交通信号智能控制系统-毕业论文正文
- 格式:doc
- 大小:291.00 KB
- 文档页数:50
智能交通信灯控制系统设计毕业论文SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#编号:毕业论文(设计)题 目 智能交通信号灯控制系统设计指导教师 xxx学生姓名 杨红宇学 号专 业教学单位二O 一五年五月十日德州学院毕业论文(设计)中期检查表院(系): 专业: 2015 年目录杨红宇要: 随着我现代社会交通运输需求量的不断扩大,如何处理好如此庞大的群1绪论 交通信号灯的简介交通信号灯的发展现状目前交通信号灯的种类多种多样,有的应用了CPLD 设计实现交通信号灯的控制;有的应用了PLC 实现交通信号灯的控制;有的应用单片机实现对交通信号灯的控制。
我国的交通信号灯一般情况下设置在十字路口,在醒目的地方用红色、绿色、黄色三种指示灯,加上一个倒计时开控制人车通行。
在一般情况下这种信号灯能保障安全,车辆分流也能发挥不错的作用,但是根据现在车流量日益增加的现状还存在着许多不足。
比方说车辆放行时间固定,在十字路口经常出现东西和南北方向的车流量相差甚大的情况,这样如何给车流量较多的干道给予较多的放行时间就成了问题。
本课题研究的背景、目的和意义随着城市机动车辆的不断增加,在我国许多的大城市出现了交通超负荷状况。
自八十年代后期,这些城市修建了高速道路来缓解压力,在刚建好的初期这个决策很好的解决了交通超负荷着状况。
但是随着经济的发展,交通量的增长和高速路高昂的费用,高速路没有发挥人们本来预期的效果。
如何用合理的方法在大限度的缓解交通压力成为交通管理者和城市规划部门的主要问题。
目前我国城市依然采用的是传统的交通信号灯控制模式,随着城市的不断发展,车流量的不断扩大,传统的交通信号灯出现了缺陷:一是车辆放行时,十字路口经常出现不同车流量干道放行时间相同,易造成车辆堆积,造成交通堵塞;二是当某干道上无车时,正好是干道的通车时间,在这时间内就造成了指挥盲点;三是当这一干道车流量很大时,不能够改变红绿灯的时间来延长这干道的通过时间,造成这干道的车辆不能通过造成堆积。
交通工程中的智能信号控制系统在现代交通工程领域,智能信号控制系统正逐渐成为优化交通流量、提高道路通行效率和减少交通拥堵的关键技术。
这一系统的出现和不断发展,为解决城市交通问题带来了新的思路和方法。
交通拥堵是当今城市面临的一大难题。
随着城市的发展和人口的增长,车辆数量急剧增加,传统的固定时长信号灯控制方式已经难以满足复杂多变的交通需求。
在这种情况下,智能信号控制系统应运而生,它能够根据实时的交通流量、道路状况和车辆行驶速度等信息,动态地调整信号灯的时长,从而实现更高效的交通管理。
智能信号控制系统的核心在于其能够实时感知和分析交通状况。
通过在道路上安装各种传感器,如地磁传感器、摄像头和雷达等,系统可以收集大量的交通数据。
这些数据包括车辆的数量、速度、排队长度以及车型等。
基于这些数据,系统运用复杂的算法和模型进行分析,从而准确判断当前的交通状态,并预测未来一段时间内的交通变化趋势。
例如,当某个路口的车流量较大,且车辆排队长度不断增加时,智能信号控制系统会自动延长该方向的绿灯时间,以让更多的车辆通过。
反之,如果某个方向的车流量较小,系统则会相应缩短绿灯时间,将更多的通行时间分配给其他方向。
这种动态的调整能够有效地避免路口的交通拥堵,提高整个道路网络的通行效率。
除了根据实时交通流量进行调整外,智能信号控制系统还能够考虑其他因素来优化信号灯控制。
比如,在高峰时段和非高峰时段,交通流量的特点往往不同。
高峰时段车流量大且集中,需要更长的绿灯时间来疏散交通;而非高峰时段车流量相对较小,可以采用更灵活的信号灯控制策略,以减少车辆等待时间和能源消耗。
此外,特殊情况如交通事故、道路施工和恶劣天气等也会对交通产生重大影响。
智能信号控制系统能够及时检测到这些情况,并迅速做出相应的调整。
例如,在发生交通事故导致道路堵塞时,系统可以调整周边路口的信号灯,引导车辆避开拥堵路段,从而减轻交通压力。
智能信号控制系统的另一个重要优势是能够实现区域协调控制。
交通信号灯控制系统的设计与实现毕业论文摘要:交通信号灯是城市交通管理中重要的组成部分,能够有效地调控车辆和行人的交通流量,提高道路的通行效率和安全性。
本论文旨在设计并实现一套高效、智能化的交通信号灯控制系统,以提升城市交通管理水平,减少交通拥堵和事故发生。
关键词:交通信号灯;交通管理;智能化;控制系统一、引言随着城市交通流量的不断增加和城市化进程的加快,交通拥堵和交通事故成为了城市管理者面临的重要问题。
而交通信号灯作为交通管理中必不可少的设施,其合理的设计和高效的控制对于交通流量的调度至关重要。
因此,本论文旨在设计并实现一套高效、智能化的交通信号灯控制系统,以提升城市交通管理水平和交通安全性。
二、交通信号灯控制系统的需求分析在城市交通管理中,交通信号灯需要根据道路交通流量的变化进行智能化的控制,以确保道路的通行效率和安全性。
而智能化的交通信号灯控制系统需要包含以下功能:1.实时采集交通流量数据:通过传感器等设备实时采集道路上的车辆和行人的流量数据。
2.数据分析与预测:通过对采集到的数据进行分析和预测,确定当前交通流量情况和未来一段时间的交通流量趋势。
3.控制信号灯变化:根据交通流量数据和预测结果,控制交通信号灯的变化,以减少交通拥堵和事故发生。
4.优化调度算法:通过优化调度算法,减少交通信号灯的等待时间,提高交通的通行效率。
三、系统设计与实现1.硬件设备部分:包括交通流量传感器、信号灯控制器等设备。
2.数据采集与处理部分:通过交通流量传感器采集道路上的车辆和行人的流量数据,并将数据传输到数据处理系统中进行处理。
3.数据处理与分析部分:对采集到的数据进行处理,分析交通流量情况和趋势,并预测未来一段时间的交通流量。
4.控制系统部分:根据数据分析和预测结果,控制交通信号灯的变化,优化交通调度算法,提高交通的通行效率。
5.用户界面部分:为交通管理者提供直观、易操作的用户界面,以方便其对交通信号灯控制系统进行管理和调度。
智能交通信号控制系统设计毕业设计
研究背景
智能交通系统在城市交通管理中发挥重要作用。
交通信号控制系统是智能交通系统中的核心模块。
设计一种高效的交通信号控制系统成为了智能交通研究领域中的重要问题。
研究目标
本文旨在设计一种基于深度研究和传感器信息的智能交通信号控制系统,以优化城市交通流量,提高交通运输效率。
研究内容
研究包括如下内容:
1. 分析目前常见交通信号控制系统的优点和不足;
2. 设计基于深度研究算法的交通信号控制系统;
3. 分析传感器信号的特征和使用方法;
4. 设计并建立交通仿真平台以验证系统的可行性;
5. 考虑系统的实用性和可扩展性,使其可以应用于不同城市的交通管理。
预期成果
通过对智能交通信号控制系统的研究,预期可以:
1. 提高城市交通的通行能力和运输效率;
2. 缓解城市交通拥堵状况;
3. 衍生新的城市交通管理模式。
研究方法
本文将采用深度研究算法以及传感器信息技术进行研究,同时
运用仿真实验验证系统的可行性和效果。
结论
设计一种基于深度学习和传感器信息的智能交通信号控制系统,可以较好地优化城市交通流量,提高交通运输效率。
预期成果将为
城市交通发展提供借鉴,并推动智能交通系统在城市交通管理中的
应用。
智能交通信号控制系统研究第一章:引言随着城市化进程的加快以及交通工具数量的急剧增长,交通拥堵问题愈发加剧。
为解决交通拥堵问题和交通安全问题,智能交通信号控制系统应运而生。
智能交通信号控制系统是运用先进的计算机技术、图像处理技术和人工智能等技术手段,对城市的交通信号进行科学、准确、高效的监测和控制,实现城市交通的智能化控制。
本文就智能交通信号控制系统的研究进行探讨。
第二章:智能交通信号控制系统的概念智能交通信号控制系统,简称ITS,英文全称是Intelligent Transportation System。
ITS的定义是一种由计算机、通讯、传感等技术组合而成的智能化交通管理系统。
ITS技术包含了多种技术,包括交通管理、交通控制、车辆微波信号装置、并驾纳车技术等。
ITS技术的应用目的是提高交通运行效率,减小拥堵、降低能源消耗、改善交通安全和环保状况,增强交通流分配和调度能力。
这就要求ITS在实现这些目的的同时,自身提供足够的可靠性、安全性、适应性和可扩展性。
第三章:ITS的研究成果中国联合控制公司研制生产的JC-ITS智能交通信号控制系统是国内外市场上使用率高的智能交通信号控制系统。
该系统实现了城市交通管理的全面信息化、智能化和实时化。
此外,还有包括刘强东在内的很多公司参与了ITS相关技术的研究开发工作。
目前,ITS已经成为一个系统完善的研究领域,成果丰硕,得到了广泛的应用。
第四章:ITS技术的应用智能交通信号控制系统的应用范围主要包括智能物流、智慧城市、智能网联汽车、智能交通管控等多个领域。
(1)智能物流随着物流行业的不断发展,物流的高效性、节约性、安全性越来越受到重视。
智能交通系统的应用,可以实现对物流的精准跟踪与监控,从而达到协调分配货源、节约成本、提高物流运输效率的目的。
(2)智慧城市智慧城市是指利用信息化、智能化和科技化手段来推动城市可持续发展的城市模式,ITS作为智慧城市的重要组成部分,在城市管理、交通管理、社会治理等方面得到了广泛的应用。
1引言1.1 本课题的意义城市交通控制系统主要是用于城市交通数据监测、交通信号灯控制与交通疏导的计算机综合管理系统,它已经成为现代城市交通监控指挥系统中最重要的组成部分。
因此,如何利用先进的信息技术改造城市交通系统已成为城市交通管理者的共识[1]。
高效的交通灯智能控制系统是解决城市交通问题的关键。
随着经济的快速发展,城市中的车辆逐渐增多,交通拥挤和堵塞现象日趋严重,引起交通事故频发、环境污染加剧等一系列问题。
本设计采用单片机控制,实现交通信号灯的智能控制。
系统根据东西和南北两个方向的车辆情况,自动进行定时控制和智能控制方式的切换,当某一方向没有车辆时,系统会自动切换使另一方向车辆通行。
当两个方向都有车辆时,按照定时控制方式通行。
本设计与普通的交通信号控制系统相比,其优点是可根据路口情况的不同,对交通灯进行差异化控制,从而达到使道路更为通畅的目的,最大限度的缓解交通拥挤情况[2]。
交通信号控制系统是现代城市交通控制和疏导的主要手段。
而作为城市交通基本组成部分的平面交叉路口,其通行能力是解决城市交通问题的关键,而交通信号灯又是交叉路口必不可少的交通控制手段。
随着计算机技术和自动控制技术的发展,以及交通流理论的不断发展完善,交通运输组织与优化理论、技术的不断提高,国内外逐步形成了一批高水平有实效的城市道路交通控制系统[3]。
1.2 国内外发展状况交通信号控制系统是现代城市交通控制和疏导的主要手段。
而作为城市交通基本组成部分的平面交叉路口,其通行能力是解决城市交通问题的关键,而交通信号灯又是交叉路口必不可少的交通控制手段。
随着计算机技术和自动控制技术的发展,以及交通流理论的不断发展完善,交通运输组织与优化理论、技术的不断提高,国内外逐步形成了一批高水平有实效的城市道路交通控制系统[4]。
国外现状1 澳大利亚SCAT系统SCATS采取分层递阶式控制结构。
其控制中心备有一台监控计算机和一台管理计算机,通过串行数据通讯线路相连。
前言随着我国城市化建设的发展,人民的生活水平日渐提高,越来越多的汽车进入了寻常老百姓的家庭,再加上政府大力发展公交车、出租车,使得道路上车辆越来越多,许多大城市如北京、上海、南京等均出现了道路交通超负荷运行的情况。
因此,自80年代后期以来,很多城市纷纷扩建城市道路,在道路建设完成的初期,它们也曾有效地改善了交通状况。
然而,随着交通量的快速增长和缺乏对道路的系统研究和控制,扩建道路并没有充分发挥出预期的作用。
而城市道路多十字路口、多交叉的特点,也决定了城市道路的交通状况必然受这种路况的制约。
所以,如何采用合适的控制方法,最大限度利用好耗费巨资修建的多车道城市道路,缓解城区的交通拥堵状况,越来越成为交通运输管理和城市规划部门亟待解决的主要问题。
在这种情况下,道路交通信号灯开始发挥了越来越重要的作用,并已成为交管部门管理交通的重要工具之一。
正文1绪论1.1选题的背景1.1.1课题目的本课题是设计一个交通信号灯控制电路,通过本设计了解掌握交通信号灯控制电路的工作原理,进而研究电子产品设计的技术方法。
通过对交通信号灯控制电路的设计、安装与调试,熟练掌握各种电子测量仪器、仪表的正确使用方法,熟悉掌握数字逻辑电路原理及各类型数字单元电路的工作原理、电路形式、调试方法、整机电路统调技巧等方面知识;同时,通过对系统设计结果的理论分析,加强理论联系实际的工作能力,对加强数字逻辑电路原理与技术方法的掌握,得到全面的、系统的训练,为今后从事本专业工作奠定坚实的技术基础。
1.1.2课题意义在现代城市中,人口和汽车日益增长,市区交通也日益拥挤,人们的安全问题也日益重要。
因此,红绿交通信号灯成为交管部门管理交通的重要工具之一。
有了交通灯人们的安全出行有了很大的保障。
自从交通灯诞生以来,其内部的电路控制系统就不断的被改进,设计方法也开始多种多样,从而使交通灯显得更加智能化。
尤其是近几年来,随着电子与计算机技术的飞速发展,电子电路分析和设计方法有了很大的改进,电子设计自动化也已经成为现代电子系统中不可缺少的工具和手段,这些为交通灯控制电路的设计提供了一定的技术基础。
交通信号灯控制系统设计论文_毕业设计摘要:交通信号灯控制系统是城市道路交通管理的重要组成部分。
为了提高城市道路的交通效率和道路交通的安全性,本文研究了交通信号灯控制系统的设计原理和方法。
通过对信号灯控制系统的分析和仿真实验,本文得出了一种优化的信号灯控制算法,该算法能够根据不同的交通状况和道路需求,实现灵活的信号灯控制和交通流优化。
本文还对交通信号灯控制系统的硬件设计进行了详细介绍,并介绍了系统的软件设计方案。
最后,通过实际道路的测试和评估,证明了本文所提出的交通信号灯控制系统的有效性和可行性。
关键词:交通信号灯控制系统;交通效率;安全性;优化算法;硬件设计;软件设计;测试评估第1章引言1.1研究背景随着城市化进程的加快,交通拥堵和交通事故频发成为社会发展的一个重要问题。
城市道路的交通效率和交通安全性成为研究的热点。
交通信号灯控制系统作为城市道路交通管理的重要组成部分,对提高交通效率和交通安全性起着至关重要的作用。
1.2论文目的和意义本论文的目的是研究和设计一种优化的交通信号灯控制系统,以提高城市道路的交通效率和道路交通的安全性。
通过分析和仿真实验,本文将提出一种灵活的信号灯控制算法,能够根据不同的交通状况和道路需求进行交通流优化。
通过详细介绍硬件设计和软件设计方案,本文将实现一个完整的交通信号灯控制系统。
最后,通过实际道路的测试和评估,本文将证明所设计的交通信号灯控制系统的有效性和可行性。
第2章交通信号灯控制系统的设计原理和方法2.1交通信号灯控制算法本章将介绍一种基于车辆流量和道路需求的交通信号灯控制算法,该算法能够根据实时的交通状况和道路需求,合理地分配信号灯的绿灯时间,提高交通效率和道路流量。
2.2交通信号灯控制系统仿真实验本章将对所设计的交通信号灯控制系统进行仿真实验,通过模拟不同的交通流量和道路需求,评估系统的性能和效果,验证所提出的交通信号灯控制算法的有效性。
第3章交通信号灯控制系统的硬件设计3.1控制器设计本章将详细介绍交通信号灯控制系统的硬件设计,包括信号灯控制器的设计和选型,信号灯的布置和安装等。
道路交通信号灯控制系统分析与设计毕业论文一、引言随着城市人口的增加和交通流量的不断增长,交通拥堵问题日益突出。
为了有效缓解交通拥堵,提高交通效率,道路交通信号灯控制系统成为一种重要的交通管理手段。
本论文旨在对道路交通信号灯控制系统进行分析与设计,以实现交通信号灯的智能化控制,提高交通系统的效率。
二、分析与设计目标1.提高交通效率:通过合理的信号灯控制算法和系统优化,减少交通拥堵,提高道路通行效率。
2.增加交通安全:通过精确的信号配时和情景识别,降低交通事故发生概率,提升交通安全水平。
3.减少能源消耗:通过优化信号配时,减少交通拥堵和不必要的停车等待时间,降低燃料消耗和车辆排放。
三、系统组成与功能1.传感器模块:利用摄像头、地感器等传感器采集交通流量、道路状况等信息。
2.数据处理与分析模块:对传感器采集的数据进行处理和分析,实时监测交通状况。
3.信号控制算法模块:根据实时的交通状况和道路需求,采用合适的信号控制算法进行配时和优化。
4.控制器模块:根据信号控制算法的结果,控制交通信号灯的开启和关闭。
5.人机交互模块:提供可视化界面,使操作人员可以监控系统状态、调整参数等。
6.数据存储与分析模块:对交通数据进行存储和分析,为后期的优化和决策提供支持。
四、系统设计方案1.传感器选择与布局:根据道路特点和交通状况,选择合适的传感器,并进行布设,确保数据的准确性和全面性。
2.数据处理与分析算法设计:设计高效的数据处理和分析算法,实时监测交通状况,计算车流量、速度、拥堵指数等指标。
3.信号控制算法设计:根据交通数据和道路状况,设计合适的信号控制算法,实现信号灯的智能化控制。
4.控制器设计与开发:根据控制需求和信号控制算法,设计控制器,并进行软硬件开发,实现信号灯的开关控制。
5.人机交互界面设计与开发:设计直观、用户友好的人机交互界面,提供实时监控、参数调整等功能。
6.数据存储与分析系统设计与开发:设计数据存储和分析系统,对交通数据进行存储和分析,为后期优化和决策提供支持。
1引言1.1 本课题的意义城市交通控制系统主要是用于城市交通数据监测、交通信号灯控制与交通疏导的计算机综合管理系统,它已经成为现代城市交通监控指挥系统中最重要的组成部分。
因此,如何利用先进的信息技术改造城市交通系统已成为城市交通管理者的共识[1]。
高效的交通灯智能控制系统是解决城市交通问题的关键。
随着经济的快速发展,城市中的车辆逐渐增多,交通拥挤和堵塞现象日趋严重,引起交通事故频发、环境污染加剧等一系列问题。
本设计采用单片机控制,实现交通信号灯的智能控制。
系统根据东西和南北两个方向的车辆情况,自动进行定时控制和智能控制方式的切换,当某一方向没有车辆时,系统会自动切换使另一方向车辆通行。
当两个方向都有车辆时,按照定时控制方式通行。
本设计与普通的交通信号控制系统相比,其优点是可根据路口情况的不同,对交通灯进行差异化控制,从而达到使道路更为通畅的目的,最大限度的缓解交通拥挤情况[2]。
交通信号控制系统是现代城市交通控制和疏导的主要手段。
而作为城市交通基本组成部分的平面交叉路口,其通行能力是解决城市交通问题的关键,而交通信号灯又是交叉路口必不可少的交通控制手段。
随着计算机技术和自动控制技术的发展,以及交通流理论的不断发展完善,交通运输组织与优化理论、技术的不断提高,国内外逐步形成了一批高水平有实效的城市道路交通控制系统[3]。
1.2 国内外发展状况交通信号控制系统是现代城市交通控制和疏导的主要手段。
而作为城市交通基本组成部分的平面交叉路口,其通行能力是解决城市交通问题的关键,而交通信号灯又是交叉路口必不可少的交通控制手段。
随着计算机技术和自动控制技术的发展,以及交通流理论的不断发展完善,交通运输组织与优化理论、技术的不断提高,国内外逐步形成了一批高水平有实效的城市道路交通控制系统[4]。
国外现状1 澳大利亚SCAT系统SCATS采取分层递阶式控制结构。
其控制中心备有一台监控计算机和一台管理计算机,通过串行数据通讯线路相连。
地区级的计算机自动把各种数据送到管理计算机。
监控计算机连续地监视所有路El的信号运行、检测器的工作状况。
地区主控制器用于分析路El控制器送来的车流数据,确定控制策略,并对本区域各路口进行实时控制。
SCATS系统充分体现了计算机网络技术的突出优点,结构易于更改,控制方案较易变换。
SCATS系统明显的不足:第一,系统为一种方案选择系统,限制了配时参数的优化程度;第二,系统过分依赖于计算机硬件,移植能力差:第三,选择控制方案时,无实时信息反馈[5]。
2 英国SCOOT系统SCOOT是由英国道路研究所在TRANSYT系统的基础上采用自适应控制方法于1980年提出的动态交通控制系统。
SCOOT的模型与优化原理与TRANSYT相仿,不同的是SCOOT为方案生成的控制系统,是通过安装在交叉口每条进口车道最上游的车辆检测器所采集的车辆信息,进行联机处理,从而形成控制方案,并能连续实时调整周期、绿信比和相位差来适应不同的交通流。
SCOOT系统的不足是:相位不能自动增减,任何路E1只能有固定的相序;独立的控制子区的划分不能自动完成,只能人工完成;安装调试困难,对用户的技术要求过高[6]。
国内城市交通控制系统研究状况国内应用和研究城市交通控制系统的工作起步较晚,20世纪80年代以来,国家一方面进行以改善城市市中心交通为核心的UTSM(urban traffic sys—tem manage)技术研究;另一方面采取引进与开发相结合的方针,建立了一些城市道路交通控制系统。
以北京、上海为代表的大城市,交通控制系统主要是简易单点信号机、SCOOT系统、TRANSYT系统和SCATS系统其中几个结合使用;而如湘潭、岳阳等国内中小城市,交通控制系统主要还是使用国产的简易单点信号机和集中协调式信号机。
这些信号系统虽然取得了较好的效果,但我国实际情况决定了需要对这些系统进行改进[7]。
(1)需要完善信号控制。
现有的单点信号控制系统一般只能实现两相位控制,存在一定的局限性。
而实际中,如果根据交叉路口的情况,适当采用多相位控制、变相序控制,可减少交叉路口的交通冲突,提高交通的安全性[8]。
(2)需要合理解决混合交通流问题。
现有信号控制系统对自行车流大多是与机动车同时开始,容易造成交通流冲突。
因此,需要设计一种信号系统能对各个相位包括对自行车流单独进行控制[9]。
(3)实现区域网络协调控制。
目前,虽然在我国的几个大城市,引进或研制了具有区域控制功能的集中式计算机控制系统,但对于中小城市来说,建立这样庞大的系统一方面代价高昂,另一方面实际利用效率不高。
为了解决这一情况,在国内的中小城市应大量推广小型区域网络协调控制信号系统[10]。
(4)对于小型的路口,应研制并设计能够对交通流量进行监测得交通信号灯系统,这样有利于交通的畅通运行[10]。
1.3 课题要求交通信号智能控制系统应用范围极为广泛。
根据路口情况的不同,需要对交通灯进行差异化控制,从而达到是道路更为通畅,最大限度的缓解交通拥挤情况。
本系统采用单片机控制,实现交通信号灯的智能控制。
系统根据东西和南北两个方向的车辆情况,自动进行定时控制和智能控制方式的切换,当某一方向没有车辆时,系统会自动切换使另一方向车辆通行。
当两个方向都有车辆时,按照定时控制方式通行。
设计硬件系统和编制软件程序。
1.4 系统设计的特点本文设计一种新型交通信号灯控制系统,就是一种可应用于智能交通系统的交通信号控制子系统。
与传统的交通信号机相比,该控制系统有很强的控制能力及良好的控制接口,并且安装灵活,设置方便,模块化、结构化的设计使其具有良好的可扩展性,系统运行安全、稳定,效率高。
2 系统硬件设计2.1 系统总体设计目标(1)当A、B道都有车时,A、B道(A、B道交叉组成十字路口,A是主道,B是支道)轮流放行,A道放行60秒(两个数码管从60秒开始倒数,其中5秒用于警告),B道放行30秒(两个数码管从30秒开始倒数,其中5秒用于警告)。
(2)当A道有车、B道无车时,使A道绿灯亮,B道红灯亮,A道绿灯亮的时间可根据实际的车流量来进行设定和调节;当B道有车、A道无车时,使B道绿灯亮,A道红灯亮,B道绿灯亮的时间可根据实际的车流量来进行设定和调节。
(3)在上述一道有车,一道无车的情况中,若无车的道路来了车辆,此时有两种情况:当原来有车的车辆运行时间小于当两道都有车时的定时时间时,系统会继续让原来有车的车道上的车辆继续行驶,到了定时时间,切换到两道都有车时的运行状态;当原来有车的车辆运行时间大于当两道都有车时的定时时间时,系统会直接切换到当两道都有车时运行状态。
(4)利用按键控制,可直接完成东西南北方向的方向选择、时间设定、系统复位、灯颜色的选择,方便控制。
(5)本系统可实现倒计时显示,方便行人和车辆的顺利通行。
2.2系统框图及系统工作原理2.2.1 系统框图交通信号灯控制系统模块硬件系统框图如图2.1所示图2.1 交通信号灯控制系统模块硬件系统框图系统各组成部分说明如下:(1)单片机模块本系统采用AT89C51来作为主控电路的主要元件。
(2)电源稳压模块本系统专门设计了电源稳压模块,为电路系统提供稳定平滑的5V电压。
(3)键盘控制模块利用按键控制,可直接完成时间设定,灯颜色设定,方便控制。
(4)驱动模块用来做功率驱动,提高控制信号的驱动能力,驱动LED模拟灯组。
(5)路口交通灯模块采用红、绿、黄发光二极管实时模拟被控制的路口交通灯。
(6)车辆检测模块应用电感式接近传感器实现对过路车辆的检测,并与单片机进行通信,实现信号的传递。
(7)显示模块本系统应用数码管可实现倒计时显示,方便行人和车辆的顺利通行。
2.2.2系统工作原理(1) 开关键盘输入交通灯初始时间,通过AT89C51单片机P1输入到系统。
(2) 由AT89C51单片机的定时器每秒钟通过P1口送信息,显示红、绿、黄灯的灯亮情况;由P0口显示每个灯的燃亮时间。
(3) AT89C51各个信号灯亮时间通过键盘来进行设定和调节。
(4) 通过AT89C51单片机的P30位来控制系统是工作或设置初值,当为0就对系统进行初始化,为1系统就开始工作。
(5) 通过电感式接近传感器检测A道和B道的车辆情况,一道有车而另一道无车时,采用外部中断1方式进入与其相适应的中断服务程序,并设置该中断为低优先级中断。
使有车车道放行。
2.3 单片机——AT89C51芯片2.3.1 单片机简介单片机微型计算机是微型计算机的一个重要分支,也是颇具生命力的机种。
单片机微型计算机简称单片机,特别适用于控制领域,故又称为微控制器。
通常,单片机由单块集成电路芯片构成,内部包含有计算机的基本功能部件:中央处理器、存储器和I/O接口电路等。
因此,单片机只需要和适当的软件及外部设备相结合,便可成为一个单片机控制系统。
单片机经过1、2、3、3代的发展,目前单片机正朝着高性能和多品种方向发展,它们的CPU功能在增强,内部资源在增多,引角的多功能化,以及低电压底功耗。
本系统主控电路的主要元件应用的是AT89C51。
AT89C51是一个低电压,高性能CMOS 8位单片机,片内含4k bytes的可反复擦写的只读程序存储器(PEROM)和128 bytes的随机存取数据存储器(RAM),器件采用ATMEL公司的高密度、非易失性存储技术生产,兼容标准MCS-51指令系统,片内置通用8位中央处理器和Flash存储单元,内置功能强大的微型计算机的AT89C51提供了高性价比的解决方案[11]。
2.3.2 AT89C51芯片说明AT89C51是一个低功耗高性能单片机,40个引脚,32个外部双向输入/输出(I/O)端口,同时内含2个外中断口,2个16位可编程定时计数器,2个全双工串行通信口,AT89C51可以按照常规方法进行编程,也可以在线编程。
其将通用的微处理器和Flash存储器结合在一起,特别是可反复擦写的Flash存储器可有效地降低开发成本。
管脚说明:VCC:供电电压。
GND:接地。
P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门流。
当P1口的管脚第一次写1时,被定义为高阻输入。
P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。
在FIASH编程时,P0 口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须被拉高。
P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。
P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。
在FLASH编程和校验时,P1口作为第八位地址接收。
P2口:P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。