基于符号判别法的逐点比较法圆弧插补算法的研究
- 格式:pdf
- 大小:511.88 KB
- 文档页数:5
逐点比较法圆弧插补的探讨随着微电子技术和计算机技术的发展CNC系统的性能日臻,完善,其应用领域也日益扩大。
CN系统的核心是如何控制刀具或工件的运动轨迹,这项任务由插补程序来完成。
具体来说,插补的作用是根据给定的信息进行数字运算,在计算过程中不断向各个坐标发出相互协调的进给脉冲,使被控机械部件按指定的路径移动。
直线和圆弧是构成工件轮廓的基本线条,所以大多数CNC系统都具有直线和圆弧的插补功能,插补算法的种类有很多,如逐点比较法、数字积分法和数据采样法等,本文主要讨论圆弧的插补算法。
1.逐点比较法圆弧插补原理逐点比较法的基本原理是,在刀具按要求轨迹运动加工零件轮廓的过程中,不断比较刀具与被加工零件轮廓之间的相对位置,并根据比较结果决定下一步的进给方向,使刀具向减小偏差的方向进给(始终只有一个方向)。
一般地,逐点比较法插补过程有四个处理节拍。
(1)偏差判别。
判别刀具当前位置相对于给定轮廓的偏差状况;(2)坐标进给。
根据偏差状况,控制相应坐标轴进给一步,使加工点向被加工轮廓靠拢;(3)重新计算偏差。
刀具进给一步后,坐标点位置发生了变化,应按偏差计算公式计算新位置的偏差值;(4)终点判别。
若已经插补到终点,则返回监控,否则重复以上过程。
圆弧插补刀尖点位置不外乎3种情况:轮廓线外面(点A),轮廓线上(B点),轮廓线里面(点C)。
显然,在点A处,为使刀尖点向轮廓圆弧靠拢,应-X向走一步;C点处,应+Y向走一步;至于B点,看来两个方向均可以,但考虑汇编编程时的方便,现规定往-X向走一步。
A(X,Y)点处有:X2+Y2>R2 X2+Y2-R2>0B(X,Y)点处有:X2+Y2=R2 X2+Y2-R2=0C(X,Y)点处有:X2+Y2<R2 X2+Y2-R2<0 原始的偏差计算公式为:F=X2+Y2-R2(X,Y为当前插补点动态坐标)。
显然,F<0时,须+Y向走一步;F≥0时,须-X向走一步。
为方便汇编编程和提高计算速度,对偏差F的计算公式加以简化:插补点位于A、B点时,走完下一步(-X):动态坐标变为(X=X-1,Y=Y),新偏差变为F=(X-1)2+Y2-R2=F-2X+1。
二、 逐点比较法圆弧插补加工一个圆弧,很容易联想到把加工点到圆心的距离和该圆的名义半径相比较来反映加工偏差。
这里,我们以第Ⅰ象限逆圆弧为例导出其偏差计算公式。
设要加工图2—3所示第Ⅰ象限逆时针走向的圆弧,半径为R ,以原点为圆心,起点坐标为A(00x ,y ),对于圆弧上任一加工点的坐标设为P( i j x ,y ),P 点与圆心的距离 P R 的平方为 222Pi j R =x +y ,现在讨论这一加工点的加工偏差。
图 2 - 2 圆 弧 差 补 过 程图2-3 圆弧插补过程点击进入动画观看逐点比较法圆弧插补若点P(i j x ,y )正好落在圆弧上,则下式成立:22222i j 00x +y =x +y =R若加工点P(i j x ,y )在圆弧外侧,则P R >R ,即:2222i j 00x +y >x +y若加工点P(i j x ,y )在圆弧内侧,则P R <R ,即:2222i j 00x +y >x +y将上面各式分别改写为下列形式:2222i 0j 0(x -x )+(y -y )=0(加工点在圆弧上) 2222i 0j 0(x -x )+(y -y )>0(加工点在圆弧外侧)2222i 0j 0(x -x )+(y -y )<0(加工点在圆弧内侧)取加工偏差判别式为:2222ij i 0j 0F =(x -x )+(y -y )运用上述法则,利用偏差判别式,即获得图2—2折线所示的近似圆弧。
若P(i j x ,y )在圆弧外或圆弧上,即满足 ij F ≥0的条件时,应向x 轴发出一个负向运动的进给脉冲(—Δx),即向圆内走一步。
若P(i j x ,y )在圆弧内侧,即满足ij F <0的条件,则向y 轴发出一个正向运动的进给脉冲(+Δy),即向圆弧外走一步。
为了简化偏差判别式的运算,仍用递推法来推算下一步新的加工偏差。
设加工点P(i j x ,y )在圆弧外侧或圆弧上,则加工偏差为2222ij i 0j 0F =(x -x )+(y -y )0≥x 坐标需向负方向进给一步(—Δx),移到新的加工点P(i+1j x ,y )位置,此时新加工点的x 坐标值为i x -1,y 坐标值仍为 i y ,新加工点P( i+1j x ,y )的加工偏差为:22222i+1,j i 0j 0F =(x -1)-x +y -y经展开并整理,得:i +1,j i j F =F 21i x -+(2-3)设加工点P(i j x ,y )在圆弧的内侧,则:ij F <0那么,y 坐标需向正方向进给一步(+Δy),移到新加工点P( i j+1x ,y ),此时新加工点的x 坐标值仍为i x ,y 坐标值则改为 j y 1+,新加工点P( i j+1x ,y )的加工偏差为:2222i,j+1i 0j 0F =x -x +(y +1)y -,展开上式,并整理得:i,j+1ij F =F 21i y ++综上所述可知:当ij F ≥0时,应走—Δx ,新偏差为 i+1,j ij F =F 21i x -+,动点(加工点)坐标为i+1i x =x -1, j j y y =;当 ij F <0时,应走+Δy ,新偏差为 i,j+1ij F =F 21i y ++,动点坐标为 j j y y =, i+1i =y +1y 。
XXX学院学生课程设计(论文)题目:逐点比较法圆弧插补的连续轨迹控制设计学生姓名: XXX 学号:2006XXXXXXXX 所在院(系):机电工程学院专业:机械设计制造及其自动化班级: 06机制6班指导教师: XXX 职称:教授2009年12月8 日XXX学院本科学生课程设计任务书题目逐点比较法插补的连续轨迹控制设计(圆弧插补)1、课程设计的目的专业课程综合训练目的是本使学生通过对所学主要专业课的综合应用,基本掌握一般机电控制系统的设计方法及步骤。
综合运用所学的基础知识和技能,进一步提高学生的设计能力,培养学生创新意识和创新能力,提高控制系统分析设计的总体意识和工程实践能力。
2、课程设计的内容和要求(包括原始数据、技术要求、工作要求等)设计内容要求:(1)铣床CNC系统硬件原理图及其说明;(2)推导完整的插补公式;(3)设计出插补软件流程图;(4)用高级语言编写插补程序清单;(4)画出插补轨迹模拟图形;(5)将上述内容整理成设计说明书及图纸。
设计结束后提交4000字左右的课程设计论文;包含上述全部内容。
3、主要参考文献[1]、张建民等,《机电一体化系统设计》,北京:高等教育出版社,2002年[2]、赵先仲,《机电系统设计》,北京:机械工业出版社,2004年[3]、吴圣庄,《金属切削机床概论》,北京:机械工业出版社,1993[4]、杨有君,《数控技术》,北京:机械工业出版社,20054、课程设计工作进度计划内容学时总体方案设计8CNC系统硬件设计8插补系统原理及公式设计16插补系统软件设计48软件验证 4绘制所需的各类图及编制技术文件20合计3周指导教师(签字)日期2008年12 月1 日教研室意见:年月日学生(签字):接受任务时间:年月日注:任务书由指导教师填写。
课程设计(论文)指导教师成绩评定表题目名称评分项目分值得分评价内涵工作表现20% 01 学习态度 6 遵守各项纪律,工作刻苦努力,具有良好的科学工作态度。
逐点比较法直线插补(1)偏差函数构造对于第一象限直线OA上任一点(X,Y):X/Y = Xe/Ye若刀具加工点为Pi(Xi,Yi),则该点的偏差函数Fi可表示为:若Fi= 0,表示加工点位于直线上;若Fi> 0,表示加工点位于直线上方;若Fi< 0,表示加工点位于直线下方。
(2)偏差函数字的递推计算采用偏差函数的递推式(迭代式):既由前一点计算后一点Fi =Yi Xe -XiYe若Fi>=0,规定向+X 方向走一步Xi+1 = Xi +1Fi+1 = XeYi –Ye(Xi +1)=Fi –Ye若Fi<0,规定+Y 方向走一步,则有Yi+1 = Yi +1Fi+1 = Xe(Yi +1)-YeXi =Fi +Xe(3)终点判别直线插补的终点判别可采用三种方法。
1)判断插补或进给的总步数:2)分别判断各坐标轴的进给步数;3)仅判断进给步数较多的坐标轴的进给步数。
(4)例对于第一象限直线OA,终点坐标Xe=6 ,Ye=4,插补从直线起点O开始,故F0=0 。
终点判别是判断进给总步数N=6+4=10,将其存入终点判别计数器中,每进给一步减1,若N=0,则停止插补。
逐点比较法圆弧插补(1)偏差函数构造任意加工点Pi(Xi,Yi),偏差函数Fi可表示为若Fi=0,表示加工点位于圆上;若Fi>0,表示加工点位于圆外;若Fi <0,表示加工点位于圆内(2)偏差函数的递推计算1) 逆圆插补若F ≥0,规定向-X 方向走一步若Fi<0,规定向+Y 方向走一步2) 顺圆插补若Fi ≥0,规定向-Y 方向走一步若Fi<0,规定向+y 方向走一步(3)终点判别1)判断插补或进给的总步数: 2)分别判断各坐标轴的进给步数: (4)例对于第一象限圆弧AB ,起点A (4,0),终点B (0,4)⎩⎨⎧+-=-+-=-=++12)1(122211i i i i i ii X F R Y X F X X ⎩⎨⎧++=-++=+=++12)1(122211i i i i i i i Y F R Y X F Y Y ⎩⎨⎧+-=--+=-=++12)1(122211i i i i i i i Y F R Y X F Y Y ⎩⎨⎧++=-++=+=++12)1(122211i i i i i i i X F R Y X F X X ba b a Y Y X X N -+-=ba x X X N -=b a y Y Y N -=。
基于符号判别法的逐点比较法圆弧插补算法的研究随着数控技术的飞速发展,圆弧插补算法成为数控系统中的重要组成部分。
圆弧插补算法一直是数控技术研究的热点之一。
目前,国内外研究者对圆弧插补算法进行了大量的研究和探索。
本文基于符号判别法的逐点比较法,对圆弧插补算法进行了深入研究并提出了一些新的改进方法。
一、圆弧插补算法的基本原理圆弧插补算法是数控加工中常用的一种插补算法。
其基本原理是根据圆弧的参数方程,将圆弧离散成多个插补点,通过控制机床加工动作,沿着这些插补点逐步插补完成圆弧加工。
其具体步骤如下:(1)确定圆弧的参数方程:圆弧的参数方程可以用x=f(t)和y=g(t)表示。
其中,t表示圆弧的参数(通常取值范围为0~1),x和y分别表示圆弧上各点的坐标。
(2)确定圆弧上所需插补点的个数:根据加工要求和机床精度,确定圆弧上所需插补点的个数。
一般情况下,插补点的个数越多,圆弧加工的精度越高,但是加工时间也越长。
(3)计算圆弧上各点的坐标:通过圆弧的参数方程,计算出圆弧上各点的坐标。
(4)控制机床加工动作:根据圆弧上各点的坐标,依次控制机床在各个点之间插补出圆弧。
符号判别法的逐点比较法是一种常用的圆弧插补算法。
它的主要原理是将圆弧平均分成若干段,然后逐段进行插补。
具体步骤如下:(1)将圆弧平均分成n段:根据圆弧弧长和所需插补点的个数,计算出n值,将圆弧平均分成n段。
(3)逐点进行插补:从第一个插补点开始,逐一进行插补操作,直到插补完所有的插补点。
(4)控制加工精度:根据机床精度和加工要求,确定插补点的个数和分段数量,以控制圆弧加工的精度。
三、改进方法基于符号判别法的逐点比较法在圆弧插补算法中具有重要的地位,但是在实际应用中存在着一些问题。
为了提高圆弧加工的精度和效率,我们提出以下两种改进方法:(1)自适应分段:传统的逐点比较法是将圆弧分成固定的小段,每一段都进行插补。
但是在实际应用中,圆弧的曲率并不是在整个圆弧上都保持一致的,因此对于一些曲率较低的圆弧,将其分得更多一些可以提高加工精度。
逐点比较法圆弧插补逐点比较法圆弧插补过程与直线插补过程类似,每进给一步也都要完成四个工作节拍:偏差判别、坐标进给、偏差计算、终点判别。
但是,逐点比较法圆弧插补以加工点距圆心的距离大于还是小于圆弧半径来作为偏差判别的依据。
如图5-7所示的圆弧AB,其圆心位于原点O(0,0),半径为R,令加工点的坐标为P(xi,yj),则逐点比较法圆弧插补的偏差判别函数为当F=0时,加工点在圆弧上;当F>0时,加工点在圆弧外;当F<0时,加工点在圆弧内。
同插补直线时一样,将Fi,j=0同Fi,j>0归于一类。
下面以第一象限圆弧为例,分别介绍顺时针圆弧和逆时针圆弧插补时的偏差计算和坐标进给情况。
1.插补第一象限逆圆弧1)当Fi,j≥0时,加工点P(xi,yj)在圆弧上或圆弧外,-X方向进给一个脉冲当量,即向趋近圆弧的圆内方向进给,到达新的加工点Pi-1,j,此时xi -1=xi-1,则新加工点Pi-1,j的偏差判别函数Fi-1,j为(2)当Fi,j<0时,加工点P(xi,yj)在圆弧内,+Y方向进给一个脉冲当量,即向趋近圆弧的圆外方向进给,到达新的加工点Pi,j+1,此时yj+1=yj+1,则新加工点Pi,j+1的偏差判别函数Fi,j+12.插补第一象限顺圆弧1)当Fi,j≥0时,加工点P(xi,yj)在圆弧上或圆弧外,-Y方向进给一个脉冲当量,即向趋近圆弧的圆内方向进给,到达新的加工点Pi,,j-1,此时yj-1=yj-1,则新加工点Pi,j-1的偏差判别函数Fi,j-1为2)当Fi,j<0时,加工点P(xi,yj)在圆弧内,+X方向进给一个脉冲当量,即向趋近圆弧的圆外方向进给,到达新的加工点Pi+1,j,此时xi+1=xi +1,则新加工点Pi+1,j的偏差判别函数为Fi+1,j由以上分析可知,新加工点的偏差是由前一个加工点的偏差Fi,j及前一点的坐标值xi、yj递推出来的,如果按式(5-6)、(5-7)、(5-8)、(5-9)计算偏差,则计算大为简化。
第一象限逆圆弧为例,讨论圆弧的插补方法。
如图8-4 所示,设要加工圆弧为第一象限逆圆弧AB ,原点为圆心O ,起点为A (xo ,y 0),终点为B (x e ,y e )半径R ,瞬时加工点为P (x i ,y i ),点P 到圆心距离为Rp<0+△y>0-△x <0+△x <0+△y>0-△x<0-△y <0-△y>0+△x yx图8-2 第一象限直线插补轨迹图 图 8-3第一象限直线插补程序框图图12345X123YF>0p(xi,yi)A(Xi,Yi)F<0开始初始化Xe ,Y e ,JF≥0?+x 走一步F←F -Y e F←F -X e-y 走一步YNJ ←J-1J =0?Y结束若点P 在圆弧内则,则有x i2+y j2=R2p<R2即x i2+y j2-R2 < 0显然,若令F i,j= x i2+y j2-R2(8-4)图8-4 逆圆弧插补则有:(1)F i,j= F i,j=0, 则点P在圆弧上(2)F i,j >0则点P在圆弧外则(3)F i,j<0则点P在圆弧不则常将8-4称为圆弧插补偏差判别式。
当F i,j≥时,为逼近圆弧,应向-x方向进给一步;当F i,j<0时,应向+y 方向走一步。
这样就可以获得逼近圆弧的折线图。
与直线插补偏差计算相似,圆弧插补的偏差的计算也采用递推的方法以简化计算。
若加工点P(x i,y i)在圆弧外或者圆弧上,则有:F i,j=x i2+y j2-R2≥0 为逼近该圆沿-x方向进给一步,移动到新加工点P(x i=1,y i),此时新加工点的坐标值为x i+1=x i-1,y i=y i新加工点的偏差为:F i+1,j=(x i-1)2+y i2-R2=x i2-2x i+1+ y i2-R2= x i2+ y i2-R2+1即F i+1,j= F i,j-2x i+1 (8-5)若加工P(x i,y i)在圆弧内,则有F i,j=x i2+y j2-R2<0若逼近该圆需沿+y方向进给一步,移到新加工点P(x i,y i),此时新加工点的坐标值图8-5 第一象限圆弧插补程序框图为新加工点的偏为:F i,j+1=x i2+(y i+1)2-R2=x i2+ y i2+1 -R2= x i2+ y i2-R2+1+2y iF i,j+1= F i,j-2y i+1 (8-6)从(8-5)和式(8-6)两式可知,递推偏差计算仅为加法(或者减法)运算,大大降低了计算的复杂程度。