精选数字信号处理DSP第一章1离散时间信号与系统资料
- 格式:ppt
- 大小:678.00 KB
- 文档页数:35
第1章 思考题参考解答1.变化规律已知的信号称之为确定信号,反之,变化规律不确定的信号称之为随机信号。
以固定常数周期变化的信号称之为周期信号,否则称之为非周期信号。
函数随时间连续变化的信号称之为连续时间信号,也称之为模拟信号。
自变量取离散值变化的信号称之为离散时间信号。
离散信号幅值按照一定精度要求量化后所得信号称之为数字信号。
2.对于最高频率为f c 的非周期信号,选取f s =2f c 可以从采样点恢复原来的连续信号。
而对于最高频率为f c 的非周期信号,选取f s =2f c 一般不能从采样点恢复原来的连续信号的周期信号,通常采用远高于2f c 的采样频率才能从采样点恢复原来的周期连续信号。
3.被采样信号如果含有折叠频率以上的高频成分,或者含有干扰噪声,这些频率成分将不满足采样恢复定理的条件,必然产生频率混叠,导致无法恢复被采样信号。
4.线性时不变系统的单位脉冲响应h (n )满足n <0,h (n )=0,则系统是因果的。
若∞<=∑∞-∞=P n h n |)(|,则系统是稳定的。
5.ω表示数字角频率,Ω表示模拟角频率。
ω=ΩT (T 表示采样周期)。
6.不一定。
只有当周期信号的采样序列满足x (n )= x (n +N )时,才构成一个周期序列。
7.常系数差分方程描述的系统若满足叠加原理,则一定是线性时不变系统。
否则,常系数差分方程描述的系统不是线性时不变系统。
8.该说法错误。
需要增加采样和量化两道工序。
9.受采样频率、有限字长效应的约束,与模拟信号处理系统完全等效的数字系统不一定找得到。
因此,数字信号处理系统的分析方法是先对采样信号及系统进行分析,再考虑幅度量化及实现过程中有限字长效应所造成的影响。
故离散时间信号和系统理论是数字信号处理的理论基础。
10、只有当系统是线性时不变时,有y (n )= h (n )*x (n )。
11、时域采样在频域产生周期延拓效应。
12.输入信号x a (t )先通过一个前置低通模拟滤波器限制其最高频率在一定数值之内,使其满足采样频率定理的条件。
离散时间信号和系统理论知识介绍离散时间信号和系统是数字信号处理领域中的重要分支,其研究对象是以离散时间为变量的信号和系统。
在离散时间信号和系统理论中,信号的变量只在离散时间点上取值,而系统对信号的处理也是在离散时间点上进行的。
离散时间信号和系统的研究为数字信号处理提供了理论基础和工具。
离散时间信号可以表示为x(n),其中n是一个整数,代表信号的时间变量。
离散时间信号可以是有限长度的序列,也可以是无限长度的序列。
离散时间信号的幅度可以是实数或复数,表示信号在不同时间点上的取值。
离散时间信号可以用图形表示,横轴表示时间变量n,纵轴表示信号的幅度。
离散时间信号有几个重要的性质。
1. 周期性:如果对于某个正整数N,有x(n) = x(n+N),那么离散时间信号是周期性的,其最小周期是N。
2. 偶对称性:如果对于任意的n,有x(n) = x(-n),那么离散时间信号是偶对称的。
3. 奇对称性:如果对于任意的n,有x(n) = -x(-n),那么离散时间信号是奇对称的。
4. 单位冲激响应:单位冲激响应是一个离散时间信号h(n),在n=0时为1,其他时间点为0。
单位冲激响应在离散时间系统中起着重要的作用,可以用来表示系统对单位冲激信号的响应。
离散时间系统是对离散时间信号进行处理的数学模型。
离散时间系统可以是线性系统或非线性系统。
线性系统具有叠加性和比例性质,即对于系统的输入信号x1(n)和x2(n),系统的输出信号y1(n)和y2(n),有以下关系:1. 叠加性:系统对输入信号的响应是可叠加的,即y(n) = y1(n) + y2(n)。
2. 比例性:系统对输入信号的响应是可比例的,即y(n) =k1y1(n) = k2y2(n),其中k1和k2是常数。
离散时间系统可以用差分方程表示:y(n) = a0x(n) + a1x(n-1) + ... + an-1x(1) + anx(0),其中ai是系统的系数。
离散时间系统的输入和输出信号也可以用离散时间卷积进行描述:y(n) = x(n) * h(n),其中*表示离散时间卷积运算,h(n)是系统的单位冲激响应。