最新湘教版八年级数学下册教案(全册 共149页)
- 格式:docx
- 大小:2.27 MB
- 文档页数:149
第1章直角三角形1.1直角三角形的性质和判定(Ⅰ)第1课时直角三角形的性质和判定1.掌握“直角三角形两个锐角互余”,并能利用“两锐角互余”判断三角形是直角三角形;(重点)2.探索、理解并掌握“直角三角形斜边上的中线等于斜边的一半”的性质.(重点、难点)一、情境导入在小学时我们已经学习过有关直角三角形的知识,同学们可以用手上的三角板和量角器作直角三角形,并和小组成员一同探究直角三角形的性质.二、合作探究探究点一:直角三角形两锐角互余如图,AB∥DF,AC⊥BC于C,BC与DF交于点E,若∠A=20°,则∠CEF等于()A.110°B.100°C.80°D.70°解析:∵AC⊥BC于C,∴△ABC是直角三角形,∴∠ABC=90°-∠A=90°-20°=70°,∴∠ABC=∠1=70°,∵AB∥DF,∴∠1+∠CEF=180°,即∠CEF=180°-∠1=180°-70°=110°.故选A.方法总结:熟知直角三角形两锐角互余的性质,并准确识图是解决此类题的关键.变式训练:见《学练优》本课时练习“课堂达标训练”第2题探究点二:有两个角互余的三角形是直角三角形如图所示,已知AB ∥CD ,∠BAF =∠F ,∠EDC =∠E ,求证:△EOF 是直角三角形.解析:三角形内角和定理是解答有关角的问题时最常用的定理,是解决问题的突破口,本题欲证△EOF 是直角三角形,只需证∠E +∠F =90°即可,而∠E =12(180°-∠BCD ),∠F =12(180°-∠ABC ),由AB ∥CD 可知∠ABC +∠BCD =180°,即问题得证. 证明:∵∠BAF =∠F ,∠BAF +∠F +∠ABF =180°,∴∠F =12(180°-∠ABF ).同理,∠E =12(180°-∠ECD ).∴∠E +∠F =180°-12(∠ABF +∠ECD ).∵AB ∥CD ,∴∠ABF +∠ECD =180°.∴∠E +∠F =180°-12×180°=90°,∴△EOF 是直角三角形. 方法总结:由三角形的内角和定理可知一个三角形的三个内角之和为180°,如果一个三角形中有两个角的和为90°,可知该三角形为直角三角形.变式训练:见《学练优》本课时练习“课堂达标训练”第5题探究点三:直角三角形斜边上的中线等于斜边的一半如图,△ABC 中,AD 是高,E 、F 分别是AB 、AC 的中点.(1)若AB =10,AC =8,求四边形AEDF 的周长;(2)求证:EF 垂直平分AD .解析:(1)根据直角三角形斜边上的中线等于斜边的一半可得DE =AE =12AB ,DF =AF =12AC ,再根据四边形的周长的公式计算即可得解;(2)根据“到线段两端点距离相等的点在线段的垂直平分线上”证明即可.(1)解:∵AD 是高,E 、F 分别是AB 、AC 的中点,∴DE =AE =12AB =12×10=5,DF =AF =12AC =12×8=4,∴四边形AEDF 的周长=AE +DE +DF +AF =5+5+4+4=18;(2)证明:∵DE =AE ,DF =AF ,∴E 是AD 的垂直平分线上的点,F 是AD 的垂直平分线上的点,∴EF 垂直平分AD .方法总结:当已知条件含有线段的中点、直角三角形等条件时,可联想直角三角形斜边上的中线的性质,连接中点和直角三角形的直角顶点进行求解或证明.变式训练:见《学练优》本课时练习“课堂达标训练”第6题探究点四:直角三角形性质的综合运用【类型一】 利用直角三角形的性质证明线段关系如图,在△ABC 中,AB =AC ,∠BAC =120°,EF 为AB 的垂直平分线,交BC于F ,交AB 于点E .求证:FC =2BF .解析:根据EF 是AB 的垂直平分线,联想到垂直平分线的性质,因此连接AF ,得到△AFB 为等腰三角形.又可求得∠B =∠C =∠BAF =30°,进而求得∠F AC =90°.取CF 的中点M ,连接AM ,就可以利用直角三角形的性质进行证明.证明:如图,取CF 的中点M ,连接AF 、AM .∵EF 是AB 的垂直平分线,∴AF =BF .∴∠BAF=∠B .∵AB =AC ,∠BAC =120°,∴∠B =∠BAF =∠C =12(180°-120°)=30°.∴∠F AC =∠BAC -∠BAF =90°.在Rt △AFC 中,∠C =30°,M 为CF 的中点,∴∠AFM =60°,AM =12FC =FM .∴△AFM 为等边三角形.∴AF =AM =12FC .又∵BF =AF ,∴BF =12FC ,即FC =2BF .方法总结:当已知条件中出现直角三角形斜边上的中线时,通常会运用到“直角三角形斜边上的中线等于斜边的一半”这个性质,使用该性质时,要注意找准斜边和斜边上的中线.变式训练:见《学练优》本课时练习“课后巩固提升”第9题【类型二】 利用直角三角形的性质解决实际问题如图所示,四个小朋友在操场上做抢球游戏,他们分别站在四个直角三角形的直角顶点A 、B 、C 、D 处,球放在EF 的中点O 处,则游戏________(填“公平”或“不公平”).解析:游戏是否公平就是判断点A 、B 、C 、D 到点O 的距离是否相等.四个直角三角形有公共的斜边EF ,且O 为斜边EF 的中点.连接OA 、OB 、OC 、OD .根据“直角三角形斜边上的中线等于斜边的一半”的性质可知,OA =OB =OC =OD =12EF ,即点A 、B 、C 、D 到O 的距离相等.由此可得出结论:游戏公平.方法总结:题目中如果出现“直角三角形”和“中点”这两个条件时,应连接直角顶点与斜边中点,再利用“斜边上的中线等于斜边的一半的性质”解题.变式训练:见《学练优》本课时练习“课堂达标训练”第8题【类型三】 利用直角三角形性质解动态探究题如图所示,在Rt △ABC 中,AB =AC ,∠BAC =90°,O 为BC 的中点.(1)写出点O 到△ABC 的三个顶点A 、B 、C 的距离的数量关系;(2)如果点M 、N 分别在线段AB 、AC 上移动,移动中保持AN =BM .请判断△OMN 的形状,并证明你的结论.解析:(1)由于△ABC 是直角三角形,O 是BC 的中点,得OA =OB =OC =12BC ;(2)由于OA 是等腰直角三角形斜边上的中线,因此根据等腰直角三角形的性质,得∠CAO =∠B =∠45°,OA =OB ,又AN =MB ,所以△AON ≌△BOM ,所以ON =OM ,∠NOA =∠MOB ,于是有∠NOM =∠AOB =90°,所以△OMN 是等腰直角三角形.解:(1)连接AO .在Rt △ABC 中,∠BAC =90°,O 为BC 的中点,∴OA =12BC =OB =OC ,即OA =OB =OC ;(2)△OMN 是等腰直角三角形.理由如下:∵AC =BA ,OC =OB ,∠BAC =90°,∴OA=OB ,∠NAO =12∠CAB =∠B =45°,AO ⊥BC ,又AN =BM ,∴△AON ≌△BOM ,∴ON =OM ,∠NOA =∠MOB ,∴∠NOA +∠AOM =∠MOB +∠AOM ,∴∠NOM =∠AOB =90°,∴△MON 是等腰直角三角形.方法总结:解决动态探究性问题,要把握住动态变化过程中的不变量,比如角的度数、线段的长和不变的数量关系,比如斜边上的中线等于斜边的一半,直角三角形两锐角互余.变式训练:见《学练优》本课时练习“课后巩固提升”第7题三、板书设计1.直角三角形的性质性质一:直角三角形的两锐角互余;性质二:直角三角形斜边上的中线等于斜边的一半.2.直角三角形的判定方法一:一个角是直角的三角形是直角三角形;方法二:两锐角互余的三角形是直角三角形.通过练习反馈的情况来看,学生对于利用已知条件判定一个三角形是否为直角三角形这一考点比较容易上手一些,而往往忽略在直角三角形中告诉斜边上的中点利用中线这一性质解决问题.在今后的教学中应让学生不断强化提高这一点第2课时 含30°锐角的直角三角形的性质及其应用1.理解并掌握含30°锐角的直角三角形的性质;(重点)2.能利用含30°锐角的直角三角形的性质解决问题.(难点)一、情境导入用两个全等的含30°角的直角三角尺,你能拼出一个等边三角形吗?说说理由,并把你的发现和大家交流一下.二、合作探究探究点一:在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半等腰三角形的一个底角为75°,腰长4cm ,那么腰上的高是________cm ,这个三角形的面积是________cm 2.解析:因为75°不是特殊角,但是根据“三角形内角和为180°”可知等腰三角形的顶角为30°,依题意画出图形,则有∠A =30°,BD ⊥AC ,AB =4cm ,所以BD =2cm ,S △ABC =12AC ·BD =12×4×2=4(cm 2).故答案为2,4. 方法总结:作出准确的图形、构造含30°角的直角三角形是解决此题的关键.变式训练:见《学练优》本课时练习“课堂达标训练”第4题探究点二:在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°如图所示,在四边形ACBD 中,AD ∥BC ,AB ⊥AC ,且AC =12BC ,求∠DAC 的度数.解析:根据题意得∠CBA =30°,由平行得∠BAD =30°,进而可得出结论.解:∵AB ⊥AC ,∴∠CAB =90°.∵AC =12BC ,∴∠CBA =30°.∵AD ∥BC ,∴∠BAD =30°,∴∠CAD =∠CAB +∠BAD =120°.方法总结:如果题中出现直角三角形及斜边是直角边的两倍可直接得出30°的角,再利用相关条件求解. 变式训练:见《学练优》本课时练习“课后巩固提升”第9题探究点三:含30°锐角的直角三角形性质的应用如图,某船于上午11时30分在A 处观测到海岛B 在北偏东60°方向;该船以每小时10海里的速度向东航行到C 处,观测到海岛B 在北偏东30°方向;航行到D 处,观测到海岛B 在北偏西30°方向;当船到达C 处时恰与海岛B 相距20海里.请你确定轮船到达C 处和D 处的时间.解析:根据题意得出∠BAC ,∠BCD ,∠BDA 的度数,根据直角三角形的性质求出BC 、AC 、CD 的长度.根据速度、时间、路程关系式求出时间.解:由题意得∠BCD =90°-30°=60°,∠BDC =90°-30°=60°.∴∠BCD =∠BDC =60°,∴△BCD 为等边三角形.在△ABD 中,∵∠BAD =90°-60°=30°,∠BDC =60°,∴∠ABD =90°,即△ABD 为直角三角形,∴∠ABC =30°.∵BC =20海里,∴CD =BD =20海里.又∵BD =12AD ,∴AD =40海里.∴AC =AD -CD =20(海里).∵船的速度为每小时10海里,因此轮船从A 处到C 处的时间为2010=2(h),从A 处到D 处的时间为4010=4(h).∴轮船到达C 处的时间为13时30分,到达D 处的时间为15时30分. 方法总结:方位角是遵循“上北下南左西右东”的原则,弄清楚方位角是解决这类题的关键,再利用含30°角的直角三角形的性质解题.变式训练:见《学练优》本课时练习“课后巩固提升”第8题三、板书设计1.含30°锐角的直角三角形的性质(1)在直角三角形中,30度的角所对的边等于斜边的一半;(2)在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°.2.含30°锐角的直角三角形的性质的应用.在教学中,应该要注意强调这两个性质都是在直角三角形中得到的,如果是一般三角形是不能得到的;两边的二倍关系是斜边和直角边之间的关系,不是两直角边的关系,这在教学中要注意强调,这是学生常犯的错误1.2直角三角形的性质和判定(Ⅱ)第1课时勾股定理1.经历探索及验证勾股定理的过程,体会数形结合的思想;(重点)2.掌握勾股定理,并应用它解决简单的计算题;(重点)3.了解利用拼图验证勾股定理的方法.(难点)一、情境导入如图所示的图形像一棵枝叶茂盛、姿态优美的树,这就是著名的毕达哥拉斯树,它由若干个图形组成,而每个图形的基本元素是三个正方形和一个直角三角形.各组图形大小不一,但形状一致,结构奇巧.你能说说其中的奥秘吗?二、合作探究探究点一:勾股定理【类型一】直接运用勾股定理已知:如图,在△ABC中,∠ACB=90°,AB=13cm,BC=5cm,CD⊥AB于D,求:(1)AC的长;(2)S△ABC;(3)CD的长.解析:(1)由于在△ABC中,∠ACB=90°,AB=13cm,BC=5cm,根据勾股定理即可求出AC的长;(2)直接利用三角形的面积公式即可求出S△ABC;(3)根据CD·AB=BC·AC即可求出CD.解:(1)∵在△ABC中,∠ACB=90°,AB=13cm,BC=5cm,∴AC=AB2-BC2=12(cm);(2)∵S△ABC=12CB·AC=12×5×12=30(cm2);(3)∵S△ABC=12AC·BC=12CD·AB,∴CD=AC·BCAB=6013(cm).方法总结:解答此类问题,一般是先利用勾股定理求出第三边,然后利用两种方法表示出同一个直角三角形的面积,根据面积相等得出一个方程,再解这个方程即可.变式训练:见《学练优》本课时练习“课堂达标训练”第6题【类型二】分类讨论思想在勾股定理中的应用在△ABC中,AB=15,AC=13,BC边上的高AD=12,试求△ABC周长.解析:本题应分△ABC为锐角三角形和钝角三角形两种情况进行讨论.解:此题应分两种情况:(1)当△ABC为锐角三角形时,如图①所示,在Rt△ABD中,BD=AB2-AD2=152-122=9,在Rt△ACD中,CD=AC2-AD2=132-122=5,∴BC=5+9=14,∴△ABC的周长为15+13+14=42;(2)当△ABC为钝角三角形时,如图②所示,在Rt△ABD中,BD=AB2-AD2=152-122=9.在Rt△ACD中,CD=AC2-AD2=132-122=5,∴BC=9-5=4,∴△ABC 的周长为:15+13+4=32,∴△ABC的周长为32或42.方法总结:解题时要考虑全面,对于存在的可能情况,可作出相应的图形,判断是否符合题意.变式训练:见《学练优》本课时练习“课后巩固提升”第6题【类型三】勾股定理与等腰三角形的综合如图所示,已知△ABC中,∠B=22.5°,AB的垂直平分线分别交BC、AB于D、F点,BD=62,AE⊥BC于E,求AE的长.解析:欲求AE,需与BD联系,连接AD,由线段垂直平分线的性质可知AD=BD.可证△ADE是等腰直角三角形,再利用勾股定理求AE的长.解:如图所示,连接AD.∵DF是线段AB的垂直平分线,∴AD=BD=62,∴∠BAD =∠B=22.5°.∵∠ADE=∠B+∠BAD=45°,AE⊥BC,∴∠DAE=45°,∴AE=DE.由勾股定理得AE 2+DE 2=AD 2,∴2AE 2=(62)2,∴AE =622=6. 方法总结:22.5°虽然不是特殊角,但它是特殊角45°的一半,所以经常利用等腰三角形和外角进行转换.直角三角形中利用勾股定理求边长是常用的方法.变式训练:见《学练优》本课时练习“课后巩固提升”第3题探究点二:勾股定理与图形的面积探索与研究:方法1:如图:对任意的符合条件的直角三角形ABC 绕其顶点A 旋转90°得直角三角形AED ,所以∠BAE =90°,且四边形ACFD 是一个正方形,它的面积和四边形ABFE 面积相等,而四边形ABFE 的面积等于Rt △BAE 和Rt △BFE 的面积之和.根据图示写出证明勾股定理的过程;方法2:如图:任意的符合条件的两个全等的Rt △BEA 和Rt △ACD 拼成的,你能根据图示再写一种证明勾股定理的方法吗?解析:方法1:根据四边形ABFE 的面积等于Rt △BAE 和Rt △BFE 的面积之和进行解答;方法2:根据△ABC 和Rt △ACD 的面积之和等于Rt △ABD 和△BCD 的面积之和解答.解:方法1:S 正方形ACFD =S 四边形ABFE =S △BAE +S △BFE ,即b 2=12c 2+12(b +a )(b -a ),整理得2b 2=c 2+b 2-a 2,∴a 2+b 2=c 2;方法2:S 四边形ABCD =S △ABC +S △ACD ,S 四边形ABCD =S △ABD +S △BCD ,即S △ABC +S △ACD =S △ABD+S △BCD ,即12b 2+12ab =12c 2+12a (b -a ),整理得b 2+ab =c 2+a (b -a ),b 2+ab =c 2+ab -a 2,∴a 2+b 2=c 2.方法总结:证明勾股定理时,用几个全等的直角三角形拼成一个规则的图形,然后利用大图形的面积等于几个小图形的面积和化简整理证明勾股定理.变式训练:见《学练优》本课时练习“课堂达标训练”第9题三、板书设计1.勾股定理如果直角三角形的两条直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2.2.勾股定理的应用3.勾股定理与图形的面积课堂教学中,要注意调动学生的积极性.让学生满怀激情地投入到学习中,提高课堂效率.勾股定理的验证既是本节课的重点,也是本节课的难点,为了突破这一难点,可设计拼图活动,并自制精巧的课件让学生从图形上感知,再层层设问,从面积(数)入手,师生共同探究突破本节课的难点第2课时勾股定理的实际应用1.熟练运用勾股定理解决实际问题;(重点)2.勾股定理的正确使用.(难点)一、情境导入如图,在一个圆柱形石凳上,若小明在吃东西时留下了一点食物在B处,恰好一只在A 处的蚂蚁捕捉到这一信息,于是它想从A处爬向B处,你们想一想,蚂蚁怎么走最近?二、合作探究探究点一:勾股定理在实际生活中的应用【类型一】勾股定理在实际问题中的简单应用如图,在离水面高度为5米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为13米,此人以0.5米每秒的速度收绳.问6秒后船向岸边移动了多少米(假设绳子是直的,结果保留根号)?解析:开始时,AC=5米,BC=13米,即可求得AB的值,6秒后根据BC、AC长度即可求得AB的值,然后解答即可.解:在Rt△ABC中,BC=13米,AC=5米,则AB=BC2-AC2=12米,6秒后,BC =13-0.5×6=10米,则AB=BC2-AC2=53米,则船向岸边移动距离为(12-53)米.方法总结:在实际生产生活中有很多图形是直角三角形或可构成直角三角形,在计算中常应用勾股定理.变式训练:见《学练优》本课时练习“课堂达标训练”第3题【类型二】含30°或45°等特殊角的三角形与勾股定理的综合应用由于过度采伐森林和破坏植被,我国许多地区频频遭受沙尘暴的侵袭,今日A市测得沙尘暴中心在A市的正西方向300km的B处,以107km/h的速度向南偏东60°的BF 方向移动,距沙尘暴中心200km的范围是受沙尘暴影响的区域,问:A市是否会受到沙尘暴的影响?若不会,说明理由;若会,求出A市受沙尘暴影响的时间.解析:过点A 作AC ⊥BF 于C ,然后求出∠ABC =30°,再根据直角三角形30°角所对的直角边等于斜边的一半可得AC =12AB ,从而判断出A 市受沙尘暴影响,设从D 点开始受影响,此时AD =200km ,利用勾股定理列式求出CD 的长,再求出受影响的距离,然后根据时间=路程÷速度计算即可得解.解:如图,过点A 作AC ⊥BF 于C ,由题意得,∠ABC =90°-60°=30°,∴AC =12AB =12×300=150(km),∵150<200,∴A 市受沙尘暴影响,设从D 点开始受影响,则AD =200km.由勾股定理得,CD =AD 2-AC 2=2002-1502=507(km),∴受影响的距离为2CD =1007km ,受影响的时间位1007÷107=10(h).方法总结:熟记“直角三角形30°角所对的直角边等于斜边的一半”这一性质,知道方向角如何在图上表示,作辅助线构造直角三角形,再利用勾股定理是解这类题的关键.变式训练:见《学练优》本课时练习“课堂达标训练”第2题探究点二:勾股定理在几何图形中的应用【类型一】 利用勾股定理解决最短距离问题如图,长方体的长BE =15cm ,宽AB =10cm ,高AD =20cm ,点M 在CH 上,且CM =5cm ,一只蚂蚁如果要沿着长方体的表面从点A 爬到点M ,需要爬行的最短距离是多少?解:分三种情况比较最短距离:如图①(将正面与上面展开)所示,AM =102+(20+5)2=529,如图②(将正面与右侧面展开)所示,AM =202+(10+5)2=25(cm).∵529>25,∴第二种短些,此时最短距离为25cm ;如图③(将正面与左侧面展开)所示,AM =(20+10)2+52=537(cm).537>25,∴最短距离为25cm.答:需要爬行的最短距离是25cm.方法总结:因为长方体的展开图不止一种情况,故对长方体相邻的两个面展开时,考虑要全面,不要有所遗漏.不过要留意展开时的多种情况,虽然看似很多,但由于长方体的对面是相同的,所以归纳起来只需讨论三种情况:前面和右面展开,前面和上面展开,左面和上面展开,从而比较取其最小值即可.变式训练:见《学练优》本课时练习“课后巩固提升”第6题【类型二】 运用勾股定理与方程解决有关计算问题如图,四边形ABCD 是边长为9的正方形纸片,将其沿MN 折叠,使点B 落在CD 边上的B ′处,点A 的对应点为A ′,且B ′C =3,则AM 的长是( )A .1.5B .2C .2.25D .2.5解析:设AM =x ,连接BM ,MB ′,在Rt △ABM 中,AB 2+AM 2=BM 2,在Rt △MDB ′中,B ′M 2=MD 2+DB ′2,∵MB =MB ′,∴AB 2+AM 2=BM 2=B ′M 2=MD 2+DB ′2,即92+x 2=(9-x )2+(9-3)2,解得x =2,即AM =2.故选B.方法总结:解题的关键是设出适当的线段的长度为x ,然后用含有x 的式子表示其他线段,然后在直角三角形中利用勾股定理列方程解答.变式训练:见《学练优》本课时练习“课后巩固提升”第3题【类型三】 勾股定理与数轴如图所示,数轴上点A 所表示的数为a ,则a 的值是( )A.5+1 B.-5+1C.5-1D. 5解析:先根据勾股定理求出三角形的斜边长,再根据两点间的距离公式即可求出A点的坐标.图中的直角三角形的两直角边为1和2,∴斜边长为12+22=5,∴-1到A的距离是5,那么点A所表示的数为5-1.故选C.方法总结:本题考查的是勾股定理和数轴的知识,解答此题时要注意,确定点A的符号后,点A所表示的数是距离原点的距离.三、板书设计1.勾股定理在实际生活中的应用2.勾股定理在几何图形中的应用就练习的情况来看,一方面学生简单机械地套用了“a2+b2=c2”,没有分析问题的本质所在;另一方面对于立体图形转化为平面问题在实际问题中抽象出数学模型还存在较大的困难,在今后的教学中要通过实例不断训练提高第3课时 勾股定理的逆定理1.能利用勾股定理的逆定理判定一个三角形是否为直角三角形;(重点)2.灵活运用勾股定理及其逆定理解决问题.(难点)一、情境导入古埃及人曾经用下面的方法画直角:将一根长绳打上等距离的13个结,然后如图那样用桩钉钉成一个三角形,他们认为其中一个角便是直角.你知道这是什么道理吗?二、合作探究探究点一:勾股定理的逆定理【类型一】 勾股数判断下列几组数中,一定是勾股数的是( )A .1,2, 3B .8,15,17C .7,14,15 D.35,45,1 解析:选项A 不是,因为2和3不是正整数;选项B 是,因为82+152=172,且8、15、17是正整数;选项C 不是,因为72+142≠152;选项D 不是,因为35与45不是正整数.故选B.方法总结:勾股数必须满足:①三个数必须是正整数,例如:2.5、6、6.5满足a 2+b 2=c 2,但是2.5、6.5不是正整数,所以它们不是勾股数;②一组勾股数扩大相同的整数倍得到三个数仍是一组勾股数.【类型二】 判断三角形的形状已知a ,b ,c 为△ABC 的三边,且满足(a -7)2+(b -24)2+(c -25)2=0.试判断△ABC的形状.解析:可先确定a ,b ,c 的值,然后再结合勾股定理的逆定理进行判断.解:由平方数的非负性,得a-7=0,b-24=0,c-25=0.∴a=7,b=24,c=25.又∵a2=72=49,b2=242=576,c2=252=625,∴a2+b2=c2.∴△ABC是直角三角形.方法总结:此题主要依据“若几个非负数的和为0,则这几个非负数同时为0”这一性质来确定a,b,c的值.该知识点在解题时会经常用到,应注意掌握.变式训练:见《学练优》本课时练习“课堂达标训练”第2题【类型三】利用勾股定理逆定理解决与角有关的问题在如图的方格中,△ABC的顶点A、B、C都是方格线的交点,则三角形ABC的外角∠ACD的度数等于()A.130°B.135°C.140°D.145°解析:∵AB2=12+22=5,BC2=12+22=5,AC2=12+32=10,∴AC2=AB2+BC2,∴△ABC是等腰直角三角形,∵∠ACD是△ABC的外角,∴∠ACD=∠A+∠B=45°+90°=135°.故选B.方法总结:在网格图中求三角形的角度时可以运用勾股定理和一些特殊角的边角关系来解答,比如在直角三角形中30°所对的直角边是斜边的一半,45°的直角三角形中两直角边相等.变式训练:见《学练优》本课时练习“课后巩固提升”第2题【类型四】运用勾股定理的逆定理解决面积问题如图,在四边形ABCD中,∠B=90°,AB=8,BC=6,CD=24,AD=26,求四边形ABCD的面积.解析:连接AC,根据已知条件运用勾股定理的逆定理可证△ABC和△ACD为直角三角形,然后代入三角形面积公式将两直角三角形的面积求出来,两者面积相加即为四边形ABCD的面积.解:连接AC,∵∠B=90°,∴△ABC为直角三角形,∴AC2=AB2+BC2=82+62=102,∴AC=10,在△ACD中,∵AC2+CD2=100+576=676,AD2=262=676,∴AC2+CD2=AD 2,∴△ACD 为直角三角形,且∠ACD =90°,∴S 四边形ABCD =S △ABC +S △ACD =12×6×8+12×10×24=144.方法总结:将求四边形面积的问题转化为求两个直角三角形面积和的问题,解题时要利用题目信息构造出直角三角形,如角度,三边长度等.变式训练:见《学练优》本课时练习“课后巩固提升”第6题探究点二:勾股定理逆定理的实际应用如图,南北向MN 为我国领海线,即MN 以西为我国领海,以东为公海,上午9时50分,我国反走私A 艇发现正东方有一走私艇以13海里/时的速度偷偷向我领海开来,便立即通知正在MN 线上巡逻的我国反走私艇B 密切注意.反走私艇A 和走私艇C 的距离是13海里,A 、B 两艇的距离是5海里;反走私艇B 距离C 艇12海里,若走私艇C 的速度不变,最早会在什么时候进入我国领海.解析:已知走私艇的速度,求出走私艇的距离即可得出走私艇所用的时间,即可得出走私艇何时能进入我国领海.所以现在的问题是得出走私艇的距离,根据题意,CE 即为走私艇所走的路程,可知,△ABE 和△EBC 均为直角三角形,可分别解这两个直角三角形即可得出.解:设MN 与AC 相交于E ,则∠BEC =90°,∵AB 2+BC 2=52+122=132=AC 2,∴△ABC 为直角三角形,且∠ABC =90°,由于MN ⊥CE ,所以走私艇C 进入我国领海的最短距离是CE ,由S △ABC =12AB ·BC =12AC ·BE ,得BE =6013(海里),由CE 2+BE 2=BC 2,即CE 2+(6013)2=122,得CE =14413(海里),∴14413÷13=144169≈0.85(h)=51(min),9时50分+51分=10时41分.答:走私艇C 最早在10时41分进入我国领海.方法总结:本题考查了对题意的准确把握和使用勾股定理解直角三角形,解题的关键是从实际问题中整理出几何图形.变式训练:见《学练优》本课时练习“课后巩固提升”第4题三、板书设计1.勾股定理的逆定理如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形是直角三角形2.利用勾股定理逆定理求角和线段的长3.利用勾股定理逆定理解决实际问题学生在练习的过程中很容易受到固定思维模式的限制,往往不找最长边而总是按照先后顺序来解题,这样很容易发生错误,再就是利用勾股定理的逆定理进行有关的证明不是很得法,需在以后的学习中逐步训练提高1.3 直角三角形全等的判定1.熟练掌握“斜边、直角边定理”,以及熟练地利用这个定理和判定一般三角形全等的方法判定两个直角三角形全等;(重点)2.熟练使用“分析综合法”探求解题思路.(难点)一、情境导入前面我们学习了判定两个三角形全等的四种方法——SAS 、ASA 、AAS 、SSS.当然这些方法也适用于判定两个直角三角形全等,那么直角三角形的全等的判定还有其他的方法吗?二、合作探究探究点一:运用“HL ”判定直角三角形全等如图所示,AD ⊥BC ,CE ⊥AB ,垂足分别为D 、E ,AD 交CE 于点F ,AD =EC .求证:F A =FC .解析:要利用“等角对等边”证明F A =FC ,需先证∠F AC =∠FCA ,此结论可由三角形全等得到.证明:∵AD ⊥BC ,CE ⊥AB ,∴∠AEC =∠ADC =90°.∴在Rt △AEC 和Rt △CDA 中⎩⎪⎨⎪⎧EC =AD ,CA =AC ,∴Rt △AEC ≌Rt △CDA (HL),∴∠F AC =∠FCA ,∴F A =FC . 方法总结:在运用HL 判定两个直角三角形全等时,要紧紧抓住直角边和斜边这两个要点.变式训练:见《学练优》本课时练习“课堂达标训练”第7题探究点二:直角三角形判定方法的灵活应用【类型一】 解决线段相等问题已知如图AC ⊥BC ,AD ⊥BD ,AD =BC ,CE ⊥AB ,DF ⊥AB ,垂足分别为E 、F .求证:CE =DF .。
湘教版初中数学八年级下册全册教案教学设计【精心整理精美排版】湘教版初中数学八年级下全册教案目录1.1 多项式的因式分解11.2 提公因式法 31.2用提公因式分解因式(2) 51.3 公式法(1)71.3 公式法(2)9因式分解小结与复习11第一章《因式分解》测试题132.1 分式的基本性质(1) 142.1 分式基本性质(2)16乘除法18方 20幂的除法22零次幂和负整数指数幂 24整数指数幂的运算法则26同分母的分式加、减法28异分母的分式加减法30一元一次方程的分式方程32分式方程的应用34分式复习(1)36分式复习(2)38平行四边形的性质和中心对称图形(1)40 边形的性质和中心对称图形(2)43中心对称图形(续)45平行四边形的判定(1)48平行四边形的判定(2)51的中位线53菱形的性质56定(1)583.3矩形(1) 593.3 矩形(2)613.4 正方形一643.4 正方形二 663.4正方形三683.5 梯形733.6 多边形的内角和与外交和 1 753.6多边形的内角和与外角和(2)78四边形小结与复习 814.1 二次根式和它的化简(1)834.1 二次根式和它的化简(2)854.1二次根式和它的化简(3) 89二次根式的乘法92二次根式的除法 954.3 二次根式的加、减法(1)974.3 二次根式的加、减法(2)1004.3 二次根式的加、减法(3)1035.1概率的概念1075.2概率的含义1091.1 多项式的因式分解教学目标1.了解分解因式的意义,以及它与整式乘法的相互关系.2.感受因式分解在解决相关问题中的作用.3.通过因式分解培养学生逆向思维的能力。
重点与难点重点:理解分解因式的意义,准确地辨析整式乘法与分解因式这两种变形。
难点:对分解因式与整式关系的理解教学过程一、创设情境,导入新课1 回顾整式乘法和乘法公式填空:计算: 1 2ab 3a+4b-1 _________, (2)(a+2b) 2a-b __________ 3 (x-2y) x+2y __________; 4 _____________5 ________2 你会解方程:吗?。
益阳市九中教案八年级下册第一章直角三角形课题第 1 章直角三角形§ 1.1 直角三角形的性质和判定(Ⅰ)主备教师使用教师1、掌握“直角三角形的两个锐角互余”定理。
2、掌握“有两个锐角互余的三角形是直角三角形”定理。
教学目的3、掌握“直角三角形斜边上的中线等于斜边的一半”定理以及应用。
4、巩固利用添辅助线证明有关几何问题的方法。
教学重点直角三角形斜边上的中线性质定理的应用。
教学难点直角三角形斜边上的中线性质定理的证明思想方法。
观察、比较、合作、交流、探索.教学方法教学课时一个课时教学过程个性化设计一、复习提问:( 1)什么叫直角三角形?( 2)直角三角形是一类特殊的三角形,除了具备三角形的性质外,还具备哪些性质?二、新授(一)直角三角形性质定理1请学生看图形:1 、提问:∠ A 与∠ B 有何关系?为什么?2 、归纳小结:定理1:直角三角形的两个锐角互余。
3、巩固练习:练习 1、(1)在直角三角形中,有一个锐角为520,那么另一个锐角度数( 2 )在Rt △ ABC 中,∠ C=900,∠ A - ∠ B =300,那么∠A=,∠ B=。
练习 2在△ ABC中,∠ ACB=90,CD是斜边AB上的高,那么,(1)与∠ B 互余的角有( 2)与∠A 相等的角有。
( 3)与∠ B 相等的角有。
(二)直角三角形的判定定理11、提问:“在△ ABC中,∠ A +∠ B =900那么△ ABC是直角三角形吗?”2、利用三角形内角和定理进行推理3、归纳:有两个锐角互余的三角形是直角三角形练习3: 若∠ A= 60 0,∠ B =30 0,那么△ABC是三角形。
(三)直角三角形性质定理21 、实验操作:要学生拿出事先准备好的直角三角形的纸片(l )量一量斜边AB 的长度。
( 2)找到斜边的中点,用字母D表示。
( 3)画出斜边上的中线。
( 4)量一量斜边上的中线的长度让学生猜想斜边上的中线与斜边长度之间有何关系?归纳:直角三角形斜边上的中线等于斜边的一半。
湘教版八年级数学下册教案推荐文章八年级上册数学教学计划热度:2019八年级上册数学教学计划热度:八年级数学下册教学工作计划热度:八年级下数学教学计划热度:八年级数学全等三角形教学反思热度:数学教案是课堂数学教学设计的载体,是课堂教学质量的基础。
下面是小编为大家精心整理的湘教版八年级数学下册教案,仅供参考。
湘教版八年级数学下册教案(一)第1章直角三角形课题§1.1直角三角形的性质和判定(Ⅰ)主备教师使用教师1、掌握“直角三角形的两个锐角互余”定理。
教学目的2、掌握“有两个锐角互余的三角形是直角三角形”定理。
3、掌握“直角三角形斜边上的中线等于斜边的一半”定理以及应用。
4、巩固利用添辅助线证明有关几何问题的方法。
教学重点直角三角形斜边上的中线性质定理的应用。
教学难点直角三角形斜边上的中线性质定理的证明思想方法。
教学方法观察、比较、合作、交流、探索.一个课时教学课时湘教版八年级数学下册教案(二)教学过程个性化设计一、复习提问:(1)什么叫直角三角形?(2)直角三角形是一类特殊的三角形,除了具备三角形的性质外,还具备哪些性质?二、新授(一)直角三角形性质定理1请学生看图形:1、提问:∠A与∠B有何关系?为什么?2、归纳小结:定理1:直角三角形的两个锐角互余。
3、巩固练习:练习1、(1)在直角三角形中,有一个锐角为52,那么另一个锐角度数 0(2)在Rt△ABC中,∠C=90,∠A -∠B =30,那么∠A= ,∠B= 。
练习2 在△ABC中,∠ACB=90,CD是斜边AB上的高,那么,(1)与∠B互余的角有 (2)与∠A相等的角有。
(3)与∠B相等的角有。
(二)直角三角形的判定定理11、提问:“ 在△ABC中,∠A +∠B =90那么△ABC是直角三角形吗?”2、利用三角形内角和定理进行推理3、归纳:有两个锐角互余的三角形是直角三角形练习3:若∠A= 60 ,∠B =30,那么△ABC是三角形。
新化十五中学数学教案八年级下册肖志光第一章直角三角形课题第1章直角三角形§1.1直角三角形的性质和判定(Ⅰ)主备教师使用教师教学目的1、掌握“直角三角形的两个锐角互余”定理。
2、掌握“有两个锐角互余的三角形是直角三角形”定理。
3、掌握“直角三角形斜边上的中线等于斜边的一半”定理以及应用。
4、巩固利用添辅助线证明有关几何问题的方法。
教学重点直角三角形斜边上的中线性质定理的应用。
教学难点直角三角形斜边上的中线性质定理的证明思想方法。
观察、比较、合作、交流、探索.教学方法教学课时一个课时教学过程个性化设计一、复习提问:(1)什么叫直角三角形?(2)直角三角形是一类特殊的三角形,除了具备三角形的性质外,还具备哪些性质?二、新授(一)直角三角形性质定理1请学生看图形:1、提问:∠A与∠B有何关系?为什么?2、归纳小结:定理1:直角三角形的两个锐角互余。
3、巩固练习:练习1、(1)在直角三角形中,有一个锐角为520,那么另一个锐角度数(2)在Rt△ABC中,∠C=900,∠A -∠B =300,那么∠A= ,∠B= 。
练习2 在△ABC中,∠ACB=900,CD是斜边AB上的高,那么,(1)与∠B互余的角有(2)与∠A相等的角有。
(3)与∠B相等的角有。
(二)直角三角形的判定定理11、提问:“在△ABC中,∠A +∠B =900那么△ABC是直角三角形吗?”2、利用三角形内角和定理进行推理3、归纳:有两个锐角互余的三角形是直角三角形练习3:若∠A= 600,∠B =300,那么△ABC是三角形。
(三)直角三角形性质定理21、实验操作:要学生拿出事先准备好的直角三角形的纸片(l)量一量斜边AB的长度。
(2)找到斜边的中点,用字母D 表示。
(3)画出斜边上的中线。
(4)量一量斜边上的中线的长度让学生猜想斜边上的中线与斜边长度之间有何关系?归纳:直角三角形斜边上的中线等于斜边的一半。
三、巩固训练:练习4:在△ABC中,∠ACB=90 °,CE是AB边上的中线,那么与CE相等的线段有_________,与∠A相等的角有_________,若∠A=35°,那么∠ECB= _________。
湘教版八年级数学下全教案
第1章因式分解
一、背景介绍
因式分解的教学是在整式四那么运算的基础上进行的,因式分解方式的理论依据确实是多项式乘法的逆变形。
它不仅在多项式的除法、简便运算中有直接的应用,也为以后学习分式的约分与通分、解方程(组)及三角函数式的恒等变形提供了必要的基础。
因此,学好因式分解关于代数知识的后续学习,具有相当重要的意义。
二、教学目标
认知目标
一、了解因式分解的意义;
二、明白得因式分解与多项式乘法的彼此关系;
3、初步了解,运用因式分解的提取公因式法和运用公式法。
能力目标
1、通过对因式分解与多项式乘法的关系的明白得,克服学生的思维定势,培育学生的
观看、发觉、对比、化归、归纳和他们的逆向思维能力;
2、在彼此交流的进程中,养成学生表述、抽象、类比、总结的思维适应,初步培育学
生在探讨和归纳新知识的进程中进行合情推理的能力.
情感目标
一、让学生体验数学学习活动中的成功与欢乐,增强他们的求知欲和学好数学的自信心;
2、感受多项式乘法与因式分解之间的对立统一观点,从而向学生渗透辩证唯物主义的
熟悉论的思想,引导学生树立科学的人一辈子观和价值观;
三、教学重点与难点
重点是因式分解的概念及提取公因式法、公式法的运用,难点是明白得因式分解与多项式乘法的彼此关系,并运用它们之间的彼此关系寻求因式分解的方式。
●课时安排
7课时
第一课时
●课题。
直角三角形的性质和判定过程与方法:通过图形的变换,引导学生发现并提出新问题,进行类比联想,促进)什么叫直角三角形?请学生看(。
)找到斜边的中点,用字母表示归纳:直角三角形斜边上的中线等于斜边的一半。
上的高,那么MO 与DE有什么样的关系存在:直角三角形斜边上的中线性质定理的证明思想方法动口建造在哪里?(实验操作)有什么关系?、已知:如图,在在我们将图,能得出什么结论?AD 作业:半在,量一量,、实际应用海里,该轮船如果不改变航向,历史讲解,对学生进行德育教育课前、课中反)勾――最短的边、股――较长的直角边、所如图所示将两个直角三角形拼成直角梯形1、定理的应用BAC=900,D是BC上任一点,+(CE+DE)2=2AD中勾股定理的内容已知直角过程与方法:通过勾勾股定理的内容、文字叙述、符号)让学生用文字语言将上逆定理是直a=12, b=15, c=)逆定理应用时易出现的错误分不清哪一条边作斜边(最大边)为直角三角形又∵为直角三角形过程与方法:经历勾股定理的应处,另一只爬到树顶后直接跃向池塘,其中一只猴子从也共走了二、范例学习发画一条线段AB,使使另一个顶点在格点在只=(如果三角形的三边长相关知识进行求解,遇到求不规则面积问题,通常应用化归思想,将不过程与方法:经历勾股定理的应用过程,熟练掌握其应情感态度与价值观:培养合情推理能力,提高合作交流意识,体会勾股定理的应用a(,8力,提高合作交流6…,则我们把域,即2+338=10a+24b+26c,则都为“斜边、直角边”公理的灵活运用研究这个问题,我们先做一个实验:△ABC与Rt△A'B'C'拼合在一起(教具演示等判定公理——“)理由:( )( )分别是△ABC的高,且BE=CD.AAC=A'可以利用,利用它可以证明△有的特殊性质.因为这是第一次涉及特殊三角形的特殊性,所以教学时要注意渗透“斜边、直角斜边、直角边”公理的灵活运用)__________________。
2024年新湘教版八年级数学下册教案一、教学目标知识与技能目标掌握平面直角坐标系的基本概念,包括点的坐标表示、坐标轴的命名与性质。
学会在平面直角坐标系中绘制点,并能够根据点的坐标描述其位置。
理解直线方程的概念,掌握斜率截距式方程表示直线的方法。
过程与方法目标培养学生通过观察、归纳、总结的方式,自主发现平面直角坐标系中点与坐标之间的关系。
提高学生运用数学语言进行表达和交流的能力。
引导学生通过小组合作,共同解决数学问题,增强团队协作能力。
情感、态度与价值观目标激发学生学习数学的兴趣和热情,培养学生的数学思维和探究精神。
帮助学生建立自信心,通过解决问题体验成功的喜悦。
强调数学在日常生活中的应用,提高学生运用数学知识解决实际问题的能力。
二、教学重点和难点教学重点平面直角坐标系的基本概念和性质。
直线方程的斜率截距式表示方法。
点在平面直角坐标系中的位置描述。
教学难点学生对于坐标轴的理解以及点与坐标之间关系的把握。
直线方程的斜率截距式的灵活应用。
学生对于复杂情境下数学问题的解决策略。
三、教学过程1. 导入新课通过生活中的实例(如地图定位、电影院座位排列等)引入平面直角坐标系的概念,激发学生的学习兴趣。
提问学生关于坐标系的知识,了解他们的前知,并为接下来的教学做好铺垫。
2. 知识点讲解详细阐述平面直角坐标系的基本构成,包括x轴、y轴、原点等,并解释各部分的含义和作用。
通过图示和实例讲解点的坐标表示方法,强调坐标与位置之间的对应关系。
引导学生理解直线方程的概念,介绍斜率截距式的含义和用法,并通过实例进行演示。
3. 互动探究设计小组合作活动,让学生们在小组内互相讨论平面直角坐标系中点的坐标表示方法,并共同解决问题。
开展课堂小测验,检验学生对知识点的掌握情况,并针对出现的问题进行及时纠正和补充。
鼓励学生提出问题,进行师生互动,营造积极的课堂氛围。
4. 实践应用布置与日常生活相关的练习题,让学生在解决实际问题的过程中巩固所学知识。
1.1直角三角形的性质(一)编写时间:年月日执行时间:年月日总序第个教案【教学目标】:1、掌握“直角三角形的两个锐角互余”定理。
2、巩固利用添辅助线证明有关几何问题的方法。
【教学重点】:直角三角形斜边上的中线性质定理的应用。
【教学难点】:直角三角形斜边上的中线性质定理的证明思想方法。
【教学方法】观察、比较、合作、交流、探索.【教学过程】:引入复习提问:(1)什么叫直角三角形?(2)直角三角形是一类特殊的三角形,除了具备三角形的性质外,还具备哪些性质?二、新授(一)直角三角形性质定理1请学生看图形:1、提问:∠A与∠B有何关系?为什么?2、归纳小结:定理1:直角三角形的两个锐角互余。
3、巩固练习:练习1(1)在直角三角形中,有一个锐角为520,那么另一个锐角度数(2)在Rt△ABC中,∠C=900,∠A -∠B =300,那么∠A= ,∠B= 。
练习2 如图,在△ABC中,∠ACB=900,CD是斜边AB上的高,那么,(1)与∠B互余的角有(2)与∠A相等的角有。
(3)与∠B相等的角有。
(二)直角三角形性质定理21、实验操作:要学生拿出事先准备好的直角三角形的纸片(l)量一量斜边AB的长度(2)找到斜边的中点,用字母D表示(3)画出斜边上的中线(4)量一量斜边上的中线的长度让学生猜想斜边上的中线与斜边长度之间有何关系?三、巩固训练:练习3 :在△ABC中,∠ACB=90 °,CE是AB边上的中线,那么与CE相等的线段有_________,与∠A相等的角有_________,若∠A=35°,那么∠ECB= _________。
练习4:已知:∠ABC=∠ADC=90O,E是AC中点。
求证:(1)ED=EB (2)∠EBD=∠EDB (3)图中有哪些等腰三角形?练习6 已知:在△ABC中,BD、CE分别是边AC、AB上的高, M是BC的中点。
如果连接DE,取DE的中点 O,那么MO 与DE有什么样的关系存在?四、小结:这节课主要讲了直角三角形的那两条性质定理?1、直角三角形的两个锐角互余?五、课后反思:3.5直角三角形的性质(二)编写时间: 年 月 日 执行时间: 年 月 日 总序第 个教案 一、【教学目标】:1、掌握“直角三角形斜边上的中线等于斜边的一半”定理以及应用。
最新湘教版八年级数学下册教案(全册)直角三角形的性质和判定1.知识与技能:掌握“直角三角形的两个锐角互余”定理,掌握“有两个锐角互余的三角形是直角三角形”定理,掌握“直角三角形斜边上的中线等于斜边的一半”定理以及应用2. 过程与方法:通过图形的变换,引导学生发现并提出新问题,进行类比联想,促进学生的思维向多层次多方位发散。
培养学生的创新精神和创造能力3.情感态度与价值观:从生活的实际问题出发,引发学生学习数学的兴趣。
从而培养学生发现问题和解决问题能力教学活动一、复习提问:(1)什么叫直角三角形?(2)直角三角形是一类特殊的三角形,除了具备三角形性质外,还具备哪些性质?二、新授(一)直角三角形性质定理1请学生看图形:1、提问:∠A与∠B有何关系?为什么?2、归纳小结:定理1:直角三角形的两个锐角互余。
3、巩固练习:练习1(1)在直角三角形中,有一个锐角为520,那么另一个锐角度数(2)在Rt△ABC中,∠C=900,∠A -∠B =300,那么∠A= ,∠B= 。
练习2 在△ABC中,∠ACB=900,CD是斜边AB上的高,那么,(1)与∠B互余的角有(2)与∠A相等的角有。
(3)与∠B相等的角有。
(二)直角三角形的判定定理1提问:“在△ABC中,∠A +∠B =900那么△ABC是直角三角形吗?”利用三角形内角和定理进行推理归纳:有两个锐角互余的三角形是直角三角形练习3:若∠A= 600 ,∠B =300,那么△ABC是三角形。
(三)直角三角形性质定理21、实验操作:要学生拿出事先准备好的直角三角形的纸片(l)量一量斜边AB的长度(2)找到斜边的中点,用字母D表示(3)画出斜边上的中线(4)量一量斜边上的中线的长度让学生猜想斜边上的中线与斜边长度之间有何关系?归纳:直角三角形斜边上的中线等于斜边的一半。
三、巩固训练:练习4:在△ABC中,∠ACB=90 °,CE是AB边上的中线,那么与CE相等的线段有_________,与∠A相等的角有_________,若∠A=35°,那么∠ECB= _________。
练习5:已知:∠ABC=∠ADC=90O,E是AC中点。
求证:(1)ED=EB(2)∠EBD=∠EDB(3)图中有哪些等腰三角形?练习6 已知:在△ABC中,BD、CE分别是边AC、AB上的高, M是BC的中点。
如果连接DE,取DE的中点O,那么MO 与DE有什么样的关系存在?四、小结:这节课主要讲了直角三角形的那两条性质定理和一条判定定理?直角三角形的性质和判定1、重点:直角三角形斜边上的中线性质定理的应用2、难点::直角三角形斜边上的中线性质定理的证明思想方法教学活动(一)引入:如果你是设计师:(提出问题)2008年将建造一个地铁站,设计师设想把地铁站的出口建造在离附近的三个公交站点45路、13路、23路的距离相等的位置。
而这三个公交站点的位置正好构成一个直角三角形。
如果你是设计师你会把地铁站的出口建造在哪里?(通过实际问题引出直角三角形斜边上的中点和三个顶点之间的长度关系,引发学生的学习兴趣。
)动一动想一想猜一猜(实验操作)请同学们分小组在模型上找出那个点,并说出它的位置。
请同学们测量一下这个点到这三个顶点的距离是否符合要求。
通过以上实验请猜想一下,直角三角形斜边上的中线和斜边的长度之间有什么关系?(通过动手操作找到那个点,通过测量的结果让学生猜测斜边的中线与斜边的关系。
)(二)新授:提出命题:直角三角形斜边上的中线等于斜边的一半证明命题:(教师引导,学生讨论,共同完成证明过程)推理证明思路:①作点D1 ②证明所作点D1 具有的性质③证明点D1 与点D重合应用定理:例1、已知:如图,在△ABC中,∠B=∠C,AD是∠BAC的平分线,E、F分别AB、AC的中点。
求证:DE=DF分析:可证两条线段分别是两直角三角形的斜边上的中线,再证两斜边相等即可证得。
(上一题我们是两个直角三角形的一条较长直角边重合,现在我们将图形变化使斜边重合,我们可以得到哪些结论?)练习变式:已知:在△ABC中,BD、CE分别是边AC、AB上的高,F是BC的中点。
求证:FD=FE练习引申:(1)若连接DE,能得出什么结论?(2)若O是DE的中点,则MO与DE存在什么结论吗?上题两个直角三角形共用一条斜边,两个直角三角形位于斜边的同侧。
如果共用一条斜边,两个直角三角形位于斜边的两侧我们又会有哪些结论?2、已知:∠ABC=∠ADC=90º,E是AC中点。
你能得到什么结论?例2、求证:一个三角形一边上的中线等于这一边的一半,那么这个三角形是直角三角形练习(三)、小结:通过今天的学习有哪些收获?(四)、作业:习题A组 1、2直角三角形的性质和判定教学活动一、创设情境,导入新课1 直角三角形有哪些性质?(1)两锐角互余;( 2)斜边上的中线等于斜边的一半2 按要求画图:(1)画∠MON,使∠MON=30°,(2)在OM上任意取点P,过P作ON的垂线PK,垂足为K,量一量PO,PK 的长度,PO,PK有什么关系?(3) 在OM上再取点Q,R,分别过Q,R作ON 的垂线QD,RE,垂足分别为D,E,量一量QD,OQ,它们有什么关系?量一量RE,OR,它们有什么关系?由此你发现了什么规律?直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半。
为什么会有这个规律呢?这节课我们来研究这个问题.二、合作交流,探究新知1 探究直角三角形中,如果有一个锐角等于30°,那么它所对的直角边为什么等于斜边的一半。
如图,Rr△ABC中,∠A=30°,BC为什么会等于AB分析:要判断BC= AB,可以考虑取AB的中点,如果如果BD=BC,那么BC=AB,由于∠A=30°,所以∠B=60°,如果BD=BC,则△BDC一定是等边三角形,所以考虑判断△BDC是等边三角形,你会判断吗?由学生完成归纳:直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半。
这个定理的得出除了上面的方法外,你还有没有别的方法呢?先让学生交流,得出把△ABC沿着AC翻折,利用等边三角形的性质证明。
2 上面定理的逆定理上面问题中,把条件“∠A=30°”与结论“BC=AB”交换,结论还成立吗?学生交流方法(1)取AB的中点,连接CD,判断△BCD是等边三角形,得出∠B=60°,从而∠A=30°(2)沿着AC翻折,利用等边三角形性质得出。
(3)你能把上面问题用文字语言表达吗?归纳:直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30度。
三、应用迁移,巩固提高1、定理应用例1、在△ABC中,△C=90°,∠B=15°,DE垂直平分AB,垂足为点E,交BC边于点D,BD=16cm,则AC的长为______例2、如图在△ABC中,若∠BAC=120°,AB=AC,AD⊥AC于点A,BD=3,则BC=______.2 实际应用例3、(P5)在A岛周围20海里水域有暗礁,一轮船由西向东航行到O处时,发现A岛在北偏东60°的方向,且与轮船相距30海里,该轮船如果不改变航向,有触礁的危险吗?四、课堂练习,巩固提高五、反思小结,拓展提高直角三角形有哪些性质?怎样判断一个三角形是直角三角形?直角三角形的性质和判定课前、课中反思1、新课背景知识复习(1)三角形的三边关系(2)问题:直角三角形的三边关系,除了满足一般关系外,还有另外的特殊关系吗?2、定理的获得让学生用文字语言将上述问题表述出来.勾股定理:直角三角形两直角边a、b的平方和等于斜边c的平方强调说明:(1)勾――最短的边、股――较长的直角边、弦――斜边(2)学生根据上述学习,提出自己的问题(待定)3、定理的证明方法方法一:将四个全等的直角三角形拼成如图1所示的正方形.方法二:将四个全等的直角三角形拼成如图2所示的正方形,方法三:“总统”法.如图所示将两个直角三角形拼成直角梯形以上证明方法都由学生先分组讨论获得,教师只做指导.最后总结说明1、定理的应用例题1、已知:如图,在△ABC中,∠ACB=900,AB=5cm,BC=3cm,CD⊥AB于D,求CD的长.解:∵△ABC是直角三角形,AB=5,BC=3,由勾股定理有∴又∠2=∠C∴CD的长是2.4cm例题2、如图,△ABC中,AB=AC,∠BAC=900,D是BC上任一点,求证:BD2+CD2=2AD2证法一:过点A作AE⊥BC于E则在Rt△ADE中,DE2+AE2=AD2又∵AB=AC,∠BAC=900∵BD2+CD2=(BE-DE)2+(CE+DE)2=BE2+CE2+2DE2=2AE2+2DE2=2AD2∴即BD2+CD2=2A D2证法二:过点D作DE⊥AB于E, DF⊥AC 于F则DE∥AC,DF∥AB又∵AB=AC,∠BAC=900∴EB=ED,FD=FC=AE在Rt△EB D和Rt△FDC中 BD2=BE2+DE2 ,CD2=FD2+FC2在Rt△AED中,DE2+AE2=AD2∴BD2+CD2=2AD25、课堂小结:(1)勾股定理的内容(2)勾股定理的作用已知直角三角形的两边求第三边已知直角三角形的一边,求另两边的关系6、作业布置直角三角形的性质和判定1、重点:勾股定理的逆定理及其应用2、难点::勾股定理的逆定理及其应用略教学活动1、新课背景知识复习:勾股定理的内容、文字叙述、符号表述、图形2、逆定理的获得(1)让学生用文字语言将上述定理的逆命题表述出来(2)学生自己证明逆定理:如果三角形的三边长a、b、c 有下面关系:a2+b2=c2 ,那么这个三角形是直角三角形强调说明:(1)勾股定理及其逆定理的区别勾股定理是直角三角形的性质定理,逆定理是直角三角形的判定定理.(2)判定直角三角形的方法:①角为900②垂直③勾股定理的逆定理 2、定理的应用-判定由线段a,b,c组成的三角形是不是直角三角形。
a=6, b=8, c=10;a=12, b=15, c=20.如图1-21,在△ABC中,已知AB=10,BD=6,AD=8,AC=17. 求DC的长。
练习:补充:1、如果一个三角形的三边长分别为a2 =m2-n2 ,b=2mn, c=m2+n2(m>n)则这三角形是直角三角形证明:∵ a2+b2=( m2-n2)2 +(2mn)2=m4+2m2n2+n4= (m2+n2)2∴a2+b2=c2 ,∠C=9002、已知:如图,四边形ABCD中,∠B=,AB=3,BC=4,CD=12,AD=13求四边形ABCD的面积解:连结AC∵∠B=,AB=3,BC=4∴∴AC=5∵∴∴∠ACD=900以上习题,分别由学生先思考,然后回答.师生共同补充完善.(教师做总结)4、课堂小结:(1)逆定理应用时易出现的错误分不清哪一条边作斜边(最大边)(2)判定是否为直角三角形的一种方法:结合勾股定理和代数式、方程综合运用.5、布置作业:补充:如图,已知:CD⊥AB于D,且有求证:△ACB为直角三角形证明:∵CD⊥AB∴又∵∴∴△ABC为直角三角形直角三角形的性质和判定1.知识与技能:准确运用勾股定理及逆定理2. 过程与方法:经历勾股定理的应用过程,熟练掌握其应用方法,应用“数形结合”的思想来解决3.情感态度与价值观:培养合情推理能力,提高合作交流意识,体会勾股定理的应用一、创设情境,激发兴趣教师道白:在一棵树的l0m高的D处有两只猴子,其中一只猴子爬下树走到离树20m处的池塘A处,另一只爬到树顶后直接跃向池塘A处,如果两只猴子所经过的距离相等,试问这棵树有多高?评析:如图所示,其中一只猴子从D→B→A共走了30m,另一只猴子从D→C→A也共走了30m,且树身垂直于地面,于是这个问题可化归到直角三角形解决.教师提出问题,引导学生分析问题、明确题意,用化归的思想解决问题.解:设DC=xm,依题意得:BD+BA=DC+CA CA=30-x,BC=l0+x在RtnABC中AC' =AB' +BC 即解之x=5 所以树高为15m.二、范例学习如图,在5×5的正方形网格中,每个小正方形的边长都为1,请在给定网格中按下列要求画出图形:(1)从点A出发画一条线段AB,使它的另一个端点B在格点(即小正方形的顶点)上,且长度为22;(2)画出所有的以(1)中的AB为边的等腰三角形,使另一个顶点在格点上,且另两边的长度都是无理数.教师分析只需利用勾股定理看哪一个矩形的对角线满足要求.解(1)图1中AB长度为22.(2)图2中△ABC、△ABD就是所要画的等腰三角形.例如图,已知CD=6m, AD=8m,∠ADC=90°, BC=24m, AB=26m.求图中阴影部分的面积.教师分析:课本图14.2.7中阴影部分的面积是一个不规则的图形,因此我们首先应考虑如何转化为规则图形的和差形,这是方向,同学们记住,实际上=-,现在只要明确怎样计算和了。