选项说法正确.19.(2020·山东省微山县第一中学高一月考)已知函数()cos 6f x x π⎛⎫=+ ⎪⎝⎭,则( )A .2π为()f x 的一个周期B .()y f x =的图象关于直线43x π=对称 C .()f x 在,2ππ⎛⎫⎪⎝⎭上单调递减 D .()f x π+的一个零点为3π【答案】AD【解析】根据函数()6f x cos x π⎛⎫=+⎪⎝⎭知最小正周期为2π,A 正确.当43x π=时,443cos cos 03362f ππππ⎛⎫⎛⎫=+== ⎪ ⎪⎝⎭⎝⎭,由余弦函数的对称性知,B 错误;函数()6f x cos x π⎛⎫=+ ⎪⎝⎭在5,26ππ⎛⎫ ⎪⎝⎭上单调递减,在5,6ππ⎛⎫⎪⎝⎭上单调递增,故C 错误; ()76f x cos x ππ⎛⎫+=+⎪⎝⎭,73cos cos 03632f πππππ⎛⎫⎛⎫∴+=+== ⎪ ⎪⎝⎭⎝⎭,故D 正确.20.(2020·山东省高一期中)将函数()2sin 2f x x x =+12π个单位,再把各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数()g x 的图象,则下列说法中正确的是( )A .()f xB .()g x 是奇函数C .()f x 的图象关于点,06π⎛⎫- ⎪⎝⎭对称 D .()g x 在2,63ππ⎛⎫⎪⎝⎭上单调递减 【答案】CD【解析】函数2()sin 2sin 22sin(2)3f x x x x x x π=++=+,把函数图象向左平移12π个单位,得到2sin[2()]2sin(2)2cos 21232y x x x πππ=++=+=, 再把各点的横坐标伸长到原来的2倍(纵坐标不变),得到()2cos g x x =. ①故()f x 函数的最大值为2,故选项A 错误. ②函数()2cos g x x =为偶函数,故选项B 错误. ③当6x π=-时,2sin 20663f πππ⎡⎤⎛⎫⎛⎫-=⨯-+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以()f x 的图象关于点,06π⎛⎫- ⎪⎝⎭对称,故选项C 正确.④由于()2cos g x x =,在[]2,2k k πππ+,()k Z ∈上单调递减,故函数()g x 在2,63ππ⎛⎫⎪⎝⎭上单调递减.故选项D 正确.21.(2020·上海高一期中)函数()tan 6f x x π=的单调递增区间为________【答案】(63,63)k k -+,k ∈Z 【解析】由622x k k πππππ-+<<+,k Z ∈,解得6363k x k -<<+,k Z ∈,故函数的单调增区间为()63,63k k -+,k Z ∈,22.(2020·河北省故城县高级中学高一期中)已知函数()sin()f x x π=-,()cos()g x x π=+,有以下结论: ①函数()()y f x g x =的最小正周期为π; ②函数()()y f x g x =的最大值为2;③将函数()y f x =的图象向右平移2π个单位后得到函数()y g x =的图象; ④将函数()y f x =的图象向左平移2π个单位后得到函数()y g x =的图象.其中正确结论的序号是____________. 【答案】①④【解析】()sin()sin f x x x π=-=-,()cos()cos g x x x π=+=-. 因为1()()(sin )(cos )sin cos sin 22y f x g x x x x x x ==-⋅-=⋅=, 所以1()()sin 22y f x g x x ==的最小正周期为:22ππ=,故结论①正确; 因为1()()sin 22y f x g x x ==的最大值为12,所以结论②不正确;因为函数()y f x =的图象向右平移2π个单位后得到函数的解析式为: ()sin()cos 22y f x x x ππ=-=--=,所以结论③不正确;因为函数()y f x =的图象向左平移2π个单位后得到函数的解析式为: ()sin()cos ()22y f x x x g x ππ=+=-+=-=,所以结论④正确.23.(2020·宝鸡中学高一期中)函数()sin()f x A x B ωϕ=++的一部分图象如图所示,其中0A >,0>ω,π||2ϕ<.(1)求函数()y f x =解析式;(2)求[0,π]x ∈时,函数()y f x =的值域; (3)将函数()y f x =的图象向右平移π4个单位长度,得到函数()y g x =的图象,求函数()y g x =的单调递减区间.【解析】(1)根据函数()sin()f x A x B ωϕ=++的一部分图象,其中0A >,0>ω,π||2ϕ<, ∵40A B A B +=⎧⎨-+=⎩,∴22A B =⎧⎨=⎩;∵12π5ππ44126T ω=⋅=-,∴2ω=, 再根据π46f ⎛⎫= ⎪⎝⎭,可得ππ22π62k ϕ⨯+=+,k ∈Z ,∴π2π6k ϕ=+,k ∈Z ,∵π||2ϕ<,∴π6ϕ=,∴函数()y f x =的解析式为π()2sin 226f x x ⎛⎫=++ ⎪⎝⎭; (2)∵[]0,πx ∈,∴ππ13π2,666x ⎡⎤+∈⎢⎥⎣⎦,∴πsin 2[1,1]6x ⎛⎫+∈- ⎪⎝⎭, ∴函数()y f x =的值域为[]0,4; (3)将函数()y f x =的图象向右平移π4个单位长度, 得到函数πππ()2sin 222sin 22463g x x x ⎡⎤⎛⎫⎛⎫=-++=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象,对于函数π()2sin 223g x x ⎛⎫=-+ ⎪⎝⎭, 令ππ3π2π22π232k x k +≤-≤+,k ∈Z , 求得5π11πππ1212k x k +≤≤+,k ∈Z , 故函数()g x 的单调减区间为5π11ππ,π1212k k ⎡⎤++⎢⎥⎣⎦,k ∈Z .24.(2020·山西省平遥中学校高一月考)已知函数()4sin cos 3f x x x π⎛⎫=++ ⎪⎝⎭(1)求函数()f x 的最小正周期及单调增区间; (2)求函数()f x 在区间,46ππ⎡⎤-⎢⎥⎣⎦上的值域和取得最大值时相应的x 的值.【解析】(1)()4sin cos cos sin sin 33f x x x x ππ⎛⎫=-+ ⎪⎝⎭22sin cos x x x =-)sin 21cos2x x =-+sin 22x x =+2sin 23x π⎛⎫=+ ⎪⎝⎭.∴22T ππ==. 由222232k x k πππππ-+≤+≤+,k Z ∈得:51212k x k ππππ-+≤≤+,k Z ∈ ∴单调增区间为()5,1212k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦.(2)∵46x ππ-≤≤,∴22633x πππ-≤+≤. ∴1sin 2123x π⎛⎫-≤+≤ ⎪⎝⎭,即12sin 223x π⎛⎫-≤+≤ ⎪⎝⎭.∴函数()f x 在区间,46ππ⎡⎤-⎢⎥⎣⎦上的值域为[]1,2- 且当232x ππ+=,即12x π=时,()max 2f x =.25.(2020·武功县普集高级中学高一月考)在已知函数()sin(),f x A x x R ωϕ=+∈(其中0,0,02A πωϕ>><<)的图象与x 轴的交点中,相邻两个交点之间的距离为2π,且图象上一个最低点为2,23M π⎛⎫- ⎪⎝⎭. (1)求()f x 的解析式;(2)当,122x ππ⎡⎤∈⎢⎥⎣⎦时,求()f x 的值域. 【解析】(1)依题意,由最低点为2,23M π⎛⎫- ⎪⎝⎭,得2A =,又周期T π=,∴2ω=. 由点2,23M π⎛⎫-⎪⎝⎭在图象上,得42sin 23πϕ⎛⎫+=- ⎪⎝⎭, ∴4232k ππϕπ+=-+,k Z ∈,1126k k Z πϕπ∴=-+∈,. ∵0,2πϕ⎛⎫∈ ⎪⎝⎭,∴6πϕ=,∴()2sin 26f x x π⎛⎫=+ ⎪⎝⎭. 由222262k x k πππππ-≤+≤+,k Z ∈,得36k x k k Z ππππ-≤≤+∈,.∴函数()f x 的单调增区间是(),36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦. (2),122x ππ⎡⎤∈⎢⎥⎣⎦,∴72,636x πππ⎡⎤+∈⎢⎥⎣⎦. 当262x ππ+=,即6x π=时,()f x 取得最大值2; 当7266x ππ+=,即2x π=时,()f x 取得最小值1-,故()f x 的值域为[]1,2-.。
二.基础练习1. 函数1π2sin()23y x =+的最小正周期T = . 2.函数sin 2xy =的最小正周期是 若函数tan(2)3y ax π=-的最小正周期是2π,则a=____. 3.函数]),0[)(26sin(2ππ∈-=x x y 为增函数的区间是4.函数22cos()()363y x x πππ=-≤≤的最小值是5.将函数cos y x =的图像作怎样的变换可以得到函数2cos(2)4y x π=-的图像?6.已知简谐运动ππ()2sin 32f x x ϕϕ⎛⎫⎛⎫=+< ⎪⎪⎝⎭⎝⎭的图象经过点(01),,则该简谐运动的最小正周期T 和初相ϕ分别为 7.已知a=tan1,b=tan2,c=tan3,则a,b,c 的大小关系为______.8.给出下列命题:①存在实数x ,使sin cos 1x x =成立;②函数5sin 22y x π⎛⎫=- ⎪⎝⎭是偶函数;③直线8x π=是函数5sin 24y x π⎛⎫=+ ⎪⎝⎭的图象的一条对称轴; ④若α和β都是第一象限角,且αβ>,则tan tan αβ>.⑤R x x x f ∈+=),32sin(3)(π的图象关于点)0,6(π-对称;其中结论是正确的序号是 (把你认为是真命题的序号都填上).三、例题分析:题型1:三角函数图像变换例1、 变为了得到函数)62sin(π-=x y 的图象,可以将函数1cos 2y x =的图象怎样变换? 式1:将函数sin y x =的图象上各点的横坐标扩大为原来的2倍,纵坐标不变,再把所得图象上所有点向左平移3π个单位,所得图象的解析式是 .题型2:三角函数图像性质例2、已知函数 y=log 21)4x π-)⑴求它的定义域和值域; ⑵求它的单调区间;⑶判断它的奇偶性; ;⑷判断它的周期性.变式1:求函数34sin(2)23y x ππ=+的最大、最小值以及达到最大(小)值时x 的值的集合.;变式2:函数y =2sin x 的单调增区间是题型3:图像性质的简单应用例3、已知函数()()sin 0,0,||2f x A x A πωθωθ⎛⎫=+>>< ⎪⎝⎭的图象与y 轴交于点30,2⎛⎫⎪⎝⎭,它在y 轴右侧的第一个最大值点和最小值点分别为()0,3x ,()02,3x π+-, (1)求函数()y f x =的解析式;(2)用“五点法”作出此函数在一个周期内的图象,并说明它是由函数sin y x =的图象依次经过哪些变换而得到的。
三角函数的定义域、值域和最值一知识点精讲:1 三角函数的定义域(1)sinα=yryxxr定义域为R. (2)cosα=⎧⎩定义域为R.(3)tanα=定义域为⎨α|α≠πx⎫定义域为+kπ,k∈Z⎬. (4)cotα=2y⎭{α|α≠kπ,k∈Z}.2 三角函数的值域① y=asinx+b,(a≠0) 型当a>0时,y∈[-a+b,a+b] ;当a<0时 y∈[a+b,-a+b] ② y=asin2x+bsinx+c型此类型的三角函数可以转化成关于sinx的二次函数形式。
通过配方,结合sinx的取值范围,得到函数的值域。
sinx换为cosx也可以。
③ y=asinx+bcosx型利用公式asinx+bcosx=的情形。
④y=a(sinx+cosx)+bsinxcosx型利用换元法,设t=sinx+cosx, t∈[-2,2],则sinxcosx=t-122a+bsin(x+φ),tanφ=22ba,可以转化为一个三角函数22,转化为关于t 的二次函数y=at+b22=b2t+at-2b2.⑤y=asinx+bcosx+csinxcosx型这是关于sinx,cosx的二次齐次式,通过正余弦的降幂公式以及正弦的倍角公式,sin2x=1-cos2x2,cos2x=1+cos2x2,sinxcosx=sin2x2,可转化为y=msin2x+ncos2x+p的形式。
⑥ y=⑦y=asinx+bcsinx+dsinx+a型可以分离常数,利用正弦函数的有界性。
cosx+b型可以利用反解的思想方法,把分母乘过去,整理得,sinx-ycosx=by-a,sin(x-φ)=by-a+y,by-a+y≤1, 通过解此不等式可得到y的取值范围。
或者转化成两点连线的斜率。
以上七种类型是从表达的形式上进行分类的,如果x有具体的角度范围,则再进行限制。
二典例解析:例1.求下列函数的定义域(1)y=3-3sinx-2cos2x;(2)y例2.求下列函数的值域(1) y=-2sinx+3 (2)y=2cos2x+5sinx-4;(3)y=5sin2x-4sinxcosx+2cos2x; (4)y=sinx+cosx+sinxcosx (5)yπ6=3sinx+13sinx+2=logsinx(cosx+12). (3) y=25-x+lgcosx;;(6)y=sinx+2cosx+21-tan()cosx.π4-x)(7)y=sin(x-(8)y=1+tan(π4-x)(9)求函数y=sin2x1-sinx-cosx+sin2x的值域.三课堂练习:1.若cosα⋅cscαsec2α-1=-1,则α所在的象限是A.第二象限限2.不解等式:(1)sinx<-3.已知f(x)的定义域为(-4.求下列函数的定义域(1)y=1tanx-112 () B.第四象限 C.第二象限或第四象限 D.第一或第三象(2)cosx>12 12,32),则f(cosx)的定义域为____________. (2)y=sinx+125-x2.5.求下列函数的值域(1)y=2cosx-1(3)y=1+sinx+cosx+(5)y=12+sinx12sin2xx∈[-π,π]. (4)y=-cos3 (2)y=2sinxcos1+sinx2x. xsinx. (6)y=tan2x+4cot+1 26.有一块扇形铁板,半径为R,圆心角为60°,从这个扇形中切割下一个内接矩形,即矩形的各个顶点都半径或弧在扇形的上,求这个内接矩形的最大面积.。
三角函数的定义域值域与单调性三角函数是数学中重要的概念之一,它在几何学、物理学以及其他许多领域中都有着广泛的应用。
三角函数包括正弦函数、余弦函数和正切函数,它们的定义域、值域以及单调性是我们研究它们的重要方面。
本文将以一种合适的格式来论述三角函数的定义域、值域和单调性。
1. 正弦函数的定义域、值域与单调性三角函数正弦函数的定义域是实数集R,因为它可以接受任何实数作为自变量。
正弦函数的值域是闭区间[-1, 1],也就是说,对于任意的x,-1 ≤ sin(x) ≤ 1。
正弦函数在区间[0, π]上是单调递增的,在区间[π, 2π]上是单调递减的。
2. 余弦函数的定义域、值域与单调性余弦函数的定义域也是实数集R。
与正弦函数不同的是,余弦函数的值域也是闭区间[-1, 1],也就是说,-1 ≤ cos(x) ≤ 1。
余弦函数在区间[0, π/2]上是单调递减的,在区间[π/2, π]上是单调递增的,在区间[π,3π/2]上是单调递减的,在区间[3π/2, 2π]上是单调递增的。
3. 正切函数的定义域、值域与单调性正切函数的定义域是实数集R,除了π/2的倍数除外,即x ≠ (2n + 1)π/2,其中n为整数。
正切函数的值域是全体实数,也就是对于任意的y,都存在一个实数x使得tan(x) = y。
正切函数在区间(-π/2, π/2)上是单调递增的,而在其他区间上是周期性的。
总结:正弦函数的定义域是实数集R,值域是闭区间[-1, 1]。
其在区间[0, π]上是单调递增的,而在区间[π, 2π]上是单调递减的。
余弦函数的定义域也是实数集R,值域同样是闭区间[-1, 1]。
其在区间[0, π/2]上是单调递减的,而在区间[π/2, π]上是单调递增的,以此类推。
正切函数的定义域是实数集R,除了π/2的倍数除外。
值域是全体实数。
正切函数在区间(-π/2, π/2)上是单调递增的,其余区间上是周期性的。
通过研究三角函数的定义域、值域以及单调性,我们能够更好地理解三角函数的性质与特点,在解决数学和实际问题中起到重要的作用。
三角函数的图像及性质1.正弦函数、余弦函数、正切函数的图像2.三角函数的单调区间:x y sin =的递增区间是⎥⎦⎤⎢⎣⎡+-2222ππππk k ,)(Z k ∈,递减区间是⎥⎦⎤⎢⎣⎡++23222ππππk k ,)(Z k ∈; x y cos =的递增区间是[]πππk k 22,-)(Z k ∈,递减区间是[]πππ+k k 22,)(Z k ∈,x y tan =的递增区间是⎪⎭⎫ ⎝⎛+-22ππππk k ,)(Z k ∈,3.函数B x A y ++=)sin(ϕω),(其中00>>ωA最大值是B A +,最小值是A B -,周期是ωπ2=T ,频率是πω2=f ,相位是ϕω+x ,初相是ϕ;其图象的对称轴是直线)(2Z k k x ∈+=+ππϕω,凡是该图象与直线B y =的交点都是该图象的对称中心。
4.对称轴与对称中心:sin y x =的对称轴为2x k ππ=+,对称中心为(,0) k k Z π∈;cos y x =的对称轴为x k π=,对称中心为2(,0)k ππ+; 对于sin()y A x ωφ=+和cos()y A x ωφ=+来说,对称中心与零点相联系,对称轴与最值点联系。
类型一:三角函数的定义域、单调性及值域 例题1.求下列函数的定义域:(5)y =例题2.求下列函数的单调增区间(1)sin(21)y x =+;(2)sin(2)y x =-;(3)12log sin y x =;(4)12log tan y x =例题3.(2010重庆文)下列函数中,周期为π,且在[,]42ππ上为减函数的是(A )sin(2)2y x π=+ (B )cos(2)2y x π=+ (C )sin()2y x π=+(D )cos()2y x π=+ 例题4.(12全国理) 已知0ω>,函数()sin()4f x x πω=+在(,)2ππ上单调递减。
三角函数和反三角函数的定义域和值域文章标题:深入理解三角函数和反三角函数的定义域和值域一、引言三角函数和反三角函数是数学中重要的概念,它们在数学和物理等领域有着广泛的应用。
理解三角函数和反三角函数的定义域和值域对于深入理解它们的性质和应用至关重要。
本文将从简单到复杂,由浅入深地探讨三角函数和反三角函数的定义域和值域,帮助读者更深入地理解这一主题。
二、三角函数的定义域和值域1. 正弦函数和余弦函数正弦函数和余弦函数是最基本的三角函数之一,它们的定义域是整个实数集,即(-∞, +∞),而值域是闭区间[-1, 1]。
这意味着正弦函数和余弦函数的取值范围在-1到1之间。
2. 正切函数正切函数的定义域是所有实数,但它的值域是整个实数集,即(-∞, +∞)。
正切函数的取值范围是整个实数集。
3. 反正弦、反余弦和反正切函数反三角函数是三角函数的反函数,它们的定义域和值域与相应的三角函数相反。
反正弦函数的定义域是闭区间[-1, 1],而值域是闭区间[-π/2, π/2]。
这意味着反正弦函数的取值范围在-π/2到π/2之间。
三、深入理解三角函数和反三角函数的定义域和值域1. 定义域和值域的意义三角函数的定义域和值域决定了函数的取值范围和性质,它们对于解决三角函数的问题和应用具有重要的指导意义。
在求解三角方程和证明三角不等式时,对三角函数的定义域和值域有清晰的认识能够帮助我们更好地理解和处理问题。
2. 图形和性质三角函数的定义域和值域也反映在其图形和性质上。
通过分析三角函数的图形,我们可以直观地感受到其定义域和值域对函数图像的影响,从而更深入地理解三角函数的性质和特点。
四、总结与展望通过本文的探讨,我们对三角函数和反三角函数的定义域和值域有了更深入的理解。
理解三角函数和反三角函数的定义域和值域不仅有助于掌握它们的性质和特点,还能对解决实际问题和应用提供有力的支持。
未来,我们可以进一步探讨三角函数和反三角函数的性质以及它们在不同领域的具体应用,以丰富我们对这一主题的理解。
第4讲 三角函数的图象与性质最新考纲考向预测1.能画出y =sin x ,y =cos x ,y =tan x 的图象,了解三角函数的周期性.2.理解正弦函数、余弦函数在区间[0,2π]上的性质(如单调性、最大值和最小值以及与x 轴的交点等),理解正切函数在区间⎝ ⎛⎭⎪⎫-π2,π2内的单调性. 命题趋势以考查三角函数的性质为主,题目涉及单调性、周期性、最值、零点.考查三角函数性质时,常与三角恒等变换结合,加强数形结合思想、函数与方程思想的应用意识.题型既有选择题和填空题,又有解答题,中档难度. 核心素养 直观想象、逻辑推理1.用五点法作正弦函数和余弦函数的简图(1)正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,0),⎝ ⎛⎭⎪⎫32π,-1,(2π,0).(2)余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),⎝ ⎛⎭⎪⎫π2,0,(π,-1),⎝ ⎛⎭⎪⎫3π2,0,(2π,1).2.正弦、余弦、正切函数的图象与性质 函数y =sin xy =cos xy =tan x图象定义 域 R R {x |x ≠k π+π2,k ∈Z } 值域[-1,1][-1,1]R周期性2π2ππ奇偶性奇函数偶函数奇函数单调递增区间[-π2+2kπ,π2+2kπ],k∈Z[-π+2kπ,2kπ],k∈Z(-π2+kπ,π2+kπ),k∈Z续表函数y=sin x y=cos x y=tan x单调递减区间[π2+2kπ,3π2+2kπ],k∈Z[2kπ,π+2kπ],k∈Z无对称性对称中心(kπ,0),k∈Z⎝⎛⎭⎪⎫kπ+π2,0,k∈Z⎝⎛⎭⎪⎫kπ2,0,k∈Z 对称轴x=kπ+π2,k∈Zx=kπ,k∈Z无对称轴零点kπ,k∈Z kπ+π2,k∈Zkπ,k∈Z常用结论1.对称与周期的关系正弦曲线、余弦曲线相邻的两个对称中心、相邻的两条对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是四分之一个周期;正切曲线相邻两个对称中心之间的距离是半个周期.2.与三角函数的奇偶性相关的结论(1)若y=A sin(ωx+φ)为偶函数,则有φ=kπ+π2(k∈Z);若为奇函数,则有φ=kπ(k∈Z).(2)若y=A cos(ωx+φ)为偶函数,则有φ=kπ(k∈Z);若为奇函数,则有φ=kπ+π2(k ∈Z ).(3)若y =A tan(ωx +φ)为奇函数,则有φ=k π(k ∈Z ). 常见误区1.对于y =tan x 不能认为其在定义域上为增函数,而是在每个开区间⎝ ⎛⎭⎪⎫k π-π2,k π+π2(k ∈Z )内为增函数. 2.求函数y =A sin(ωx +φ)的单调区间时要注意A 和ω的符号,尽量化成ω>0的形式,避免出现增减区间的混淆.1.判断正误(正确的打“√”,错误的打“×”) (1)y =cos x 在第一、二象限内是减函数.( ) (2)若y =k sin x +1,x ∈R ,则y 的最大值是k +1.( )(3)若非零实数T 是函数f (x )的周期,则kT (k 是非零整数)也是函数f (x )的周期.( )(4)函数y =sin x 图象的对称轴方程为x =2k π+π2(k ∈Z ).( ) (5)函数y =tan x 在整个定义域上是增函数.( ) 答案:(1)× (2)× (3)√ (4)× (5)× 2.(易错点)函数y =tan 2x 的定义域是( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠kx +π4,k ∈ZB.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠k π2+π8,k ∈Z C.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠k π+π8,k ∈Z D.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠k π2+π4,k ∈Z 解析:选D.由2x ≠k π+π2,k ∈Z ,得x ≠k π2+π4,k ∈Z ,所以y =tan 2x 的定义域为⎩⎨⎧⎭⎬⎫x |x ≠k π2+π4,k ∈Z . 3.(多选)下列函数中,最小正周期为π的偶函数有( ) A .y =tan xB .y =|sin x |C .y =2cos xD .y =sin ⎝ ⎛⎭⎪⎫π2-2x解析:选BD.对于A 选项,函数y =tan x 为奇函数,不符合题意;对于B 选项,函数y =|sin x |是最小正周期为π的偶函数,符合题意;对于C 选项,函数y =2cos x 的最小正周期为2π,不符合题意;对于D 选项,函数y =sin ⎝ ⎛⎭⎪⎫π2-2x =cos 2x ,是最小正周期为π的偶函数,符合题意.故选BD.4.函数y =cos ⎝ ⎛⎭⎪⎫2x -π4的单调递减区间为________.解析:由y =cos ⎝ ⎛⎭⎪⎫2x -π4, 得2k π≤2x -π4≤2k π+π(k ∈Z ), 解得k π+π8≤x ≤k π+5π8(k ∈Z ).所以函数的单调递减区间为⎣⎢⎡⎦⎥⎤k π+π8,k π+5π8(k ∈Z ). 答案:⎣⎢⎡⎦⎥⎤k π+π8,k π+5π8(k ∈Z )5.已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫x +π4+φ是奇函数,当φ∈⎣⎢⎡⎦⎥⎤-π2,π2时,φ的值为________.解析:由已知得π4+φ=k π(k ∈Z ),所以φ=k π-π4(k ∈Z ).又因为φ∈⎣⎢⎡⎦⎥⎤-π2,π2,所以当k =0时,φ=-π4符合条件.答案:-π4第1课时 三角函数的单调性与最值求三角函数的单调区间(1)函数f (x )=sin ⎝ ⎛⎭⎪⎫-2x +π3的单调递减区间为________.(2)函数f (x )=tan(2x +π3)的单调递增区间是________.【解析】 (1)f (x )=sin ⎝ ⎛⎭⎪⎫-2x +π3=sin ⎣⎢⎡⎦⎥⎤-⎝ ⎛⎭⎪⎫2x -π3=-sin ⎝ ⎛⎭⎪⎫2x -π3,由2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z .故所求函数的单调递减区间为⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z ). (2)由k π-π2<2x +π3<k π+π2(k ∈Z ),得k π2-5π12<x <k π2+π12(k ∈Z ),所以函数f (x )=tan ⎝ ⎛⎭⎪⎫2x +π3的单调递增区间为⎝ ⎛⎭⎪⎫k π2-5π12,k π2+π12(k ∈Z ).【答案】 (1)⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z ) (2)⎝ ⎛⎭⎪⎫k π2-5π12,k π2+π12(k ∈Z ) 【引申探究】1.(变条件、变问法)若本例(1)f (x )变为:f (x )=-cos ⎝ ⎛⎭⎪⎫-2x +π3,求f (x )的单调递增区间.解:f (x )=-cos ⎝ ⎛⎭⎪⎫-2x +π3=-cos ⎝ ⎛⎭⎪⎫2x -π3,欲求函数f (x )的单调递增区间, 只需求y =cos ⎝ ⎛⎭⎪⎫2x -π3的单调递减区间.由2k π≤2x -π3≤2k π+π,k ∈Z , 得k π+π6≤x ≤k π+2π3,k ∈Z .故函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π+π6,k π+2π3(k ∈Z ).2.(变条件、变问法)本例(1)f (x )变为:f (x )=sin ⎝ ⎛⎭⎪⎫2x -π3,试讨论f (x )在区间⎣⎢⎡⎦⎥⎤-π4,π4上的单调性.解:令z =2x -π3,易知函数y =sin z 的单调递增区间是⎣⎢⎡⎦⎥⎤-π2+2k π,π2+2k π,k ∈Z .由-π2+2k π≤2x -π3≤π2+2k π, 得-π12+k π≤x ≤5π12+k π,k ∈Z .设A =⎣⎢⎡⎦⎥⎤-π4,π4,B =⎩⎨⎧⎭⎬⎫x |-π12+k π≤x ≤5π12+k π,k ∈Z ,易知A ∩B =⎣⎢⎡⎦⎥⎤-π12,π4. 所以,当x ∈⎣⎢⎡⎦⎥⎤-π4,π4时,f (x )在区间⎣⎢⎡⎦⎥⎤-π12,π4上单调递增,又因为π4-⎝ ⎛⎭⎪⎫-π4=π2<T ,所以f (x )在区间⎣⎢⎡⎦⎥⎤-π4,-π12上单调递减.求三角函数单调区间的两种方法(1)代换法:就是将比较复杂的三角函数含自变量的代数式整体当作一个角u (或t ),利用复合函数的单调性列不等式求解.(2)图象法:画出三角函数的图象,结合图象求它的单调区间.[提醒] 要注意求函数y =A sin(ωx +φ)的单调区间时ω的符号,若ω<0,那么一定要先借助诱导公式将ω化为正数.同时切莫漏掉考虑函数自身的定义域.1.函数y =|cos x |的一个单调递增区间是( ) A .[-π2,π2] B .[0,π] C .[π,3π2]D .[3π2,2π]解析:选D.将y =cos x 的图象位于x 轴下方的图象关于x 轴对称翻折到x 轴上方,x 轴上方(或x 轴上)的图象不变,即得y =|cos x |的图象(如图).故选D.2.设函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π3,x ∈⎣⎢⎡⎦⎥⎤-π2,π,则以下结论正确的是( )A .函数f (x )在⎣⎢⎡⎦⎥⎤-π2,0上单调递减B .函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上单调递增 C .函数f (x )在⎣⎢⎡⎦⎥⎤π2,5π6上单调递减D .函数f (x )在⎣⎢⎡⎦⎥⎤5π6,π上单调递增解析:选C.由x ∈⎣⎢⎡⎦⎥⎤-π2,0得2x -π3∈⎣⎢⎡⎦⎥⎤-4π3,-π3,所以f (x )先减后增;由x ∈⎣⎢⎡⎦⎥⎤0,π2得2x -π3∈⎣⎢⎡⎦⎥⎤-π3,2π3,所以f (x )先增后减;由x ∈⎣⎢⎡⎦⎥⎤π2,5π6得2x -π3∈⎣⎢⎡⎦⎥⎤2π3,4π3,所以f (x )单调递减;由x ∈⎣⎢⎡⎦⎥⎤5π6,π得2x -π3∈⎣⎢⎡⎦⎥⎤4π3,5π3,所以f (x )先减后增.三角函数单调性的应用 角度一 利用三角函数的单调性比较大小已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫x +π3,设a =f ⎝ ⎛⎭⎪⎫π7,b =f ⎝ ⎛⎭⎪⎫π6,c =f ⎝ ⎛⎭⎪⎫π3,则a ,b ,c的大小关系是( )A .a <c <bB .c <a <bC .b <a <cD .b <c <a【解析】 a =f ⎝ ⎛⎭⎪⎫π7=2sin 10π21,b =f ⎝ ⎛⎭⎪⎫π6=2sin π2=2,c =f ⎝ ⎛⎭⎪⎫π3=2sin 2π3=2sinπ3,因为y =sin x 在⎣⎢⎡⎦⎥⎤0,π2上单调递增,且π3<10π21<π2,所以c <a <b .【答案】 B利用函数的单调性比较大小(1)比较同名三角函数的大小,首先把三角函数转化为同一单调区间上的三角函数,利用单调性,由自变量的大小确定函数值的大小;(2)比较不同名三角函数的大小,应先化成同名三角函数,再进行比较.角度二 利用三角函数的单调性求值域(最值)(1)函数f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π6在区间⎣⎢⎡⎦⎥⎤0,π2上的值域为( ) A.⎣⎢⎡⎦⎥⎤-32,32 B.⎣⎢⎡⎦⎥⎤-32,3 C.⎣⎢⎡⎦⎥⎤-332,332 D.⎣⎢⎡⎦⎥⎤-332,3 (2)函数y =sin x -cos x +sin x cos x的值域为_________________________________.【解析】 (1)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x -π6∈⎣⎢⎡⎦⎥⎤-π6,5π6,sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-12,1, 故3sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-32,3,即此时函数f (x )的值域是⎣⎢⎡⎦⎥⎤-32,3.(2)设t =sin x -cos x ,则-2≤t ≤2,t 2=sin 2x +cos 2x -2sin x cos x ,则sin x cos x =1-t 22,所以y =-t 22+t +12=-12(t -1)2+1.当t =1时,y max =1;当t =-2时,y min =-12- 2. 所以函数y 的值域为[-12-2,1]. 【答案】 (1)B (2)[-12-2,1] 【引申探究】1.(变条件)若本例(1)中函数f (x )的解析式变为:f (x )=3cos ⎝ ⎛⎭⎪⎫2x -π6,则f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上的值域为________.解析:当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x -π6∈⎣⎢⎡⎦⎥⎤-π6,5π6,cos ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-32,1, 故f (x )=3cos ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-332,3. 答案:⎣⎢⎡⎦⎥⎤-332,3 2.(变条件)若本例(2)中x ∈[0,π],则函数f (x )的值域为________. 解析:设t =sin x -cos x ,则t =2sin ⎝ ⎛⎭⎪⎫x -π4,又x ∈[0,π],所以t ∈[-1,2]. t 2=sin 2x +cos 2x -2sin x cos x , 即sin x cos x =1-t 22,所以y =-t 22+t +12=-12(t -1)2+1.当t =1时,y max =1;当t =-1时,y min =-1. 所以函数y 的值域为[-1,1]. 答案:[-1,1]三角函数值域的求法(1)利用y =sin x 和y =cos x 的值域直接求.(2)把所给的三角函数式变换成y =A sin(ωx +φ)+b (或y =A cos(ωx +φ)+b )的形式求值域.(3)把sin x 或cos x 看作一个整体,将原函数转换成二次函数求值域. (4)利用sin x ±cos x 和sin x cos x 的关系将原函数转换成二次函数求值域.1.下列关系式中正确的是( ) A .sin 11°<cos 10°<sin 168° B .sin 168°<sin 11°<cos 10° C .sin 11°<sin 168°<cos 10° D .sin 168°<cos 10°<sin 11°解析:选C.因为sin 168°=sin(180°-12°)=sin 12°,cos 10°=sin(90°-10°)=sin 80°,由正弦函数y =sin x 在0°≤x ≤90°上是增函数,得sin 11°<sin 12°<sin 80°,所以sin 11°<sin 168°<cos 10°,故选C.2.已知函数f (x )=-10sin 2x -10sin x -12,x ∈⎣⎢⎡⎦⎥⎤-π2,m 的值域为⎣⎢⎡⎦⎥⎤-12,2,则实数m 的取值范围是( )A.⎣⎢⎡⎦⎥⎤-π3,0 B.⎣⎢⎡⎦⎥⎤-π6,0 C.⎣⎢⎡⎦⎥⎤-π3,π6 D.⎣⎢⎡⎦⎥⎤-π6,π3 解析:选B.记t =sin x ,x ∈⎣⎢⎡⎦⎥⎤-π2,m ,则函数f (x )可转化为g (t )=-10t 2-10t-12=-10⎝ ⎛⎭⎪⎫t +122+2.因为函数的最大值为2,显然此时t =-12. 令g (t )=-12,得t =-1或t =0,由题意知x ∈⎣⎢⎡⎦⎥⎤-π2,m ,当x =-π2时,t =-1,g (-1)=-12,结合g (t )的图象及函数的值域为⎣⎢⎡⎦⎥⎤-12,2,可得-12≤sin m ≤0,解得-π6≤m ≤0.故选B.根据三角函数的单调性确定参数(一题多解)若函数f (x )=23sin ωx cos ωx +2sin 2ωx +cos 2ωx 在区间⎣⎢⎡⎦⎥⎤-3π2,3π2上单调递增,则正数ω的最大值为( ) A.18 B.16 C.14D.13【解析】 方法一:因为f (x )=23sin ωx cos ωx +2sin 2ωx +cos 2ωx =3sin 2ωx +1在区间⎣⎢⎡⎦⎥⎤-3π2,3π2上单调递增,所以⎩⎪⎨⎪⎧-3ωπ≥-π2,3ωπ≤π2.解得ω≤16,所以正数ω的最大值是16.故选B.方法二:易知f (x )=3sin 2ωx +1,可得f (x )的最小正周期T =πω,所以⎩⎪⎨⎪⎧-π4ω≤-3π2,π4ω≥3π2,解得ω≤16.所以正数ω的最大值是16.故选B. 【答案】 B已知函数单调性求参数—— 明确一个不同,掌握两种方法(1)明确一个不同.“函数f (x )在区间M 上单调”与“函数f (x )的单调区间为N ”两者的含义不同,显然M 是N 的子集.(2)掌握两种方法.已知函数在区间M 上单调求解参数问题,主要有两种方法:一是利用已知区间与单调区间的子集关系建立参数所满足的关系式求解;二是利用导数,转化为导函数在区间M 上的保号性,由此列不等式求解.1.若f (x )=cos x -sin x 在[-a ,a ]上是减函数,则a 的最大值是( ) A .π4 B .π2 C .3π4D .π解析:选A.f (x )=cos x -sin x =-2sin ⎝ ⎛⎭⎪⎫x -π4,当x ∈⎣⎢⎡⎦⎥⎤-π4,3π4,即x -π4∈⎣⎢⎡⎦⎥⎤-π2,π2时, y =sin ⎝ ⎛⎭⎪⎫x -π4单调递增,则f (x )=-2sin ⎝ ⎛⎭⎪⎫x -π4单调递减.因为函数f (x )在[-a ,a ]上是减函数, 所以[-a ,a ]⊆⎣⎢⎡⎦⎥⎤-π4,3π4,所以0<a ≤π4,所以a 的最大值为π4.2.若函数f (x )=sin ωx (ω>0)在区间⎣⎢⎡⎦⎥⎤0,π3上单调递增,在区间⎣⎢⎡⎦⎥⎤π3,π2上单调递减,则ω=________.解析:因为f (x )=sin ωx (ω>0)过原点, 所以当0≤ωx ≤π2,即0≤x ≤π2ω时, y =sin ωx 是增函数;当π2≤ωx ≤3π2,即π2ω≤x ≤3π2ω时,y =sin ωx 是减函数. 由已知得π2ω=π3,解得ω=32. 答案:32[A 级 基础练]1.当x ∈[0,2π],则y =tan x +-cos x 的定义域为( ) A.⎣⎢⎡⎭⎪⎫0,π2 B.⎝ ⎛⎦⎥⎤π2,π C.⎣⎢⎡⎭⎪⎫π,3π2 D.⎝ ⎛⎦⎥⎤3π2,2π 解析:选C.方法一:由题意得⎩⎪⎨⎪⎧tan x ≥0,-cos x ≥0,x ∈[0,2π],x ≠k π+π2,k ∈Z ,所以函数y 的定义域为⎣⎢⎡⎭⎪⎫π,3π2.故选C. 方法二:当x =π时,函数有意义,排除A ,D ;当x =5π4时,函数有意义,排除B.故选C.2.下列关于函数y =4sin x ,x ∈[-π,π]的单调性的叙述,正确的是( ) A .在[-π,0]上是增函数,在[0,π]上是减函数B .在⎣⎢⎡⎦⎥⎤-π2,π2上是增函数,在⎣⎢⎡⎦⎥⎤-π,-π2及⎣⎢⎡⎦⎥⎤π2,π上是减函数C .在[0,π]上是增函数,在[-π,0]上是减函数D .在⎣⎢⎡⎦⎥⎤π2,π及⎣⎢⎡⎦⎥⎤-π,-π2上是增函数,在⎣⎢⎡⎦⎥⎤-π2,π2上是减函数解析:选B.函数y =4sin x 在⎣⎢⎡⎦⎥⎤-π,-π2和⎣⎢⎡⎦⎥⎤π2,π上单调递减,在⎣⎢⎡⎦⎥⎤-π2,π2上单调递增.故选B.3.(2020·武汉市学习质量检测)已知函数f (x )=sin 2x +sin 2⎝ ⎛⎭⎪⎫x +π3,则f (x )的最小值为( )A.12 B.14 C.34D.22解析:选 A.f (x )=sin 2x +sin 2⎝ ⎛⎭⎪⎫x +π3=sin 2x +⎝ ⎛⎭⎪⎫12sin x +32cos x 2=54sin 2x +34cos 2x +32sin x cos x =34+1-cos 2x 4+34sin 2x =1+12⎝ ⎛⎭⎪⎫32sin 2x -12cos 2x =1+12sin ⎝ ⎛⎭⎪⎫2x -π6≥1-12=12,故选A. 4.(2020·贵阳市第一学期监测考试)已知函数f (x )=sin(2x +φ),其中φ∈(0,2π),若f (x )≤f ⎝ ⎛⎭⎪⎫π6对于一切x ∈R 恒成立,则f (x )的单调递增区间是( )A.⎣⎢⎡⎦⎥⎤k π,k π+π2(k ∈Z )B.⎣⎢⎡⎦⎥⎤k π-π3,k π+π6(k ∈Z ) C.⎣⎢⎡⎦⎥⎤k π+π6,k π+2π3(k ∈Z ) D.⎣⎢⎡⎦⎥⎤k π-π2,k π(k ∈Z ) 解析:选B.因为f (x )≤f ⎝ ⎛⎭⎪⎫π6对x ∈R 恒成立,则f ⎝ ⎛⎭⎪⎫π6为函数f (x )的最大值,即2×π6+φ=2k π+π2(k ∈Z ),则φ=2k π+π6(k ∈Z ),又φ∈(0,2π),所以φ=π6,所以f (x )=sin ⎝ ⎛⎭⎪⎫2x +π6.令2x +π6∈⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2(k ∈Z ),则x ∈⎣⎢⎡⎦⎥⎤k π-π3,k π+π6(k ∈Z ).故选B.5.(2020·昆明市三诊一模)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π4(ω>0),x ∈⎣⎢⎡⎦⎥⎤0,π2的值域是⎣⎢⎡⎦⎥⎤-22,1,则ω的取值范围是( )A.⎝ ⎛⎦⎥⎤0,32 B.⎣⎢⎡⎦⎥⎤32,3 C.⎣⎢⎡⎦⎥⎤3,72 D.⎣⎢⎡⎦⎥⎤52,72 解析:选B.通解:因为x ∈⎣⎢⎡⎦⎥⎤0,π2,ω>0,所以ωx -π4∈⎣⎢⎡⎦⎥⎤-π4,ωπ2-π4.又当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )∈⎣⎢⎡⎦⎥⎤-22,1,所以π2≤ωπ2-π4≤5π4,解得32≤ω≤3,故选B. 优解:当ω=2时,f (x )=sin ⎝ ⎛⎭⎪⎫2x -π4.因为x ∈⎣⎢⎡⎦⎥⎤0,π2,所以2x -π4∈⎣⎢⎡⎦⎥⎤-π4,3π4,所以sin ⎝ ⎛⎭⎪⎫2x -π4∈⎣⎢⎡⎦⎥⎤-22,1,满足题意,故排除A ,C ,D ,选B.6.比较大小:sin ⎝ ⎛⎭⎪⎫-π18________sin ⎝ ⎛⎭⎪⎫-π10.解析:因为y =sin x 在⎣⎢⎡⎦⎥⎤-π2,0上为增函数且-π18>-π10>-π2,故sin ⎝ ⎛⎭⎪⎫-π18>sin ⎝ ⎛⎭⎪⎫-π10.答案:>7.已知函数f (x )=4sin ⎝ ⎛⎭⎪⎫2x -π3,x ∈[-π,0],则f (x )的单调递增区间是________.解析:由-π2+2k π≤2x -π3≤π2+2k π(k ∈Z ), 得-π12+k π≤x ≤5π12+k π(k ∈Z ), 又因为x ∈[-π,0],所以f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤-π,-7π12和⎣⎢⎡⎦⎥⎤-π12,0.答案:⎣⎢⎡⎦⎥⎤-π,-7π12和⎣⎢⎡⎦⎥⎤-π12,08.若函数f (x )=2sin ωx (0<ω<1)在区间⎣⎢⎡⎦⎥⎤0,π3上的最大值为1,则ω=________.解析:因为0<ω<1,0≤x ≤π3,所以0≤ωx <π3,所以f (x )在区间⎣⎢⎡⎦⎥⎤0,π3上单调递增,则f (x )max =f ⎝ ⎛⎭⎪⎫π3=2sin ωπ3=1,即sin ωπ3=12.又因为0≤ωx <π3,所以ωπ3=π6,解得ω=12.答案:129.已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π4.(1)求f (x )的单调递增区间;(2)当x ∈⎣⎢⎡⎦⎥⎤π4,3π4时,求函数f (x )的最大值和最小值.解:(1)令2k π-π2≤2x +π4≤2k π+π2,k ∈Z , 则k π-3π8≤x ≤k π+π8,k ∈Z .故f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-3π8,k π+π8,k ∈Z .(2)当x ∈⎣⎢⎡⎦⎥⎤π4,3π4时,3π4≤2x +π4≤7π4,所以-1≤sin ⎝ ⎛⎭⎪⎫2x +π4≤22,所以-2≤f (x )≤1,所以当x ∈⎣⎢⎡⎦⎥⎤π4,3π4时,函数f (x )的最大值为1,最小值为- 2.10.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π6.讨论函数f (x )在区间⎣⎢⎡⎦⎥⎤-π12,π2上的单调性并求出其值域.解:令-π2≤2x -π6≤π2,则-π6≤x ≤π3. 令π2≤2x -π6≤32π,则π3≤x ≤5π6. 因为-π12≤x ≤π2,所以函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π6在区间⎣⎢⎡⎦⎥⎤-π12,π3上单调递增,在区间⎣⎢⎡⎦⎥⎤π3,π2上单调递减.当x =π3时,f (x )取得最大值为1.因为f ⎝ ⎛⎭⎪⎫-π12=-32<f ⎝ ⎛⎭⎪⎫π2=12, 所以当x =-π12时,f (x )min =-32. 所以f (x )的值域为⎣⎢⎡⎦⎥⎤-32,1.[B 级 综合练]11.(2020·湖北八校第一次联考)若函数f (x )=sin x +3cos x 在区间[a ,b ]上是减函数,且f (a )=2,f (b )=-2,则函数g (x )=cos x -3sin x 在区间[a ,b ]上( )A .是增函数B .是减函数C .可以取得最大值2D .可以取得最小值-2解析:选 D.f (x )=sin x +3cos x =2sin ⎝ ⎛⎭⎪⎫x +π3,g (x )=cos x -3sin x =2cos ⎝ ⎛⎭⎪⎫x +π3=2sin ⎝ ⎛⎭⎪⎫x +π2+π3.f (x )在区间[a ,b ]上是减函数,且f (a )=2,f (b )=-2,不妨令a +π3=π2,b +π3=3π2,则a +π2+π3=π,b +π2+π3=2π,故g (x )在[a ,b ]上既不是增函数,也不是减函数,g (x )在[a ,b ]上可以取得最小值-2,故选D.12.(多选)关于函数f (x )=sin|x |-|cos x |,下列结论正确的是( ) A .f (x )是偶函数B .f (x )在区间⎝ ⎛⎭⎪⎫π2,π上单调递减C .f (x )的最大值为 2D .当x ∈⎝ ⎛⎭⎪⎫-π4,π4时,f (x )<0恒成立解析:选ABD.因为f (-x )=sin|-x |-|cos(-x )|=sin|x |-|cos x |=f (x ),所以f (x )为偶函数,故A 正确;当x ∈⎝ ⎛⎭⎪⎫π2,π时,f (x )=sin|x |-|cos x |=sin x +cos x =2sin ⎝ ⎛⎭⎪⎫x +π4,又x ∈⎝ ⎛⎭⎪⎫π2,π,所以令t =x +π4,则t ∈⎝ ⎛⎭⎪⎫3π4,5π4,y =2sin t 单调递减,所以B 正确;因为f (x )为偶函数,所以求函数f (x )的最大值可只考虑当x ≥0时的情况,又易知当x ≥0时,2π是其一个周期,所以只需研究x ∈[0,2π]时的情况,则f (x )=sin x -|cos x |=⎩⎪⎨⎪⎧sin x -cos x ,x ∈⎣⎢⎡⎦⎥⎤0,π2∪⎝ ⎛⎦⎥⎤3π2,2πsin x +cos x ,x ∈⎝ ⎛⎦⎥⎤π2,3π2=⎩⎪⎨⎪⎧2sin ⎝ ⎛⎭⎪⎫x -π4,x ∈⎣⎢⎡⎦⎥⎤0,π2∪⎝ ⎛⎦⎥⎤3π2,2π2sin ⎝ ⎛⎭⎪⎫x +π4,x ∈⎝ ⎛⎦⎥⎤π2,3π2,则函数f (x )的值域为[-2,1],因此C 错误;当x ∈⎣⎢⎡⎭⎪⎫0,π4时,f (x )=sin x -cos x =2sin ⎝ ⎛⎭⎪⎫x -π4,则x -π4∈⎣⎢⎡⎭⎪⎫-π4,0,所以sin ⎝ ⎛⎭⎪⎫x -π4<0,即f (x )<0在x ∈⎣⎢⎡⎭⎪⎫0,π4上恒成立,因为f (x )为偶函数,所以x ∈⎝ ⎛⎭⎪⎫-π4,π4时,f (x )<0恒成立,故D 正确.综上可知,正确结论是ABD. 13.已知函数f (x )=3cos ⎝ ⎛⎭⎪⎫2x -π3-2sin x cos x .(1)求f (x )的最小正周期;(2)求证:当x ∈⎣⎢⎡⎦⎥⎤-π4,π4时,f (x )≥-12.解:(1)f (x )=3cos ⎝ ⎛⎭⎪⎫2x -π3-2sin x cos x=32cos 2x +32sin 2x -sin 2x =12sin 2x +32cos 2x =sin ⎝ ⎛⎭⎪⎫2x +π3,所以T =2π2=π.(2)证明:令t =2x +π3,因为-π4≤x ≤π4, 所以-π6≤2x +π3≤5π6,因为y =sin t 在⎣⎢⎡⎦⎥⎤-π6,π2上单调递增,在⎣⎢⎡⎦⎥⎤π2,5π6上单调递减,且sin ⎝ ⎛⎭⎪⎫-π6<sin 5π6, 所以f (x )≥sin ⎝ ⎛⎭⎪⎫-π6=-12,得证.14.已知f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6+a +1.(1)求f (x )的单调递增区间;(2)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )的最大值为4,求a 的值;(3)在(2)的条件下,求满足f (x )=1且x ∈[-π,π]的x 的取值集合. 解:(1)f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6+a +1, 由2k π-π2≤2x +π6≤2k π+π2,k ∈Z , 可得k π-π3≤x ≤k π+π6,k ∈Z ,所以f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π3,k π+π6,k ∈Z . (2)当x =π6时,f (x )取得最大值4,即f ⎝ ⎛⎭⎪⎫π6=2sin π2+a +1=a +3=4,所以a =1.(3)由f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6+2=1,可得sin ⎝ ⎛⎭⎪⎫2x +π6=-12,则2x +π6=7π6+2k π,k ∈Z 或2x +π6=116π+2k π,k ∈Z ,即x =π2+k π,k ∈Z 或x =5π6+k π,k ∈Z ,又x ∈[-π,π],解得x =-π2,-π6,π2,5π6, 所以x的取值集合为⎩⎨⎧⎭⎬⎫-π2,-π6,π2,5π6. [C 级 创新练]15.(2020·贵阳市适应性考试)已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫ωx +π4(ω>0)的图象在区间[0,1]上恰有3个最高点,则ω的取值范围为( )A .⎣⎢⎡⎭⎪⎫19π4,27π4B .⎣⎢⎡⎭⎪⎫9π2,13π2C .⎣⎢⎡⎭⎪⎫17π4,25π4D .[4π,6π)解析:选C.因为x ∈[0,1],ω>0,所以ωx +π4∈⎣⎢⎡⎦⎥⎤π4,ω+π4. 因为f (x )的图象在区间[0,1]上恰有3个最高点,所以4π+π2≤ω+π4<6π+π2,解得17π4≤ω<25π4.16.如图,角α的始边与x 轴的非负半轴重合,终边与单位圆交于点A (x 1,y 1),角β=α+2π3的终边与单位圆交于点B (x 2,y 2),记f (α)=y 1-y 2.若角α为锐角,则f (α)的取值范围是________.解析:由题意可知y 1=sin α,y 2=sin β=sin ⎝ ⎛⎭⎪⎫α+2π3,所以f (α)=y 1-y 2=sin α-sin ⎝ ⎛⎭⎪⎫α+2π3=sin α+12sin α-32cos α=32sin α-32cos α=3sin ⎝ ⎛⎭⎪⎫α-π6.又因为α为锐角,即0<α<π2,所以-π6<α-π6<π3,所以-12<sin ⎝ ⎛⎭⎪⎫α-π6<32,则-32<f (α)<32,即f (α)的取值范围是⎝ ⎛⎭⎪⎫-32,32.答案:⎝ ⎛⎭⎪⎫-32,32第4讲 三角函数的图象与性质最新考纲考向预测1.能画出y =sin x ,y =cos x ,y =tan x 的图象,了解三角函数的周期性.2.理解正弦函数、余弦函数在区间[0,2π]上的性质(如单调性、最大值和最小值以及与x 轴的交点等),理解正切函数在区间⎝ ⎛⎭⎪⎫-π2,π2内的单调性. 命题趋势以考查三角函数的性质为主,题目涉及单调性、周期性、最值、零点.考查三角函数性质时,常与三角恒等变换结合,加强数形结合思想、函数与方程思想的应用意识.题型既有选择题和填空题,又有解答题,中档难度. 核心素养 直观想象、逻辑推理1.用五点法作正弦函数和余弦函数的简图(1)正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,0),⎝ ⎛⎭⎪⎫32π,-1,(2π,0).(2)余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),⎝ ⎛⎭⎪⎫π2,0,(π,-1),⎝ ⎛⎭⎪⎫3π2,0,(2π,1).2.正弦、余弦、正切函数的图象与性质 函数y =sin xy =cos xy =tan x图象定义 域 R R {x |x ≠k π+π2,k ∈Z } 值域[-1,1][-1,1]R周期性2π2ππ奇偶性奇函数偶函数奇函数单调递增区间[-π2+2kπ,π2+2kπ],k∈Z[-π+2kπ,2kπ],k∈Z(-π2+kπ,π2+kπ),k∈Z续表函数y=sin x y=cos x y=tan x单调递减区间[π2+2kπ,3π2+2kπ],k∈Z[2kπ,π+2kπ],k∈Z无对称性对称中心(kπ,0),k∈Z⎝⎛⎭⎪⎫kπ+π2,0,k∈Z⎝⎛⎭⎪⎫kπ2,0,k∈Z 对称轴x=kπ+π2,k∈Zx=kπ,k∈Z无对称轴零点kπ,k∈Z kπ+π2,k∈Zkπ,k∈Z常用结论1.对称与周期的关系正弦曲线、余弦曲线相邻的两个对称中心、相邻的两条对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是四分之一个周期;正切曲线相邻两个对称中心之间的距离是半个周期.2.与三角函数的奇偶性相关的结论(1)若y=A sin(ωx+φ)为偶函数,则有φ=kπ+π2(k∈Z);若为奇函数,则有φ=kπ(k∈Z).(2)若y=A cos(ωx+φ)为偶函数,则有φ=kπ(k∈Z);若为奇函数,则有φ=kπ+π2(k ∈Z ).(3)若y =A tan(ωx +φ)为奇函数,则有φ=k π(k ∈Z ). 常见误区1.对于y =tan x 不能认为其在定义域上为增函数,而是在每个开区间⎝ ⎛⎭⎪⎫k π-π2,k π+π2(k ∈Z )内为增函数. 2.求函数y =A sin(ωx +φ)的单调区间时要注意A 和ω的符号,尽量化成ω>0的形式,避免出现增减区间的混淆.1.判断正误(正确的打“√”,错误的打“×”) (1)y =cos x 在第一、二象限内是减函数.( ) (2)若y =k sin x +1,x ∈R ,则y 的最大值是k +1.( )(3)若非零实数T 是函数f (x )的周期,则kT (k 是非零整数)也是函数f (x )的周期.( )(4)函数y =sin x 图象的对称轴方程为x =2k π+π2(k ∈Z ).( ) (5)函数y =tan x 在整个定义域上是增函数.( ) 答案:(1)× (2)× (3)√ (4)× (5)× 2.(易错点)函数y =tan 2x 的定义域是( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠kx +π4,k ∈ZB.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠k π2+π8,k ∈Z C.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠k π+π8,k ∈Z D.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠k π2+π4,k ∈Z 解析:选D.由2x ≠k π+π2,k ∈Z ,得x ≠k π2+π4,k ∈Z ,所以y =tan 2x 的定义域为⎩⎨⎧⎭⎬⎫x |x ≠k π2+π4,k ∈Z . 3.(多选)下列函数中,最小正周期为π的偶函数有( ) A .y =tan xB .y =|sin x |C .y =2cos xD .y =sin ⎝ ⎛⎭⎪⎫π2-2x解析:选BD.对于A 选项,函数y =tan x 为奇函数,不符合题意;对于B 选项,函数y =|sin x |是最小正周期为π的偶函数,符合题意;对于C 选项,函数y =2cos x 的最小正周期为2π,不符合题意;对于D 选项,函数y =sin ⎝ ⎛⎭⎪⎫π2-2x =cos 2x ,是最小正周期为π的偶函数,符合题意.故选BD.4.函数y =cos ⎝ ⎛⎭⎪⎫2x -π4的单调递减区间为________.解析:由y =cos ⎝ ⎛⎭⎪⎫2x -π4, 得2k π≤2x -π4≤2k π+π(k ∈Z ), 解得k π+π8≤x ≤k π+5π8(k ∈Z ).所以函数的单调递减区间为⎣⎢⎡⎦⎥⎤k π+π8,k π+5π8(k ∈Z ). 答案:⎣⎢⎡⎦⎥⎤k π+π8,k π+5π8(k ∈Z )5.已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫x +π4+φ是奇函数,当φ∈⎣⎢⎡⎦⎥⎤-π2,π2时,φ的值为________.解析:由已知得π4+φ=k π(k ∈Z ),所以φ=k π-π4(k ∈Z ).又因为φ∈⎣⎢⎡⎦⎥⎤-π2,π2,所以当k =0时,φ=-π4符合条件.答案:-π4第1课时 三角函数的单调性与最值求三角函数的单调区间(1)函数f (x )=sin ⎝ ⎛⎭⎪⎫-2x +π3的单调递减区间为________.(2)函数f (x )=tan(2x +π3)的单调递增区间是________.【解析】 (1)f (x )=sin ⎝ ⎛⎭⎪⎫-2x +π3=sin ⎣⎢⎡⎦⎥⎤-⎝ ⎛⎭⎪⎫2x -π3=-sin ⎝ ⎛⎭⎪⎫2x -π3,由2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z .故所求函数的单调递减区间为⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z ). (2)由k π-π2<2x +π3<k π+π2(k ∈Z ),得k π2-5π12<x <k π2+π12(k ∈Z ),所以函数f (x )=tan ⎝ ⎛⎭⎪⎫2x +π3的单调递增区间为⎝ ⎛⎭⎪⎫k π2-5π12,k π2+π12(k ∈Z ).【答案】 (1)⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z ) (2)⎝ ⎛⎭⎪⎫k π2-5π12,k π2+π12(k ∈Z ) 【引申探究】1.(变条件、变问法)若本例(1)f (x )变为:f (x )=-cos ⎝ ⎛⎭⎪⎫-2x +π3,求f (x )的单调递增区间.解:f (x )=-cos ⎝ ⎛⎭⎪⎫-2x +π3=-cos ⎝ ⎛⎭⎪⎫2x -π3,欲求函数f (x )的单调递增区间, 只需求y =cos ⎝ ⎛⎭⎪⎫2x -π3的单调递减区间.由2k π≤2x -π3≤2k π+π,k ∈Z , 得k π+π6≤x ≤k π+2π3,k ∈Z .故函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π+π6,k π+2π3(k ∈Z ).2.(变条件、变问法)本例(1)f (x )变为:f (x )=sin ⎝ ⎛⎭⎪⎫2x -π3,试讨论f (x )在区间⎣⎢⎡⎦⎥⎤-π4,π4上的单调性.解:令z =2x -π3,易知函数y =sin z 的单调递增区间是⎣⎢⎡⎦⎥⎤-π2+2k π,π2+2k π,k ∈Z .由-π2+2k π≤2x -π3≤π2+2k π, 得-π12+k π≤x ≤5π12+k π,k ∈Z .设A =⎣⎢⎡⎦⎥⎤-π4,π4,B =⎩⎨⎧⎭⎬⎫x |-π12+k π≤x ≤5π12+k π,k ∈Z ,易知A ∩B =⎣⎢⎡⎦⎥⎤-π12,π4. 所以,当x ∈⎣⎢⎡⎦⎥⎤-π4,π4时,f (x )在区间⎣⎢⎡⎦⎥⎤-π12,π4上单调递增,又因为π4-⎝ ⎛⎭⎪⎫-π4=π2<T ,所以f (x )在区间⎣⎢⎡⎦⎥⎤-π4,-π12上单调递减.求三角函数单调区间的两种方法(1)代换法:就是将比较复杂的三角函数含自变量的代数式整体当作一个角u (或t ),利用复合函数的单调性列不等式求解.(2)图象法:画出三角函数的图象,结合图象求它的单调区间.[提醒] 要注意求函数y =A sin(ωx +φ)的单调区间时ω的符号,若ω<0,那么一定要先借助诱导公式将ω化为正数.同时切莫漏掉考虑函数自身的定义域.1.函数y =|cos x |的一个单调递增区间是( ) A .[-π2,π2] B .[0,π] C .[π,3π2]D .[3π2,2π]解析:选D.将y =cos x 的图象位于x 轴下方的图象关于x 轴对称翻折到x 轴上方,x 轴上方(或x 轴上)的图象不变,即得y =|cos x |的图象(如图).故选D.2.设函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π3,x ∈⎣⎢⎡⎦⎥⎤-π2,π,则以下结论正确的是( )A .函数f (x )在⎣⎢⎡⎦⎥⎤-π2,0上单调递减B .函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上单调递增 C .函数f (x )在⎣⎢⎡⎦⎥⎤π2,5π6上单调递减D .函数f (x )在⎣⎢⎡⎦⎥⎤5π6,π上单调递增解析:选C.由x ∈⎣⎢⎡⎦⎥⎤-π2,0得2x -π3∈⎣⎢⎡⎦⎥⎤-4π3,-π3,所以f (x )先减后增;由x ∈⎣⎢⎡⎦⎥⎤0,π2得2x -π3∈⎣⎢⎡⎦⎥⎤-π3,2π3,所以f (x )先增后减;由x ∈⎣⎢⎡⎦⎥⎤π2,5π6得2x -π3∈⎣⎢⎡⎦⎥⎤2π3,4π3,所以f (x )单调递减;由x ∈⎣⎢⎡⎦⎥⎤5π6,π得2x -π3∈⎣⎢⎡⎦⎥⎤4π3,5π3,所以f (x )先减后增.三角函数单调性的应用 角度一 利用三角函数的单调性比较大小已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫x +π3,设a =f ⎝ ⎛⎭⎪⎫π7,b =f ⎝ ⎛⎭⎪⎫π6,c =f ⎝ ⎛⎭⎪⎫π3,则a ,b ,c的大小关系是( )A .a <c <bB .c <a <bC .b <a <cD .b <c <a【解析】 a =f ⎝ ⎛⎭⎪⎫π7=2sin 10π21,b =f ⎝ ⎛⎭⎪⎫π6=2sin π2=2,c =f ⎝ ⎛⎭⎪⎫π3=2sin 2π3=2sinπ3,因为y =sin x 在⎣⎢⎡⎦⎥⎤0,π2上单调递增,且π3<10π21<π2,所以c <a <b .【答案】 B利用函数的单调性比较大小(1)比较同名三角函数的大小,首先把三角函数转化为同一单调区间上的三角函数,利用单调性,由自变量的大小确定函数值的大小;(2)比较不同名三角函数的大小,应先化成同名三角函数,再进行比较.角度二 利用三角函数的单调性求值域(最值)(1)函数f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π6在区间⎣⎢⎡⎦⎥⎤0,π2上的值域为( ) A.⎣⎢⎡⎦⎥⎤-32,32 B.⎣⎢⎡⎦⎥⎤-32,3 C.⎣⎢⎡⎦⎥⎤-332,332 D.⎣⎢⎡⎦⎥⎤-332,3 (2)函数y =sin x -cos x +sin x cos x的值域为_________________________________.【解析】 (1)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x -π6∈⎣⎢⎡⎦⎥⎤-π6,5π6,sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-12,1, 故3sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-32,3,即此时函数f (x )的值域是⎣⎢⎡⎦⎥⎤-32,3.(2)设t =sin x -cos x ,则-2≤t ≤2,t 2=sin 2x +cos 2x -2sin x cos x ,则sin x cos x =1-t 22,所以y =-t 22+t +12=-12(t -1)2+1.当t =1时,y max =1;当t =-2时,y min =-12- 2. 所以函数y 的值域为[-12-2,1]. 【答案】 (1)B (2)[-12-2,1] 【引申探究】1.(变条件)若本例(1)中函数f (x )的解析式变为:f (x )=3cos ⎝ ⎛⎭⎪⎫2x -π6,则f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上的值域为________.解析:当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x -π6∈⎣⎢⎡⎦⎥⎤-π6,5π6,cos ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-32,1, 故f (x )=3cos ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-332,3. 答案:⎣⎢⎡⎦⎥⎤-332,3 2.(变条件)若本例(2)中x ∈[0,π],则函数f (x )的值域为________. 解析:设t =sin x -cos x ,则t =2sin ⎝ ⎛⎭⎪⎫x -π4,又x ∈[0,π],所以t ∈[-1,2]. t 2=sin 2x +cos 2x -2sin x cos x , 即sin x cos x =1-t 22,所以y =-t 22+t +12=-12(t -1)2+1.当t =1时,y max =1;当t =-1时,y min =-1. 所以函数y 的值域为[-1,1]. 答案:[-1,1]三角函数值域的求法(1)利用y =sin x 和y =cos x 的值域直接求.(2)把所给的三角函数式变换成y =A sin(ωx +φ)+b (或y =A cos(ωx +φ)+b )的形式求值域.(3)把sin x 或cos x 看作一个整体,将原函数转换成二次函数求值域. (4)利用sin x ±cos x 和sin x cos x 的关系将原函数转换成二次函数求值域.1.下列关系式中正确的是( ) A .sin 11°<cos 10°<sin 168° B .sin 168°<sin 11°<cos 10° C .sin 11°<sin 168°<cos 10° D .sin 168°<cos 10°<sin 11°解析:选C.因为sin 168°=sin(180°-12°)=sin 12°,cos 10°=sin(90°-10°)=sin 80°,由正弦函数y =sin x 在0°≤x ≤90°上是增函数,得sin 11°<sin 12°<sin 80°,所以sin 11°<sin 168°<cos 10°,故选C.2.已知函数f (x )=-10sin 2x -10sin x -12,x ∈⎣⎢⎡⎦⎥⎤-π2,m 的值域为⎣⎢⎡⎦⎥⎤-12,2,则实数m 的取值范围是( )A.⎣⎢⎡⎦⎥⎤-π3,0 B.⎣⎢⎡⎦⎥⎤-π6,0 C.⎣⎢⎡⎦⎥⎤-π3,π6 D.⎣⎢⎡⎦⎥⎤-π6,π3 解析:选B.记t =sin x ,x ∈⎣⎢⎡⎦⎥⎤-π2,m ,则函数f (x )可转化为g (t )=-10t 2-10t-12=-10⎝ ⎛⎭⎪⎫t +122+2.因为函数的最大值为2,显然此时t =-12. 令g (t )=-12,得t =-1或t =0,由题意知x ∈⎣⎢⎡⎦⎥⎤-π2,m ,当x =-π2时,t =-1,g (-1)=-12,结合g (t )的图象及函数的值域为⎣⎢⎡⎦⎥⎤-12,2,可得-12≤sin m ≤0,解得-π6≤m ≤0.故选B.根据三角函数的单调性确定参数(一题多解)若函数f (x )=23sin ωx cos ωx +2sin 2ωx +cos 2ωx 在区间⎣⎢⎡⎦⎥⎤-3π2,3π2上单调递增,则正数ω的最大值为( ) A.18 B.16 C.14D.13【解析】 方法一:因为f (x )=23sin ωx cos ωx +2sin 2ωx +cos 2ωx =3sin 2ωx +1在区间⎣⎢⎡⎦⎥⎤-3π2,3π2上单调递增,所以⎩⎪⎨⎪⎧-3ωπ≥-π2,3ωπ≤π2.解得ω≤16,所以正数ω的最大值是16.故选B.方法二:易知f (x )=3sin 2ωx +1,可得f (x )的最小正周期T =πω,所以⎩⎪⎨⎪⎧-π4ω≤-3π2,π4ω≥3π2,解得ω≤16.所以正数ω的最大值是16.故选B. 【答案】 B已知函数单调性求参数—— 明确一个不同,掌握两种方法(1)明确一个不同.“函数f (x )在区间M 上单调”与“函数f (x )的单调区间为N ”两者的含义不同,显然M 是N 的子集.(2)掌握两种方法.已知函数在区间M 上单调求解参数问题,主要有两种方法:一是利用已知区间与单调区间的子集关系建立参数所满足的关系式求解;二是利用导数,转化为导函数在区间M 上的保号性,由此列不等式求解.1.若f (x )=cos x -sin x 在[-a ,a ]上是减函数,则a 的最大值是( ) A .π4 B .π2 C .3π4D .π解析:选A.f (x )=cos x -sin x =-2sin ⎝ ⎛⎭⎪⎫x -π4,当x ∈⎣⎢⎡⎦⎥⎤-π4,3π4,即x -π4∈⎣⎢⎡⎦⎥⎤-π2,π2时, y =sin ⎝ ⎛⎭⎪⎫x -π4单调递增,则f (x )=-2sin ⎝ ⎛⎭⎪⎫x -π4单调递减.因为函数f (x )在[-a ,a ]上是减函数, 所以[-a ,a ]⊆⎣⎢⎡⎦⎥⎤-π4,3π4,所以0<a ≤π4,所以a 的最大值为π4.2.若函数f (x )=sin ωx (ω>0)在区间⎣⎢⎡⎦⎥⎤0,π3上单调递增,在区间⎣⎢⎡⎦⎥⎤π3,π2上单调递减,则ω=________.解析:因为f (x )=sin ωx (ω>0)过原点, 所以当0≤ωx ≤π2,即0≤x ≤π2ω时, y =sin ωx 是增函数;当π2≤ωx ≤3π2,即π2ω≤x ≤3π2ω时,y =sin ωx 是减函数. 由已知得π2ω=π3,解得ω=32. 答案:32[A 级 基础练]1.当x ∈[0,2π],则y =tan x +-cos x 的定义域为( ) A.⎣⎢⎡⎭⎪⎫0,π2 B.⎝ ⎛⎦⎥⎤π2,π C.⎣⎢⎡⎭⎪⎫π,3π2 D.⎝ ⎛⎦⎥⎤3π2,2π 解析:选C.方法一:由题意得⎩⎪⎨⎪⎧tan x ≥0,-cos x ≥0,x ∈[0,2π],x ≠k π+π2,k ∈Z ,所以函数y 的定义域为⎣⎢⎡⎭⎪⎫π,3π2.故选C. 方法二:当x =π时,函数有意义,排除A ,D ;当x =5π4时,函数有意义,排除B.故选C.2.下列关于函数y =4sin x ,x ∈[-π,π]的单调性的叙述,正确的是( ) A .在[-π,0]上是增函数,在[0,π]上是减函数B .在⎣⎢⎡⎦⎥⎤-π2,π2上是增函数,在⎣⎢⎡⎦⎥⎤-π,-π2及⎣⎢⎡⎦⎥⎤π2,π上是减函数C .在[0,π]上是增函数,在[-π,0]上是减函数D .在⎣⎢⎡⎦⎥⎤π2,π及⎣⎢⎡⎦⎥⎤-π,-π2上是增函数,在⎣⎢⎡⎦⎥⎤-π2,π2上是减函数解析:选B.函数y =4sin x 在⎣⎢⎡⎦⎥⎤-π,-π2和⎣⎢⎡⎦⎥⎤π2,π上单调递减,在⎣⎢⎡⎦⎥⎤-π2,π2上单调递增.故选B.3.(2020·武汉市学习质量检测)已知函数f (x )=sin 2x +sin 2⎝ ⎛⎭⎪⎫x +π3,则f (x )的最小值为( )A.12 B.14 C.34D.22解析:选 A.f (x )=sin 2x +sin 2⎝ ⎛⎭⎪⎫x +π3=sin 2x +⎝ ⎛⎭⎪⎫12sin x +32cos x 2=54sin 2x +34cos 2x +32sin x cos x =34+1-cos 2x 4+34sin 2x =1+12⎝ ⎛⎭⎪⎫32sin 2x -12cos 2x =1+12sin ⎝ ⎛⎭⎪⎫2x -π6≥1-12=12,故选A. 4.(2020·贵阳市第一学期监测考试)已知函数f (x )=sin(2x +φ),其中φ∈(0,2π),若f (x )≤f ⎝ ⎛⎭⎪⎫π6对于一切x ∈R 恒成立,则f (x )的单调递增区间是( )A.⎣⎢⎡⎦⎥⎤k π,k π+π2(k ∈Z )B.⎣⎢⎡⎦⎥⎤k π-π3,k π+π6(k ∈Z ) C.⎣⎢⎡⎦⎥⎤k π+π6,k π+2π3(k ∈Z ) D.⎣⎢⎡⎦⎥⎤k π-π2,k π(k ∈Z ) 解析:选B.因为f (x )≤f ⎝ ⎛⎭⎪⎫π6对x ∈R 恒成立,则f ⎝ ⎛⎭⎪⎫π6为函数f (x )的最大值,即2×π6+φ=2k π+π2(k ∈Z ),则φ=2k π+π6(k ∈Z ),又φ∈(0,2π),所以φ=π6,所以f (x )=sin ⎝ ⎛⎭⎪⎫2x +π6.令2x +π6∈⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2(k ∈Z ),则x ∈⎣⎢⎡⎦⎥⎤k π-π3,k π+π6(k ∈Z ).故选B.5.(2020·昆明市三诊一模)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π4(ω>0),x ∈⎣⎢⎡⎦⎥⎤0,π2的值域是⎣⎢⎡⎦⎥⎤-22,1,则ω的取值范围是( )A.⎝ ⎛⎦⎥⎤0,32 B.⎣⎢⎡⎦⎥⎤32,3 C.⎣⎢⎡⎦⎥⎤3,72 D.⎣⎢⎡⎦⎥⎤52,72 解析:选B.通解:因为x ∈⎣⎢⎡⎦⎥⎤0,π2,ω>0,所以ωx -π4∈⎣⎢⎡⎦⎥⎤-π4,ωπ2-π4.又当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )∈⎣⎢⎡⎦⎥⎤-22,1,所以π2≤ωπ2-π4≤5π4,解得32≤ω≤3,故选B. 优解:当ω=2时,f (x )=sin ⎝ ⎛⎭⎪⎫2x -π4.因为x ∈⎣⎢⎡⎦⎥⎤0,π2,所以2x -π4∈⎣⎢⎡⎦⎥⎤-π4,3π4,所以sin ⎝ ⎛⎭⎪⎫2x -π4∈⎣⎢⎡⎦⎥⎤-22,1,满足题意,故排除A ,C ,D ,选B.6.比较大小:sin ⎝ ⎛⎭⎪⎫-π18________sin ⎝ ⎛⎭⎪⎫-π10.解析:因为y =sin x 在⎣⎢⎡⎦⎥⎤-π2,0上为增函数且-π18>-π10>-π2,故sin ⎝ ⎛⎭⎪⎫-π18>sin ⎝ ⎛⎭⎪⎫-π10.答案:>7.已知函数f (x )=4sin ⎝ ⎛⎭⎪⎫2x -π3,x ∈[-π,0],则f (x )的单调递增区间是________.解析:由-π2+2k π≤2x -π3≤π2+2k π(k ∈Z ), 得-π12+k π≤x ≤5π12+k π(k ∈Z ), 又因为x ∈[-π,0],所以f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤-π,-7π12和⎣⎢⎡⎦⎥⎤-π12,0.答案:⎣⎢⎡⎦⎥⎤-π,-7π12和⎣⎢⎡⎦⎥⎤-π12,08.若函数f (x )=2sin ωx (0<ω<1)在区间⎣⎢⎡⎦⎥⎤0,π3上的最大值为1,则ω=________.解析:因为0<ω<1,0≤x ≤π3,所以0≤ωx <π3,所以f (x )在区间⎣⎢⎡⎦⎥⎤0,π3上单调递增,则f (x )max =f ⎝ ⎛⎭⎪⎫π3=2sin ωπ3=1,即sin ωπ3=12.又因为0≤ωx <π3,所以ωπ3=π6,解得ω=12.答案:129.已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π4.(1)求f (x )的单调递增区间;(2)当x ∈⎣⎢⎡⎦⎥⎤π4,3π4时,求函数f (x )的最大值和最小值.解:(1)令2k π-π2≤2x +π4≤2k π+π2,k ∈Z , 则k π-3π8≤x ≤k π+π8,k ∈Z .故f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-3π8,k π+π8,k ∈Z .(2)当x ∈⎣⎢⎡⎦⎥⎤π4,3π4时,3π4≤2x +π4≤7π4,所以-1≤sin ⎝ ⎛⎭⎪⎫2x +π4≤22,所以-2≤f (x )≤1,所以当x ∈⎣⎢⎡⎦⎥⎤π4,3π4时,函数f (x )的最大值为1,最小值为- 2.10.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π6.讨论函数f (x )在区间⎣⎢⎡⎦⎥⎤-π12,π2上的单调性并求出其值域.解:令-π2≤2x -π6≤π2,则-π6≤x ≤π3. 令π2≤2x -π6≤32π,则π3≤x ≤5π6. 因为-π12≤x ≤π2,所以函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π6在区间⎣⎢⎡⎦⎥⎤-π12,π3上单调递增,在区间⎣⎢⎡⎦⎥⎤π3,π2上单调递减.当x =π3时,f (x )取得最大值为1.因为f ⎝ ⎛⎭⎪⎫-π12=-32<f ⎝ ⎛⎭⎪⎫π2=12, 所以当x =-π12时,f (x )min =-32. 所以f (x )的值域为⎣⎢⎡⎦⎥⎤-32,1.[B 级 综合练]11.(2020·湖北八校第一次联考)若函数f (x )=sin x +3cos x 在区间[a ,b ]上是减函数,且f (a )=2,f (b )=-2,则函数g (x )=cos x -3sin x 在区间[a ,b ]上( )A .是增函数B .是减函数C .可以取得最大值2D .可以取得最小值-2解析:选 D.f (x )=sin x +3cos x =2sin ⎝ ⎛⎭⎪⎫x +π3,g (x )=cos x -3sin x =2cos ⎝ ⎛⎭⎪⎫x +π3=2sin ⎝ ⎛⎭⎪⎫x +π2+π3.f (x )在区间[a ,b ]上是减函数,且f (a )=2,f (b )=-2,不妨令a +π3=π2,b +π3=3π2,则a +π2+π3=π,b +π2+π3=2π,故g (x )在[a ,b ]上既不是增函数,也不是减函数,g (x )在[a ,b ]上可以取得最小值-2,故选D.12.(多选)关于函数f (x )=sin|x |-|cos x |,下列结论正确的是( ) A .f (x )是偶函数B .f (x )在区间⎝ ⎛⎭⎪⎫π2,π上单调递减C .f (x )的最大值为 2D .当x ∈⎝ ⎛⎭⎪⎫-π4,π4时,f (x )<0恒成立解析:选ABD.因为f (-x )=sin|-x |-|cos(-x )|=sin|x |-|cos x |=f (x ),所以f (x )为偶函数,故A 正确;当x ∈⎝ ⎛⎭⎪⎫π2,π时,f (x )=sin|x |-|cos x |=sin x +cos x =2sin ⎝ ⎛⎭⎪⎫x +π4,又x ∈⎝ ⎛⎭⎪⎫π2,π,所以令t =x +π4,则t ∈⎝ ⎛⎭⎪⎫3π4,5π4,y =2sin t 单调递减,所以B 正确;因为f (x )为偶函数,所以求函数f (x )的最大值可只考虑当x ≥0时的情况,又易知当x ≥0时,2π是其一个周期,所以只需研究x ∈[0,2π]时的情况,。