第7讲电磁感应中的能量转化与守恒s
- 格式:doc
- 大小:602.50 KB
- 文档页数:7
第7讲电磁感应中的能量转化与守恒知识点回顾1.垂直于匀强磁场放置、长为L的直导线通过电流为I时,它所受的安培力F=,安培力方向的判断用定则.2.牛顿第二定律:F=,它揭示了力与运动的关系.当加速度a与速度v方向相同时,速度,反之速度.当加速度a为零时,物体做.3.做功的过程就是的过程,做了多少功,就有多少能量发生了转化,是能量转化的量度.几种常见的功能关系(1)合外力所做的功等于物体的变化.(2)重力做的功等于的变化.(3)弹簧弹力做的功等于的变化.(4)除了重力和系统内弹力之外的其他力做的功等于的变化.4.电流通过导体时产生的热量焦耳定律:Q=知识点讲解一、电磁感应中的动力学问题1.电磁感应中产生的感应电流在磁场中将受到安培力作用,所以电磁感应问题往往与力学问题联系在一起,处理此类问题的基本方法是:(1)用法拉第电磁感应定律和楞次定律求感应电动势的大小和方向.(2)求回路中的电流强度的大小和方向.(3)分析研究导体受力情况(包括安培力).(4)列动力学方程或平衡方程求解.2.电磁感应现象中涉及的具有收尾速度的力学问题,关键要抓好受力情况和运动情况的动态分析;周而复始地循环,加速度等于零时,导体达到稳定运动状态.3.两种状态处理导体匀速运动,应根据平衡条件列式分析;导体做匀速直线运动之前,往往做变加速运动,处于非平衡状态,应根据牛顿第二定律或结合功能关系分析.例1如图甲所示,两根足够长的直金属导轨MN、PQ平行放置在倾角为θ的绝缘斜面上,两导轨间距为L,M、P两点间接有阻值为R的电阻.一根质量为m的均匀直金属杆ab放在两导轨上,并与导轨垂直.整套装置处于磁感应强度为B的匀强磁场中,磁场方向垂直于斜面向下.导轨和金属杆的电阻可忽略,让ab杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦.(1)由b向a方向看到的装置如图乙所示,请在此图中画出ab杆下滑过程中某时刻的受力示意图.(2)在加速下滑过程中,当ab杆的速度大小为v时,求此时ab杆中的电流及其加速度的大小.(3)求在下滑过程中,ab杆可以达到的速度最大值.二、电磁感应中的能量转化与守恒1.电磁感应中的能量转化特点2.求解电磁感应现象中能量守恒问题的一般思路(1)分析回路,分清电源和外电路.(2)分析清楚有哪些力做功,明确有哪些形式的能量发生了转化.如:①有摩擦力做功,必有内能产生;②有重力做功,重力势能必然发生变化;③克服安培力做功,必然有其他形式的能转化为电能,并且克服安培力做多少功,就产生多少电能.(3)列有关能量的关系式.3.焦耳热的计算技巧(1)感应电路中电流恒定,焦耳热Q=I2Rt.(2)感应电路中电流变化,可用以下方法分析:①利用功能关系产生的焦耳热等于克服安培力做的功,即Q=W安.克服安培力做的功W安可由动能定理求得.②利用能量守恒,即感应电流产生的焦耳热等于其他形式能量的减少,即Q=ΔE其他.例2如图所示,矩形线圈长为L,宽为h,电阻为R,质量为m,线圈在空气中竖直下落一段距离后(空气阻力不计),进入一宽度也为h、磁感应强度为B的匀强磁场中.线圈进入磁场时的动能为E k1,线圈刚穿出磁场时的动能为E k2,从线圈刚进入磁场到线圈刚穿出磁场的过程中产生的热量为Q,线圈克服磁场力做的功为W1,重力做的功为W2,则以下关系中正确的是()A.Q=E k1-E k2B.Q=W2-W1 C.Q=W1D.W2=E k2-E k1随堂练习1.如图所示,匀强磁场存在于虚线框内,矩形线圈竖直下落.如果线圈中受到的磁场力总小于其重力,则它在1、2、3、4位置时的加速度关系为()A.a1>a2>a3>a4B.a1=a2=a3=a4 C.a1=a3>a2>a4D.a1=a3>a2=a42.如图所示,两根光滑的金属导轨,平行放置在倾角为θ的斜面上,导轨的左端接有电阻R,导轨自身的电阻可忽略不计.斜面处在一匀强磁场中,磁场方向垂直于斜面向上.质量为m、电阻可以忽略不计的金属棒ab,在沿着斜面与棒垂直的恒力F作用下沿导轨匀速上滑,且上升的高度为h,在这一过程中()A.作用于金属棒上的各个力的合力所做的功等于零B.作用于金属棒上的各个力的合力所做的功等于mgh与电阻R上产生的焦耳热之和C.恒力F与安培力的合力所做的功等于零D.恒力F与重力的合力所做的功等于电阻R上产生的焦耳热3.足够长的平行金属导轨MN和PK表面粗糙,与水平面之间的夹角为α,间距为L.垂直于导轨平面向上的匀强磁场的磁感应强度为B,MP间接有阻值为R的电阻,质量为m的金属杆ab垂直导轨放置,其他电阻不计.如图所示,用恒力F沿导轨平面向下拉金属杆ab,使金属杆由静止开始运动,杆运动的最大速度为v m,t s末金属杆的速度为v1,前t s内金属杆的位移为x,(重力加速度为g)求:(1)金属杆速度为v1时加速度的大小;(2)整个系统在前t s内产生的热量.课堂检测1.如图所示,在一匀强磁场中有一U形导线框abcd,线框处于水平面内,磁场与线框平面垂直,R为一电阻,ef为垂直于ab的一根导体杆,它可在ab、cd上无摩擦地滑动.杆ef及线框中导线的电阻都可不计.开始时,给ef一个向右的初速度,则()A.ef将减速向右运动,但不是匀减速B.ef将匀减速向右运动,最后停止C.ef将匀速向右运动D.ef将往返运动2.如图所示,有两根和水平方向成α角的光滑平行的金属轨道,间距为l,上端接有可变电阻R,下端足够长,空间有垂直于轨道平面的匀强磁场,磁感应强度为B.一根质量为m的金属杆从轨道上由静止滑下,经过足够长的时间后,金属杆的速度会趋于一个最大速度v m,除R外其余电阻不计,则()A.如果B变大,v m将变大B.如果α变大,v m将变大C.如果R变大,v m将变大D.如果m变小,v m将变大3.如图所示,空间某区域中有一匀强磁场,磁感应强度方向水平,且垂直于纸面向里,磁场上边界b和下边界d水平.在竖直面内有一矩形金属线圈,线圈上下边的距离很短,下边水平.线圈从水平面a开始下落.已知磁场上、下边界之间的距离大于水平面a、b之间的距离.若线圈下边刚通过水平面b、c(位于磁场中)和d时,线圈所受到的磁场力的大小分别为F b、F c和F d,则()A.F d>F c>F b B.F c<F d<F b C.F c>F b>F d D.F c<F b<F d4.如图所示,在平行水平地面的有理想边界的匀强磁场上方,有三个大小相同的,用相同的金属材料制成的正方形线框,线框平面与磁场方向垂直.A线框有一个缺口,B、C线框都闭合,但B线框导线的横截面积比C线框大.现将三个线框从同一高度由静止开始同时释放,下列关于它们落地时间说法正确的是()A .三个线框同时落地B .三个线框中,A 线框最早落地C .B 线框在C 线框之后落地D .B 线框和C 线框在A 线框之后同时落地5.如图所示,位于一水平面内的两根平行的光滑金属导轨,处在匀强磁场中,磁场方向垂直于导轨所在的平面,导轨的一端与一电阻相连;具有一定质量的金属杆ab 放在导轨上并与导轨垂直.现用一平行于导轨的恒力F 拉杆ab ,使它由静止开始向右运动.杆和导轨的电阻、感应电流产生的磁场均可不计.用E 表示回路中的感应电动势,i 表示回路中的感应电流,在i 随时间增大的过程中,电阻消耗的功率等于 ( )A .F 的功率B .安培力的功率的绝对值C .F 与安培力的合力的功率D .iE 6.如图所示,边长为L 的正方形导线框质量为m ,由距磁场H 高处自由下落,其下边ab 进入匀强磁场后,线圈开始做减速运动,直到其上边dc 刚刚穿出磁场时,速度减为ab 边刚进入磁场时的一半,磁场的宽度也为L ,则线框穿越匀强磁场过程中产生的焦耳热为( )A .2mgLB .2mgL +mgHC .2mgL +34mgHD .2mgL +14mgH 7.如图所示,纸面内有一矩形导体闭合线框abcd ,ab 边长大于bc 边长,置于垂直纸面向里、边界为MN 的匀强磁场外,线框两次匀速地完全进入磁场,两次速度大小相同,方向均垂直于MN .第一次ab 边平行MN 进入磁场,线框上产生的热量为Q 1,通过线框导体横截面积的电荷量为q 1;第二次bc 边平行于MN 进入磁场,线框上产生的热量为Q 2,通过线框导体横截面的电荷量为q 2,则 ( )A .Q 1>Q 2,q 1=q 2B .Q 1>Q 2,q 1>q 2C .Q 1=Q 2,q 1=q 2D .Q 1=Q 2,q 1>q 28.水平放置的光滑平行导轨上放置一根长为L 、质量为m 的导体棒ab ,ab 处在磁感应强度大小为B 、方向如图所示的匀强磁场中,导轨的一端接一阻值为R 的电阻,导轨及导体棒电阻不计.现使ab 在水平恒力F 作用下由静止沿垂直于磁场的方向运动,当通过位移为x 时,ab 达到最大速度v m .此时撤去外力,最后ab 静止在导轨上.在ab 运动的整个过程中,下列说法正确的是( )A .撤去外力后,ab 做匀减速运动B .合力对ab 做的功为FxC .R 上释放的热量为Fx +12m v 2m D .R 上释放的热量为Fx 9.如图所示,间距为L 、电阻不计的足够长平行光滑金属导轨水平放置,导轨左端用一阻值为R 的电阻连接,导轨上横跨一根质量为m 、有效电阻也为R 的金属棒,金属棒与导轨接触良好.整个装置处于竖直向上、磁感应强度为B 的匀强磁场中.现使金属棒以初速度v 沿导轨向右运动,若金属棒在整个运动过程中通过的电荷量为q .下列说法正确的是 ( )A .金属棒在导轨上做匀减速运动B .整个过程中金属棒在导轨上发生的位移为qR BLC .整个过程中金属棒克服安培力做功为12m v 2D .整个过程中电阻R 上产生的焦耳热为12m v 2 10.如图所示,MN 和PQ 是电阻不计的平行金属导轨,其间距为L ,导轨弯曲部分光滑,平直部分粗糙,二者平滑连接.右端接一个阻值为R 的定值电阻.平直部分导轨左边区域有宽度为d 、方向竖直向上、磁感应强度大小为B 的匀强磁场.质量为m 、电阻也为R 的金属棒从高度为h 处静止释放,到达磁场右边界处恰好停止.已知金属棒与平直部分导轨间的动摩擦因数为μ,金属棒与导轨间接触良好.则金属棒穿过磁场区域的过程中 ( )A .流过金属棒的最大电流为Bd 2gh 2RB .通过金属棒的电荷量为BdL RC .克服安培力所做的功为mghD .金属棒产生的焦耳热为12(mgh -μmgd ) 11.如图所示,倾角为θ的“U ”型金属框架下端连接一阻值为R 的电阻,相互平行的金属杆MN 、PQ 间距为L ,与金属杆垂直的虚线a 1b 1、a 2b 2区域内有垂直框架平面向上的匀强磁场,磁感应强度大小为B ,a 1b 1、a 2b 2间距离为d ,一长为L 、质量为m 、电阻为R 的导体棒在金属框架平面上与磁场上边界a 2b 2距离d 处从静止开始释放,最后能匀速通过磁场下边界a 1b 1.重力加速度为g (金属框架摩擦及电阻不计).求:(1)导体棒刚到达磁场上边界a 2b 2时的速度大小v 1;(2)导体棒匀速通过磁场下边界a 1b 1时的速度大小v 2;(3)导体棒穿越磁场过程中,回路产生的电能.12.如图所示,固定的光滑平行金属导轨间距为l,导轨电阻不计,上端a、b间接有阻值为R的电阻,导轨平面与水平面的夹角为θ,且处在磁感应强度大小为B、方向垂直于导轨平面向上的匀强磁场中.质量为m、电阻为r的导体棒与固定弹簧相连后放在导轨上.初始时刻,弹簧恰好处于自然长度,导体棒具有沿轨道向上的初速度v0.整个运动过程中导体棒始终与导轨垂直并保持良好接触.已知弹簧的劲度系数为k,弹簧的中心轴线与导轨平行.(1)求初始时刻通过电阻R的电流I的大小和方向;(2)当导体棒第一次回到初始位置时,速度变为v,求此时导体棒的加速度大小a;(3)导体棒最终静止时弹簧的弹性势能为E p,求导体棒从开始运动直到停止的过程中,电阻R上产生的焦耳热Q.。