材料科学基础复习重点
- 格式:doc
- 大小:28.00 KB
- 文档页数:1
几种强化1、加工硬化:金属材料在再结晶温度以下塑性变形时强度和硬度升高,而塑性和韧性降低的现象。
强化机制:金属在塑性变形时,晶粒发生滑移,出现位错的缠结,使晶粒拉长、破碎和纤维化,金属内部产生了残余应力。
2、固溶强化:固溶体材料随溶质含量提高其强度、硬度提高而塑性、韧性下降的现象。
强化机制:晶格畸变,阻碍位错运动。
3、细晶强化:通过细化晶粒而使金属材料力学性能提高的方法,4、弥散强化:在材料中引入第二相后材料的强度提高的现象几种概念1、滑移系:一个滑移面和该面上一个滑移方向的组合。
2、交滑移:螺型位错在两个相交的滑移面上运动,螺位错在一个滑移面上运动遇有障碍,会转动到另一滑移面上继续滑移,滑移方向不变。
3、屈服现象:低碳钢在上屈服点开始塑性变形,当应力达到上屈服点之后开始应力降落,在下屈服点发生连续变形而应力并不升高,即出现水平台(吕德斯带)原因:柯氏气团的存在、破坏和重新形成,位错的增殖。
4、应变时效:低碳钢经过少量的预变形可以不出现明显的屈服点,但是在变形后在室温下放置一段较长时间或在低温经过短时间加热,在进行拉伸试验,则屈服点又重复出现,且屈服应力提高,这种现象就称为低碳钢的应变时效。
5、形变结构:各晶粒的某个相同的滑移系,在变形量较大时逐渐转向趋于与拉力轴平行,这种原来晶粒取向任意,现在由于外力的作用使晶粒转动,晶粒的取向趋于一致,形成了晶体的择优取向,我们称之为形变织构。
变形量越大,择优取向程度越大,表现出织构越强。
滑移和孪晶的区别滑移是指在切应力的作用下,晶体的一部分沿一定晶面和晶向,相对于另一部分发生相对移动的一种运动状态。
孪生:在切应力作用下,晶体的一部分相对于另一部分沿一定的晶面和晶向发生均匀切变并形成晶体取向的镜面对称关系。
伪共晶:在不平衡结晶条件下,成分在共晶点附近的合金全部变成共晶组织,这种非共晶成分的共晶组织,称为伪共晶组合。
伪共晶区有如下规律:两组元有相近的熔点时,出现对称伪共晶区;两组元的熔点相差较大时,共晶点通常偏向低熔点组元一方,而伪共晶区则偏向高熔点组元一方。
材料科学基础考研复习材料科学基础是材料科学与工程学科中的一门基础课程,其内容涉及材料科学的基本理论、基本原理和基本方法,是进行材料科学研究和工程应用的基础。
考研复习材料科学基础需要系统地学习和理解相关知识点,加深对材料科学的理论和实践应用的认识。
1.材料工程基础知识:包括材料科学的发展历史、材料分类与特性等知识。
这些知识对于理解和掌握材料科学的基础概念和原理非常重要。
2.结构与性能关系:掌握材料的微观结构与宏观性能之间的关系。
了解材料的结构特点,如晶体结构、非晶态结构等,并能够解释材料性能改善的原因。
3.材料制备技术:学习不同材料的制备方法与工艺,如液相法、气相法、固相法等。
了解各种制备方法的特点及其对材料性能的影响。
4.材料测试与分析技术:包括材料的物理性能、化学性能和机械性能等测试方法与技术。
学习各种常用测试仪器和分析方法,如扫描电镜、透射电镜、X射线衍射等。
5.材料性能与应用:了解材料的各种性能指标,如强度、硬度、导电性、磁性等,并能够解释不同材料的性能应用特点。
在复习材料科学基础时,可以通过以下几个途径进行:1.整理笔记:将课堂上的重点内容进行整理和归纳,形成自己的复习笔记。
可以通过制作思维导图、总结重要公式和推导过程等方式,帮助加深对知识点的记忆和理解。
2.刷题巩固:通过解答一些典型的习题和试题,巩固所学知识。
可以选择一些综合性的考研试题进行模拟考试,提高解题能力和应试技巧。
3.参考教材和相关资料:选择几本优质的教材和参考书进行阅读和学习。
可以参考一些考研辅导资料和复习指南,了解相关知识点的掌握程度和考点分布。
4.学习小组讨论:可以与其他考研学生组成学习小组,一起讨论和解答问题。
通过讨论和交流,加深对知识点的理解和运用,并及时纠正和改进自己的思路和方法。
在复习材料科学基础时,还需要注意以下几点:1.提前规划:合理安排复习时间和目标,制定合理的学习计划。
根据自己的掌握情况和考试时间,合理安排每一阶段的复习内容和进度,保证复习进程的顺利进行。
2、产生柯肯达尔效应的原因构成扩散的纯组元A,B作为溶质组元溶于对方一侧并进行扩散时,各自的扩散系数不同4、稳定化合物:是指具有一定的熔点,而且在熔点以下都能保持自身固有的结构而不发生分解的化合物。
7、晶胞的选取原则1.几何形状与晶体具有同样的对称性、2.平行六面体内相等的棱与角的数目最多、3.当平行六面体棱间有直角时,直角数目最多、4.在满足上述条件下,晶胞体积应最小。
8、形成置换固溶体的条件和影响溶解度因素:1.条件:溶质取代了溶剂中原子或离子所形成的固溶体、2影响:原子或离子的尺寸的影响、晶体结构类型的影响、电负性的影响、电子浓度的影响。
9、碳对铁碳合金的组织与性能的影响:1.碳对铁碳合金平衡组织的影响:当含碳量增加时,使铁碳合金组成相的相对含量发生变化,从而导致不同性质的结晶。
2.碳对合金机械性能的影响:当含碳量达到0.77%时,铁碳合金不仅具有较高的强度和硬度,也具有一定的塑性和韧性,当>0.77%时,铁碳合金的塑性韧性降低。
3.碳对合金工艺性能的影响:12、材料科学材料科学是自然科学的一个分支,它从事于材料本质的发现、分析和了解方面的研究,目的在于提供材料结构的统一描绘和模型,以及解释这种结构与性能之间的关系。
13、合成的定义式什么,合成研究包括那些?指促使原子、分子结合而构成材料的化学与物理过程。
合成的研究既包括有关寻找新合成方法的科学问题,也包括以适当的数量和形态合成材料的技术问题;既包括新材料的合成,也应包括已有材料的新合成方法(如溶胶-凝胶法)及其新形态(如纤维、薄膜)的合成。
14、制备:研究如何控制原子与分子使之构成有用的材料。
15、结构的定义式什么,包括那些方面?1.定义:结构是理解和控制性能的中心环节。
2.包括{原子结构、原子的排列、相结构、显微组织、晶体中的结构缺陷。
16、离子键的特点:离子键可用化学式表示、高熔点,结合力强,硬而脆、电子周围无自由电子、无方向性、传导性差17、共价键的特点:具有饱和性符合8-n定律、具有方向性、结合力强,熔点高,硬、电子周围无自由电子、传导性差18、原子半径的影响因素:1.致密度越高,则Ra越小2、键合力越高,则Ra越小3、不同方向上Ra也可能不同19、晶向指数建立步骤1.选定坐标系、2通过原点作一条直线,使其平行于待标定的晶向、3在直线上任取一点P,求出P点在3个坐标轴的坐标、4取截距的最小整数比,去掉比例符号,用方括号括之。
1、鲍林规则:鲍林根据已测定的晶体结构数据和晶格能公式所反映的关系,提出的判断离子化合物结构稳定性的规则,共包含五条规则。
2、晶体:质点在三维空间作有序排列的固体晶胞:是晶体结构中的最小单元。
3、晶子学说:玻璃结构是一种不连续的原子集合体,即无数“微晶”分散在无定形介质中。
无规则网络学说:玻璃的结构与相应的晶体结构相似,同样形成连续的三维空间网络结构。
但玻璃的网络与晶体的网络不同,玻璃的网络是不规则的、非周期性的4、扩散型相变:在相变时,依靠原子或离子的扩散来进行的相变。
非扩散型相变:相变过程不存在原子离子的扩散,或虽存在扩散但不是相变所必须的或不是主要过程的相变。
5、热缺陷:也称本征缺陷,指由热起伏的原因所产生的空位和间隙质点。
杂质缺陷:也称组成缺陷,是由外加杂质的引入所产生的缺陷。
6、点缺陷:亦称为零维缺陷,缺陷尺寸为原子大小数量级,包括空位、间隙原子、杂质原子和色心等。
线缺陷:亦称一维缺陷或位错,是指在一维方向上偏离理想晶体中的周期性、规则性排列所产生的缺陷,包括棱位错和螺形位错;7、烧结:一种或多种固体粉末经过成型,在加热到一定温度后开始收缩,在低于熔点温度下变成致密、坚硬的烧结体,这个过程叫烧结。
固相反应:固体直接参与反应并起化学变化,同时至少在固体内部或外部的一个过程中起控制作用。
8、肖特基缺陷:质点由表面位置迁移到新的表面位置,在晶体表面形成新的一层,同时在晶体内部留下空位,其特征是正负离子空位成比例出现。
弗伦克尔缺陷:质点离开正常格点后进入到晶格间隙位置,其特征是空位和间隙质点成对出现。
9、硼反常现象:当数量不多的碱金属氧化物同氧化硼一起熔融时,碱金属所提供的氧不象熔融玻璃中作为非桥氧出现在结构中,而是使硼氧三角体转变为桥氧组成的硼氧四面体,致使玻璃从原来两度空间的层状结构转变为三度空间的架状结构,从而加强了网络结构,并使玻璃的各种物理性能变好。
这与相同条件下的硅酸盐玻璃相比,其性能随碱金属或碱土金属加入量的变化规律相反,所以称之为硼反常现象10、均匀成核:晶核从均匀的单相熔体中产生的几率处处相同的成核过程。
材料科学基础复习资料
导论
材料科学是研究材料的结构、性质和应用的科学,是现代工程技术领域的基础学科。
它对于工程师和科学家在材料选择、设计和开发方面至关重要。
本篇文档将以复习资料的形式,对材料科学的基础知识进行系统梳理和总结。
第一章材料的结构与组成
1.1 原子结构与元素周期表
- 原子的组成:质子、中子和电子
- 元素周期表的基本结构和主要特征
- 元素周期表的分类:金属、非金属和半金属
1.2 结晶与非晶结构
- 结晶的概念和特征
- 结晶的晶体结构:离子晶体、共价晶体和金属晶体
- 非晶态材料的特点和应用
1.3 晶体缺陷
- 点缺陷:空位、间隙、杂质点等
- 线缺陷:位错、脆性断裂和塑性变形
- 面缺陷:晶界、孪晶和堆垛层错
第二章材料的物理性质
2.1 密度与晶体的结构密度
- 密度的概念和计算方法
- 晶格常数与密度的关系
2.2 热膨胀与晶体的结构变化
- 热膨胀的定义和计算方法
- 晶体结构变化对热膨胀的影响
2.3 热导率与导热机制
- 热导率的定义和计算方法
- 材料的导热机制:电子传导、晶格振动传导和辐射传导。
第一章、晶体结构基础1、晶体的基本概念晶体的本质:质点在三维空间成周期性重复排列晶体的基本性质:结晶均一性、各向异性、自限性、对称性、最小内能性2、对称的概念物体中的相同部分作有规律的重复对称要素:对称面、对称中心、对称轴(对称轴的类型和特点)(L1、L2、L3、L4、L6、C 、P )4次倒转轴不能被其他的对称要素及其组合取代对称操作:借助对称要素,使晶体的相同部分完全重复的操作对称要素的组合必须满足晶体的整体对称要求,不是无限的。
3、对称型(点群):宏观晶体中只存在32种对称型对称型的概念(所具有的宏观对称要素以一定的顺序组合起来)4、晶体的分类 、晶族分类的依据5、晶面的取向关系 、晶面指数的含义和计算(举例)6、空间点阵的概念、 14种布拉维格子( P (R) 、I 、F 、C 格子)7、晶胞的概念 、晶胞参数(计算)8、微观对称要素的特征、空间群的概念(只存在230种空间群)在微观对称操作中都包含有平移动作9、球体紧密堆积原理 (六方密堆、立方密堆)10、鲍林规则(离子晶体)11、决定晶体结构的因素:化学组成、质点相对大小、极化性质12、同质多晶、类质同晶13、典型的晶体结构(晶体结构的描述方法)CaF2结构、金刚石结构、金红石结构、刚玉结构、 CaTiO3、尖晶石结构14、硅酸盐晶体结构、硅酸盐晶体结构分类的依据15、层状硅酸盐晶体的结构特点,(晶胞参数a 和b 值相近)16、石英、鳞石英、方石英的结构特点第二章、晶体结构缺陷1、缺陷的概念(凡是造成晶体点阵的周期性势场发生畸变的一切因素)2、热缺陷 (弗伦克尔缺陷、肖特基缺陷)及计算 热缺陷是一种本征缺陷、高于0K 就存在,影响热缺陷浓度的因数:温度和热缺陷形成能(晶体结构)3、杂质缺陷、固溶体(晶态固体) 固溶体、化合物、混合物之间的比较4、非化学计量化合物结构缺陷 种类、形成条件、特点,缺陷的计算等5、连续置换型固溶体的形成条件6、影响形成间隙型固溶体的因素7、组分缺陷(补偿缺陷):不等价离子取代 形成条件、特点(浓度取决于掺杂量和固溶度) 缺陷浓度的计算、与热缺陷的比较8、缺陷反应方程和固溶式产生的各种缺陷杂质基质−−→−i Cl K K Cl 2l C Cl Ca CaCl '++−→−⨯∙⨯∙'+'+−→−ClK K KCl 2l C 2V Ca CaCl9、固溶体的研究与计算写出缺陷反应方程固溶式、算出晶胞的体积和重量理论密度(间隙型、置换型)和实测密度比较10、位错概念刃位错:滑移方向与位错线垂直,伯格斯矢量b与位错线垂直螺位错:滑移方向与位错线平行,伯格斯矢量b与位错线平行第三章、非晶态固体1、熔体的概念:不同聚合程度的各种聚合物的混合物硅酸盐熔体的粘度与组成的关系2、非晶态物质的特点3、玻璃的通性4、Tg 、Tf 相对应的粘度和特点5、网络形成体、网络变化体、网络中间体计算(如Pb玻璃中Pb2+的作用)6、玻璃形成的热力学观点(结晶化、玻璃化、分相)7、玻璃形成的动力学条件3T图---临界冷却速率8、玻璃形成的结晶化学条件(键强、键型)9、玻璃的结构学说(二种玻璃结构学说的共同之处和不同之处)10、玻璃的结构参数(注意给出的条件)Z可根据玻璃类型确定,先计算R,再计算X、Y11、硼的反常现象12、硅酸盐晶体与硅酸盐玻璃的区别硅酸盐晶体与硅酸盐玻璃在结构上的区别:(1)在硅酸盐晶体中,[SiO4]骨架按一定的对称规律有序排列;在硅酸盐玻璃中[SiO4]骨架的排列是无序的。
材料科学基础期末总结复习资料材料科学基础期末总结复习资料1、名词解释(1)匀晶转变:由液相结晶出单相固溶体的过程称为匀晶转变。
(2)共晶转变:合金系中某一定化学成分的合金在一定温度下,同时由液相中结晶出两种不同成分和不同晶体结构的固相的过程称为共晶转变。
(3)包晶转变:成分为H点的δ固相,与它周围成分为B点的液相L,在一定的温度时,δ固相与L液相相互作用转变成成分是J点的另一新相γ固溶体,这一转变叫包晶转变或包晶反应。
即HJB---包晶转变线,LB+δH→rJ(4)枝晶偏析:合金以树枝状凝固时,枝晶干中心部位与枝晶间的溶质浓度明显不同的成分不均匀现象。
(5)晶界偏析:晶粒内杂质原子周围形成一个很强的弹性应变场,相应的化学势较高,而晶界处结构疏松,应变场弱,化学势低,所以晶粒内杂质会在晶界聚集,这种使得溶质在表面或界面上聚集的现象称为晶界偏析(6)亚共晶合金:溶质含量低于共晶成分,凝固时初生相为基体相的共晶系合金。
(7)伪共晶:非平衡凝固时,共晶合金可能获得亚(或过)共晶组织,非共晶合金也可能获得全部共晶组织,这种由非共晶合金所获得的全部共晶组织称为伪共晶组织。
(8)离异共晶:在共晶转变时,共晶中与初晶相同的那个相即附着在初晶相之上,而剩下的另一相则单独存在于初晶晶粒的晶界处,从而失去共晶组织的特征,这种被分离开来的共晶组织称为离异共晶。
(9)纤维组织:当变形量很大时,晶粒变得模糊不清,晶粒已难以分辨而呈现出一片如纤维状的条纹,这称为纤维组织。
(10)胞状亚结构:经一定量的塑性变形后,晶体中的位错线通过运动与交互作用,开始呈现纷乱的不均匀分布,并形成位错缠结,进一步增加变形度时,大量位错发生聚集,并由缠结的位错组成胞状亚结构。
(11)加工硬化:随着冷变形程度的增加,金属材料强度和硬度指标都有所提高,但塑性、韧性有所下降。
(12)结构起伏:液态结构的最重要特征是原子排列为长程无序、短程有序,并且短程有序原子集团不是固定不变的,它是一种此消彼长、瞬息万变、尺寸不稳定的结构,这种现象称为结构起伏。
《材料科学基础》课程复习纲要增加重点复习内容:1.为什么颗粒细化能提高材料的化学反应活性、燃烧结性能?(简答型,或扩展为阐述分析型大题)2.为什么细金化能提高材料的强度和断裂韧性?(简答型,或扩展为阐述分析型大题)3.从图3.20分析非晶态合金、微晶合金以及准晶合金的过程异同?(简答型)4.晶体、非晶体、准晶体的异同?(简答型)5.影响晶体生长形态的外因?(简答型)6.细化金属铸件晶粒的方法?(简答型)7.纯金属的结晶过程?(简答型)8.晶体的缺陷有哪些?以及各种缺陷对晶体性能的影响?(简答型,或扩展为阐述分析型大题)Ⅰ、第一大类知识要点:应该牢固掌握的关键知识要素一、出题形式一:填空类1.在立方系中,晶面族{123}中有组平面,晶面族{100}中有组平面。
2.获得高能量的原子离开原来的平衡位置,进入其它空位或迁移至晶界或表面,形成空位。
如果离位原子进入晶体间隙,形成空位。
3.点缺陷的类型分为和间隙原子;当相遇时两者都消失,这一过程称为。
4.塑性变形不仅可以改变金属材料的外形,还使其内部组织和各种性能发生改变,如:显微组织与性能的变化、形变织构和残余应力。
5.再冷塑变过程中,歪理所做的功有一部分以畸变能的形式储存在形变金属内部,具体表现为:宏观残余应力、微观残余应力和点阵畸变。
6.均匀形核必须具备的条件是:1.必须过冷;2. 必须具备与一定多冷度相适应的和。
7.面心立方结构的滑移面是{111},共有组,每组滑移面上包含个滑移方向,共有个滑移系。
8.由于效应及效应,使多晶体的变形抗力比单晶体大,其中,效应是多晶体加工硬化更主要的原因。
9.滑移面应是面间距最面,滑移方向是原子最方向。
10.金属塑性变形时,外力所作的功除了转化为热量之外,还有一小部分被保留在金属内部,表现为。
11.金属的热变形是指金属材料在再结晶温度以上的加工变形,在此过程中,金属内部同时进行着加工硬化和软化两个过程。
12. 扩散的驱动力是;再结晶的驱动力为;再结晶后晶粒的长大的驱动力是:,纯金属结晶的驱动力是。
《材料科学基础》上半学期内容重点第一章固体材料的结构基础知识键合类型(离子健、共价健、金属健、分子健力、混合健)及其特点;键合的本质及其与材料性能的关系,重点说明离子晶体的结合能的概念;晶体的特性(5个);晶体的结构特征(空间格子构造)、晶体的分类;晶体的晶向和晶面指数(米勒指数)的确定和表示、十四种布拉维格子;第二章晶体结构与缺陷晶体化学基本原理:离子半径、球体最紧密堆积原理、配位数及配位多面体;典型金属晶体结构;离子晶体结构,鲍林规则(第一、第二);书上表2-3下的一段话;共价健晶体结构的特点;三个键的异同点(举例);晶体结构缺陷的定义及其分类,晶体结构缺陷与材料性能之间的关系(举例);第三章材料的相结构及相图相的定义相结构合金的概念:固溶体置换固溶体(1)晶体结构无限互溶的必要条件—晶体结构相同比较铁(体心立方,面心立方)与其它合金元素互溶情况(表3-1的说明)(2)原子尺寸:原子半径差及晶格畸变;(3)电负性定义:电负性与溶解度关系、元素的电负性及其规律;(4)原子价:电子浓度与溶解度关系、电子浓度与原子价关系;间隙固溶体(一)间隙固溶体定义(二)形成间隙固溶体的原子尺寸因素(三)间隙固溶体的点阵畸变性中间相中间相的定义中间相的基本类型:正常价化合物:正常价化合物、正常价化合物表示方法电子化合物:电子化合物、电子化合物种类原子尺寸因素有关的化合物:间隙相、间隙化合物二元系相图:杠杆规则的作用和应用;匀晶型二元系、共晶(析)型二元系的共晶(析)反应、包晶(析)型二元系的包晶(析)反应、有晶型转变的二元系相图的特征、异同点;三元相图:三元相图成分表示方法;了解三元相图中的直线法则、杠杆定律、重心定律的定义;第四章材料的相变相变的基本概念:相变定义、相变的分类(按结构和热力学以及相变方式分类);按结构分类:重构型相变和位移型相变的异同点;马氏体型相变:马氏体相变定义和类型、马氏体相变的晶体学特点,金属、陶瓷中常见的马氏体相变(举例)(可以用许教授提的一个非常好的问题――金属、陶瓷马氏体相变性能的不同――作为题目)有序-无序相变的定义玻璃态转变:玻璃态转变、玻璃态转变温度、玻璃态转变点及其黏度按热力学分类:一级相变定义、特点,属于一级相变的相变;二级相变定义、特点,属于二级相变的相变;按相变方式分类:形核长大型相变、连续型相变(spinodal相变)按原子迁动特征分类:扩散型相变、无扩散型相变第5章 金属材料的显微结构特征一、纯金属的凝固及结晶1、结晶的热力学条件结晶后系统自由能下降。
针对各位对于材料科学基础复习重点问题,我在这里把我觉得复习重点写下。
本人本科学渣一枚,初试专业课127。
各位也别觉得分数很高怎么样,其实如果你认真复习都能够达到这个程度。
对于厦大材料专业课,那本西北工业的练习册是必备的。
我没有具体的书所以我也不可能帮你们去总结练习册。
但是里面内容大部分都要看。
我就给你说说课本吧。
材料科学基础选用的书是上海交大版的复习章节总共有8章,到三元相图为止。
第一章,高分子链不用复习,历年真题里没有出现过。
侧重点在于原子间的键合,几乎年年都会在这里出题,不是名词解释就是答题。
几大键合定义性质是需要背下
来并且能够默写下来的。
历年真题里有出题形式你们可以去看下。
第二章,极射投影,倒易点阵,多晶性硅酸盐的晶体结构,集合态的晶体结构,准晶态结构,液晶态结构,非晶态结构,这些都是非重点不需要看的。
针对于这一章
的重点,考试每年必考的是画图题,除了上述说的非重点你们都需要认真看。
这一章里面容易考名词解释,还有大题,出现计算的概率不大。
第三章,这一章节里绝大部分会考,但是一些小的地方不必发很多时间去纠结。
针对于,位错的应力场,位错的应变能,位错的线张力这些力的方面就不必要去纠结,
了解看看就可以了。
在这一章里几乎每年都考位错反应,这一道题是送分题,
所以给位要把这个点搞通。
针对这个章节里出现的一些很复杂的公式不需要特
意去记,考试很少在这个章节出现公式。
第四章,这一章高分子的分子运动可以不看。
但是对于其他的必须看,尤其是菲克第一第二定律得搞清楚,这一章里出现了很多公式,尤为重要的是扩散系数,扩散
激活能。
针对于这一章的复习建议把历年真题里出现这章的东西都扣出来,自
己比对着看。
第五章,这一章里超塑性,高聚物的知识点都不会考。
至于其他的,基本上历年真题里多少都有考到,所以必须得看,而且这一章节里很多东西需要记住。
至于这一
章怎么复习,我个人觉得先把该看的看下,在把历年真题拿出来,看看历年真
题在这一章考了哪些,再根据自己总结的进行记忆。
第六章,这一章气固相变与薄膜生长不需要花很多时间,了解为主,高分子结晶可以不看。
针对于二元相图和三元相图我就不一一说了,里面东西太多了。
这两张我觉得是最好复习的两个章节,但是这两个章节也是比较难理解的章节。
针对这两个章节,如果你觉得你时间多,我的建议是一点点看,看到难点就跳,往下看不用纠结,等看完了就看看历年真题的考点,把里面出现这两个章节的内容单独拿出来复习。
三元相图考到8.2节固态互不溶解的三元相图就差不多了。
二元相图每年都是以图像的考查方式为主,所以针对这一章节出现的图形要特别注意,但是很多人就纠结了,这一章图形太多,所以你需要去总结历年真题考过哪些,那些就是你要背的。
三元相图考查方式有两个一个是计算一个是画图。
考的都不会太难。
我现在只能这样帮你们这样总结了,写的有点匆忙,有些地方有点乱。
有什么不懂得在群里你们自己讨论吧。
还是以历年真题为主。
如果觉得我写的不怎么样,也可以按自己方式去划重点。
但是最后都得回归真题。