人教版九年级上册第21章一元二次方程21.1——21.2 练习题(扫描版 无答案)
- 格式:docx
- 大小:471.52 KB
- 文档页数:7
人教版九年级数学上册《21.2解一元二次方程》练习题-附参考答案一、选择题1.用配方法解一元二次方程2x 2−3x −1=0,配方正确的是( ) A .(x −34)2=1716 B .(x −34)2=12 C .(x −34)2=134D .(x −34)2=1142.一元二次方程(x −22)2=0的根为( ). A .x 1=x 2=22B .x 1=x 2=−22C .x 1=0,x 2=22D .x 1=−223.关于一元二次方程x 2+kx −9=0(k 为常数)的根的情况,下列说法正确的是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根D .不能确定根的情况4.若关于 的一元二次方程 有两个不相等的实数根,则实数 的取值范围是( )A . 且B .C .且D .5.若关于 的一元二次方程 有一根为0,则的的值为( )A .2B .-1C .2或-1D .1或-26.已知a ,b 是一元二次方程x 2+3x −2=0的两根,则a 2+5a +2b 的值是( ) A .-5B .-4C .1D .07.三角形两边长分别是8和6,第三边长是一元二次方程x 2−16x +60=0一个实数根,则该三角形的面积是( ) A .24B .48C .24或8√5D .8√5 8.已知一元二次方程x 2+2x +6=10x +2的两实数根分别为x 1,x 2,则x 1+x 2x 1x 2的值为( ) A .-2 B .2C .12D .−12二、填空题9.若用配方法解方程x 2+4x +1=0时,将其配方为(x +b)2=c 的形式,则c = . 10.若实数a ,b 满足a −2ab +2ab 2+4=0,则a 的取值范围是 . 11.已知(a 2+b 2)2−a 2−b 2−6=0,求a 2+b 2的值为 .12.关于x 的一元二次方程x 2+2x-a =0的一个根是2,则另一个根是 .13.设x1,x2是方程2x2+6x−1=0的两根,则x1+x2+x1x2的值是.三、解答题14.解方程:(1)x2−4x+3=0;(2)3x2−5x+1=0.15.已知x=√5−1,求代数式x2+2x−3的值.16.关于的一元二次方程有两个实数根,求实数的取值范围.17.已知关于的一元二次方程(1)若方程的一个根为,求的值及另一个根;(2)若该方程根的判别式的值等于,求的值.18.若关于x的方程有两个不相等的实数根.(1)求k的取值范围;(2)设方程的两根分别是、且满足,求的值.参考答案1.A2.A3.A4.A5.A6.B7.C8.B9.310.−8≤a<011.312.-413.−7214.(1)解:∵x2−4x+3=0∴(x−3)(x−1)=0∴x−3=0或x−1=0∴x1=3,x2=1.(2)解:∵3x2−5x+1=0∴a=3,b=−5,c=1∴Δ=25−12=13>0∴x=5±√136∴x1=5+√136,x2=5−√136.15.解:当x=√5−1时x2+2x−3=x2+2x+1−1−3=(x+1)2−4=(√5−1+1)2−4=5-4=1.16.解:∵∴且,即.解得:且.17.(1)解:设方程的另一根是x2.∵一元二次方程mx2﹣(m+2)x+2=0的一个根为3∴x=3是原方程的解∴9m﹣(m+2)×3+2=0解得m= ;又由韦达定理,得3×x2=∴x2=1,即原方程的另一根是1(2)解:∵△=(m+2)2﹣4×m×2=1∴m=1,m=3.18.(1)解:∵关于x的方程有两个不相等的实数根∴即解得:;(2)解:设方程的两根分别是∴又∵∴∴∴解得:. 经检验,都符合原分式方程的根∵,∴。
《一元二次方程》 单元练习题一.选择题1.已知x =0是关于x 的一元二次方程(m ﹣1)x 2+mx +4m 2﹣4=0的一个根,那么直线y =mx 经过的象限是( )A .第一、三象限B .第二、四象限C .第一、二象限D .第三、四象限2.一元二次方程x 2+4x +5=0的根的情况是( ) A .无实数根B .有一个实根C .有两个相等的实数根D .有两个不相等的实数根3.一元二次方程x 2﹣6x +5=0的两根分别是x 1、x 2,则x 1•x 2的值是( ) A .5B .﹣5C .6D .﹣64.用配方法解一元二次方程x 2﹣4x ﹣9=0,可变形为( ) A .(x ﹣2)2=9B .(x ﹣2)2=13C .(x +2)2=9D .(x +2)2=135.下列方程是一元二次方程的是( ) A .(x ﹣1)(x ﹣3)=x 2﹣1 B .x 2﹣2x =2x 2﹣1 C .ax 2+bx +c =0D .x +=26.x =是下列哪个一元二次方程的根( )A .3x 2+2x ﹣1=0B .2x 2+4x ﹣1=0C .﹣x 2﹣2x +3=0D .3x 2﹣2x ﹣1=07.近几年,手机支付用户规模增长迅速,据统计2017年手机支付用户约为3.56亿人,连续两年增长后,2019年手机支付用户达到约5.27亿人.如果设这两年手机支付用户的年平均增长率为x ,则根据题意可以列出方程为( ) A .3.56(1+x )=5.27 B .3.56(1+2x )=5.27 C .3.56(1+x 2)=5.27D .3.56(1+x )2=5.278.一件商品标价100元,连续两次降价后的价格为81元,则两次平均降价的百分率是( ) A .10%B .15%C .18%D .20%9.如图,某小区计划在一块长为32m ,宽为20m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m 2.若设道路的宽为xm ,则下面所列方程正确的是()A.32x+2×20x﹣2x2=570B.32x+2×20x=32×20﹣570C.(32﹣2x)(20﹣x)=32×20﹣570D.(32﹣2x)(20﹣x)=57010.已知等腰△ABC的底边长为3,两腰长恰好是关于x的一元二次方程kx2﹣(k+3)x+6=0的两根,则△ABC的周长为()A.6.5 B.7 C.6.5或7 D.8二.填空题11.方程x2=2020x的两根之和是.12.关于x的一元二次方程mx2﹣(3m﹣1)x+2m﹣1=0.其根的判别式的值为1,则该方程的根为.13.在元旦前夕,某通讯公司的每位员工都向本公司的其他员工发出了1条祝贺元旦的短信.已知全公司共发出2450条短信,那么这个公司有员工人.14.已知实数x满足(x2﹣x)2﹣2(x2﹣x)﹣3=0,则代数式x2﹣x+2020的值为.15.学校打算用长16m的篱笆围成一个长方形的生物园饲养小动物,生物园的一面靠墙(如图),面积是30m2,求生物园的长和宽.设生物园的宽(与墙相邻的一边)为xm,则列出的方程为.三.解答题16.解下列一元二次方程:(1)x2+4x﹣8=0;(2)(x﹣3)2=5(x﹣3);(3)2x2﹣4x=1(配方法).17.关于x的一元二次方程x2﹣2(m+1)x+m2+5=0有实数根.(1)求m的取值范围;(2)已知等腰△ABC的底边长为4,另两边的长恰好是方程的两个根,求△ABC的周长.18.某商场销售一批名牌衬衫,平均每天可售出10件,每件赢利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当降价措施,经调查发现,如果每件衬衫每降价一元,商场平均每天可多售出1件.若商场平均每天赢利600元,每件衬衫应降价多少元?19.某扶贫单位为了提高贫困户的经济收入,购买了33m的铁栅栏,准备用这些铁栅栏为贫困户靠墙(墙长15m)围建一个中间带有铁栅栏的矩形养鸡场(如图所示).(1)若要建的矩形养鸡场面积为90m2,求鸡场的长(AB)和宽(BC);(2)该扶贫单位想要建一个100m2的矩形养鸡场,请直接回答:这一想法能实现吗?20.学了一元二次方程的根与系数的关系后,小亮兴奋地说:“若设一元二次方程ax2+bx+c=0的两个根为x1,x2,由根与系数的关系有x1+x2=﹣,x1x2=,由此就能快速求出,x12+x22,…的值了.比如设x1,x2是方程x2+2x+3=0的两个根,则x1+x2=﹣2,x 1x2=3,得.(1)小亮的说法对吗?简要说明理由;(2)写一个你最喜欢的一元二次方程,并求出两根的平方和;(3)已知2﹣是关于x的方程x2﹣4x+c=0的一个根,求方程的另一个根与c的值.21.某小型工厂9月份生产的A、B两种产品数量分别为200件和100件,A、B两种产品出厂单价之比为2:1.由于订单的增加,工厂提高了A、B两种产品的生产数量和出厂单价,10月份A产品生产数量的增长率和A产品出厂单价的增长率相等,B产品生产数量的增长率是A产品生产数量的增长率的一半,B产品出厂单价的增长率是A产品出厂单价的增长率的2倍.设B产品生产数量的增长率为x(x>0),若10月份该工厂的总收入增加了4.4x,求x的值.参考答案一.选择题1.解:∵关于x的一元二次方程(m﹣1)x2+mx+4m2﹣4=0有一个根是0,∴4m2﹣4=0,解得:m=±1,根据题意,得m﹣1≠0,∴m≠1,∴m=﹣1.∴直线y=mx经过的象限是第二、四象限.故选:B.2.解:∵△=42﹣4×5=﹣4<0,∴方程无实数根.故选:A.3.解:∵一元二次方程x2﹣6x+5=0的两根分别是x1、x2,∴x1•x2===5,故选:A.4.解:∵x2﹣4x﹣9=0,∴x2﹣4x=9,则x2﹣4x+4=9+4,即(x﹣2)2=13,故选:B.5.解:A、方程整理得:x2﹣4x+3=x2﹣1,即4x﹣4=0,不符合题意;B、方程整理得:x2+2x﹣1=0,符合题意;C、当a=0时,方程为bx+c=0,不符合题意;D、方程不是整式方程,不符合题意,故选:B.6.解:A、3x2+2x﹣1=0中,x=,不合题意;B 、2x 2+4x ﹣1=0中,x =,不合题意;C 、﹣x 2﹣2x +3=0中,x =,不合题意;D 、3x 2﹣2x ﹣1=0中,x =,符合题意;故选:D .7.解:设这两年手机支付用户的年平均增长率为x , 依题意,得:3.56(1+x )2=5.27. 故选:D .8.解:设平均每次降价的百分率为x ,根据题意列方程得: 100×(1﹣x )2=81,解得x 1=0.1=10%,x 2=1.9(不符合题意,舍去), 故选:A .9.解:设道路的宽为xm ,则草坪的长为(32﹣2x )m ,宽为(20﹣x )m , 根据题意得:(32﹣2x )(20﹣x )=570. 故选:D .10.解:∵两腰长恰好是关于x 的一元二次方程kx 2﹣(k +3)x +6=0的两根, ∴△=[﹣(k +3)]2﹣4×k ×6=0, 解得k =3,∴一元二次方程为x 2﹣6x +6=0,∴两腰之和为=4,∴△ABC 的周长为4+3=7, 故选:B .二.填空题(共5小题)11.解:方程化为一般式:x 2﹣2020x =0, 设方程的两根为x 1,x 2,则x 1+x 2=2020, 故答案为2020.12.解:根据题意△=(3m ﹣1)2﹣4m (2m ﹣1)=1, 解得m 1=0,m 2=2, 而m ≠0, ∴m =2,此时方程化为2m 2﹣5x +3=0, (2x ﹣3)(x ﹣1)=0, ∴x 1=,x 2=1. 故答案为x 1=,x 2=1.13.解:设这个公司有员工x 人,则每人需发送(x ﹣1)条祝贺元旦的短信, 依题意,得:x (x ﹣1)=2450,解得:x 1=50,x 2=﹣49(不合题意,舍去). 故答案为:50. 14.解:令x 2﹣x =t , ∴t =x 2﹣x =(x )2﹣≥,∴t 2﹣2t ﹣3=0,解得:t =3或t =﹣1(舍去), ∴t =3, 即x 2﹣x =3,∴原式=3+2020=2023, 故答案为:2023.15.解:设宽为x m ,则长为(16﹣2x )m . 由题意,得 x (16﹣2x )=30, 故答案为:x (16﹣2x )=30. 三.解答题(共6小题) 16.解:(1)∵x 2+4x ﹣8=0, ∴x 2+4x =8, 则x 2+4x +4=8+4, 即(x +2)2=12, ∴x +2=±2,∴x 1=﹣2+2,x 2=﹣2﹣2;(2)∵(x ﹣3)2=5(x ﹣3), ∴(x ﹣3)2﹣5(x ﹣3)=0, 则(x ﹣3)(x ﹣3﹣5)=0, ∴x ﹣3=0或x ﹣8=0, 解得:x 1=3,x 2=8;(3)方程两边同除以2,变形得x 2﹣2x =, 配方,得x 2﹣2x +1=+1,即(x ﹣1)2=, 开方得:x ﹣1=±,解得:x 1=1+,x 2=1﹣.17.解:(1)根据题意得△=4(m +1)2﹣4(m 2+5)≥0, 解得m ≥2;(2)∵等腰△ABC 的底边长为4,另两边的长恰好是方程的两个根, ∴方程有两个相等的实数解,∴△=4(m +1)2﹣4(m 2+5)=0,解得m =2, 此时方程为x 2﹣6x +9=0,解得x 1=x 2=3, ∴△ABC 的周长=3+3+4=10.18.解:设每件衬衫降价x 元,则每件赢利(40﹣x )元,每天可以售出(10+x )件, 依题意,得:(40﹣x )(10+x )=600, 整理,得:x 2﹣30x +200=0, 解得:x 1=10,x 2=20.∵为了扩大销售量,增加盈利,尽快减少库存, ∴x 的值应为20.答:若商场平均每天要盈利600元,每件衬衫应降价20元. 19.解:(1)设BC =xm ,则AB =(33﹣3x )m , 依题意,得:x (33﹣3x )=90,解得:x1=6,x2=5.当x=6时,33﹣3x=15,符合题意,当x=5时,33﹣3x=18,18>18,不合题意,舍去.答:鸡场的长(AB)为15m,宽(BC)为6m.(2)不能,理由如下:设BC=ym,则AB=(33﹣3y)m,依题意,得:y(33﹣3y)=100,整理,得:3y2﹣33y+100=0.∵△=(﹣33)2﹣4×3×100=﹣111<0,∴该方程无解,即该扶贫单位不能建成一个100m2的矩形养鸡场.20.解:(1)小亮的说法不对若有一根为震,就无法计算的值了,因为零作除数无意义.(2)所喜欢的一元二次方程x2﹣5x﹣6=0,设方程的两个根分别是为x1,x2,∴x1+x2=5,x1x2=﹣6,又∵,代入得:=52﹣2×(﹣6)=37;(3)把x=2﹣代入方程得(2﹣)2﹣4(2﹣)+c=0,解得c=1,则x1+x2=4,则.21.解:根据题意,得:2(1+2x)×200(1+2x)+(1+4x)×100(1+x)=(2×200+1×100)(1+4.4x),整理,得:20x2﹣x=0,解得:x1=0.05=5%,x2=0(不合题意,舍去).答:x的值是5%.。
九年级上册数学第二十一章( 21.1~21.2)检测题一、选择题.1.下列方程中,为一元二次方程的是 ( ) A .x²+21x B .a x²+bx C .(x-1)(x+2)=1 D .3x²-2xy-5y ²=0 2.若关于x 的一元二次方程(m-1)x²+2x+m²-1=0的常数项为0,则m 的值是( ) A .1 B .-1 C .±1 D .±23. 3x ²ᵐ⁻¹+10x-1=0是关于x 的一元二次方程,则m 的值为 ( )A .m=2B .m=21C .m=23D .无法确定4.若x ²+mx+251是一个完全平方式,则m 为 ( )A .51B .52C .51-51或D .52-52或5.将方程x²-12x+1=0配方,写成(x+n)²=p 的形式,则n ,p 的值分别为 ( ) A .12, 143 B.-12, 143 C.6,35 D .-6, 356.已知关于x 的方程m²x²+(4m-1)x+4=0的两个实数根互为倒数,那么m 的值为( )A .2B .-2C .±2D .±27.若x ₁,x ₂是方程x²+2x-k=0的两个不等的实数根,则2221x x +-2是 ( ) A .正数 B .零 C .负数 D .不大于零的数8.已知关于x 的一元二次方程x²+2x+k=0有实数根,则k 的取值范围是 ( )A .k ≤1B .k ≥1C .k <1D .k >19.在一元二次方程a x²+bx+c=0(a ≠0)中,若a 与c 异号,则方程 ( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .根的情况无法确定10.下面是李刚同学在一次测验中解答的填空题,其中答对的是 ( ) A .若x²=4,则x=2B .方程x(2x-1)=2x-1的解为x-1C .若方程-0.5x²+x+k=0的一根等于1,则k=-0.5D .若分式1232-+-x x x 的解为零,则x=1或x=211.如果a 是一元二次方程x²-3x+m=0的一个根,a 的相反数是方程x²+3x-m=0的—个根,那么a 的值等于 ( )A .OB .1 C. 21D .0或3 二、填空题1.方程(a-b)x²+ax+b-c=0,(a-b ≠0)的二次项系数为_________,一次项系数为_________,常数项为_________.2.关于x 的方程(a-1)x ²-3ax+5=0是一元二次方程,则a 的取值范围是_________.3.如果关于x 的方程(a+3)1-a x -5x+1=0是一元二次方程,则a=_________.4.当a=_________时,方程x²-ax=7+a 的一个根是2.5.已知实数x 满足4x²-4x+1=0,则代数式2x+x21的值为_________. 6.把一元二次方程(x+1)(1-x)=2x 化成二次项系数大于零的一般式是_________.7.已知一元二次方程x²-(4k-2)x+4k ²=0有两个不相等的实数根,则k 的最大整数值为_________.8.已知a ²+b ²-2b+4a+5=0,则a+b=_________.三、解答题1.解下列方程.(1)用配方法解方程:3x²-6x+1=0; (2) 用因式分解法解方程:3x(x-2)=2-x ; (3) 用公式法解方程:2x(x-3)=x-3.2.已知(a ²+b²)²-(a²+b²)-6=0,求a²+b²的值.3.证明关于x 的方程x²-(m-2)x-42m =0有两个不相等的实数根.4.若a²-5ab-14b²=0,求bba 532+的值.5.当a >b >0且a²+b²-6ab=0时,求ba ba -+的值.6.已知x ₁,x ₂是关于x 的一元二次方程x²-6x+k=0的两个实数根,且115212221=--x x x x . (1)求k 的值;(2)求82221++x x 的值.7.阅读下面的解题过程,请参照它解方程x²-|x-1|-1=0.解方程x²-|x|-2=0.解:(1)当x ≥0时,原方程化为x ²-x-2=0. 解得x ₁=2,x ₂=﹣1(不合题意,舍去). (2)当x <0时,原方程化为x²+x-2=0,解得x ₁=-2,x ₂=1(不合题意,舍去).所以原方程的根是x ₁=2,x ₂=-2.8.数学老师在讲一元二次方程的解法的时候,没有看讲义,不假思索地在黑板 上写出了一组题目:①x²+5x-2=0;②x ²-7x-3=0;③-x²+5x+6=0;④-223x +8x+65=0;⑤2x²+36-x =0;⑥-3x²+8x+9=0.让同学们解这些方程,说也奇怪,没有出现一个方程无实数根的情况.(1)请仔细观察上述方程的特征,想一想为什么数学老师能“不看讲义”,又“不假思索”地写出了这组一定有实根的一元二次方程; (2)请你也学着老师写几个这样的方程来.参考答案一、1.C 2.B 3.C 4.D 5.D 6.B 7.A 8.A 9.A 10.C 11.D二、1.(a-b) a (b-c) 2.a ≠1 3.3 4.-1 5.2 6.x²+2x-1=0 7.0 8.-1三、1.(1)解:x ²-2x+31=0.移项,得x ²-2x=-31.配方,得(x-1)²=32,解得x ₁=36+1,x ₂=-36+1. (2)解:3x(x-2)+x-2=0. (x-2)(3x+1)=0. 解得x ₁=2,x ₂=-31.(3)解:原方程变形为2x²-7x+3=0.∴a=2,b=-7,c=3.b²-4ac=(-7)²-4×2×3=25>0.∴x=45722257±=⨯±. 解得x ₁=3,x ₂=21.2.解:由题意,得(a ²+b ²-3)(a²+b ²+2)=0.a ²+b²=3或a ²+b²=-2(舍去),即a ²+b²的值为3.3.解:△=b²-4ac=[-(m-2)]²+4·42m=(2-m)²+m ²=m²-4m+4+m²=2m²-4m+4=2(m²-2m)+4=2(m-1)²+2即△≥2,故方程有两个不相等的实数根.4.解:由a ²-5ab-14b²=O ,得(a-7b)(a+2b)=0,即a=7b 或a=-2b .将a=7b 代入b b a 532+,得5175175372==+⨯b b b b b ,将a=-2b 代入b b a 532+,得51534--=+b b b .即b b a 532+的值为51-或517.5.解:先求出ba的值,∵b ≠0,∴等式两边同时除以b ²,得⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛b a b a 62+1=0.∴22324662±=-±=b a . 考虑到a >b >0,∴ba>1.故ba=3+22,a=(3+22)b . ∴212)12(22122)223()223(=++=++=-+++=-+b b b b b a b a . 6.解:(1)由根与系数关系,可知x ₁+x ₂=6,x ₁x ₂=k .∵115)(212221=+-x x x x , ∴k ²-6=115.解得k=±11.当k=11时,原方程无实数根.所以k=-11.(2)82)(8212212221+-+=++x x x x x x =6²-2×(-11)+8=66. 7.解:(1)当x ≥1时,原方程化为x²-x=0. 解得x ₁=1,x ₂=0(不合题意,舍去).(2)当x <1时,原方程化为x²+x-2=0.解得x ₁=1(不合题意,舍去),x ₂=-2.所以原方程的根是x ₁=1,x ₂=-2.8.解:(1)通过观察,可以发现老师给出的这些方程有一个共同特征:方程的二次项系数与常数项的符号相反,由求根公式可知,对于一元二次方程a x²+bx+c=0 (a ≠0),当b²-4ac >0时,方程有两个不相等的实根,这里老师给出的方案a ,c 异号,所以b ²-4ac >O ,这些方程总有两个不相等的实根就不奇怪了.(2)还可以写出许多符合这一特点的方程,如:-x ²+2x+5=0,21x²-5x-12=0,…。
第二十一章一元二次方程一、选择题1. 下列方程为一元二次方程的是( )A.x2−3=x(x+4)B.x2−1=3xC.x2−10x=5D.4x+6xy=332. 一元二次方程2x2+3x−4=0的二次项系数、一次项系数、常数项分别是( )A.2,−3,−4B.2,3,4C.2,−3,4D.2,3,−43. 方程x2+5x=0的适当解法是( )A.直接开平方法B.配方法C.因式分解法D.公式法4. 用因式分解法解方程x2+px−6=0,若将左边分解后有一个因式是x+3,则p的值是( )A.−1B.1C.−5D.55. 方程(x+1)(x−3)=5的解是( )A.x1=1,x2=−3B.x1=4,x2=−2C.x1=−1,x2=3D.x1=−4,x2=26. 下列方程中,没有实数根的方程是( )A.(x−1)2=2B.(x+1)(2x−3)=0C.x2+2x+4=0D.3x2−2x−1=07. 一个三角形的两边长分别为3和6,第三边的长是方程x2−6x+8=0的一个根,则此三角形的周长为( )A.9B.11C.13D.11或138. 如图,将一块正方形空地划出部分区域进行绿化,原空地一边减少了2 m,另一边减少了3 m,剩余一块面积为20 m2的矩形空地.设原正方形空地的边长为x m,则下面所列方程正确的是( )A.(x−3)(x−2)=20B.(x+3)(x+2)=20C.x2−3x−2x=20D.x2−3×2=20二、填空题9. 请你写出其中一个解为x=2的一个一元二次方程.10. 如果m是方程x2−2x−6=0的一个根,那么代数式2m−m2+7的值为.11. 关于x的方程(m+1)x2+2mx+1=0是一元二次方程,则m的取值范围是.12. 已知关于x的一元二次方程(m−2)x2+x−1=0有两个不相等的实数根,则m的取值范围是.13. 已知一元二次方程x2−3x−10=0的两个实数根为x1,x2,则(x1−1)(x2−1)的值是.14. 已知矩形的长比宽长2米,要使矩形面积为55.25米2,则宽应为多少米?设宽为x米,可列方程为.15. 已知x=2是关于x的一元二次方程x2+bx−c=0的一个根,则b与c的关系是.(请用含b的代数式表示c)16. 已知3是关于x的方程x2−(m+1)x+2m=0的一个实数根,并且这个方程的两个实数根恰好是等腰△ABC的两条边的边长,则△ABC的周长为.三、解答题17. 解方程:(1) (x−3)2=2x(3−x).(2) x2−2x−4=0.18. 已知关于x的一元二次方程x2+(k+1)x+1k2=0有两个不相等的实数根.4(1) 求k的取值范围.(2) 当k取最小整数时,求此时方程的解.19. 关于x的一元二次方程mx2−3(m−1)x+2m−3=0(m>3)的两个实数根分别为x1,x2,且x1<x2.(1) 求证:方程有一根为定值.(2) 若9x1−3x2≥4,求m的取值范围.条(n≥3的整数).20. 已知n边形的对角线共有n(n−3)2(1) 五边形的对角线共有条;(2) 若n边形的对角线共有35条,求边数n;(3) A同学说,我求的一个多边形共有10条对角线,你认为A同学说法正确吗?为什么?21. 如图,某农场要建一个长方形的养鸡场,鸡场的一边靠墙,墙长25 m,另外三边木栏围着,木栏长40 m.(1)若养鸡场面积为200 m2,求鸡场靠墙的一边长.(2)养鸡场面积能达到250 m2吗?如果能,请给出设计方案,如果不能,请说明理由.22. 利客来超市销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低2元,平均每天可多售出4件.(1) 若降价6元,则平均每天销售数量为件;(2) 当每件商品降价多少元时,该商店每天销售利润为1200元?答案一、选择题1. C2. D3. C4. B5. B6. C7. C8. A二、填空题9. x2+x−6=010. 111. m≠−112. m>74且m≠2.13. −1214. x(x+2)=55.2515. c=4+2b16. 10或11三、解答题17.(1)(x−3)2=2x(3−x), (x−3)2−2x(3−x)=0,(x−3)2+2x(x−3)=0,(x−3)(x−3+2x)=0,(x−3)=0或x−3+2x=0,∴x1=3,x2=1.(2)x2−2x−4=0,x2−2x=4,x2−2x+1=4+1,(x−1)2=5,x−1=±5,∴x1=1+5,x2=1−5.18.(1) ∵关于x的一元二次方程x2+(k+1)x+14k2=0有两个不相等的实数根,∴Δ=b2−4ac=(k+1)2−4×14k2>0,∴2k+1>0,∴k>−12.(2) ∵k取最小整数,∴k=0,∴原方程整理为:x2+x=0,∴方程的解为:x1=0,x2=−1.19.(1) Δ=[−3(m−1)]2−4m(2m−3) =m2−6m+9=(m−3)2,∵m>3,∴(m−3)2>0,即Δ>0,∴方程有两个不相等的实数根,∵x=3(m−1)±(m−3)2m,∴方程有一个根为1,∴方程有一根为定值.(2) ∵x=3(m−1)±(m−3)2m,∴x1=1,x2=2−3m,∵9x1−3x2≥4,∴9−3(2−3m)≥4,解得m≤9,故m的取值范围是3<m≤9.20.(1) 5(2) 由题意得:n(n−3)2=35.整理得:n2−3n−70=0.解得:n=10或n=−7(舍去).∴边数n为10.(3) A同学说法是不正确的.理由:当12n(n−3)=10,整理得:n2−3n−20=0.解得:n=3±892.∴符合方程n2−3n−20=0的正整数n不存在.∴多边形的对角线不可能有10条.21. (1)设鸡场垂直于墙的一边长为x m,则鸡场平行于墙的一边长为(40−2x)m.根据题意得:x(40−2x)=200,解得:x1=x2=10,所以40−2x=20.答:鸡场平行于墙的一边长为20 m.(2)假设能,设鸡场垂直于墙的一边长为y m,则鸡场平行于墙的一边长为(40−2y)m,根据题意得:y(40−2y)=250,整理得:y2−20y+125=0.因为Δ=(−20)2−4×1×125=−100<0,所以该方程无解,所以假设不成立,即养鸡场面积不能达到250 m2.22.(1) 32(2) 设每件商品应降价x元时,该商店每天销售利润为1200元.根据题意,得(40−x)(20+2x)=1200.整理,得x2−30x+200=0.解得:x1=10,x2=20.∵要求每件盈利不少于25元,40−20=20<25∴x2=20应舍去,解得:x=10.答:每件商品应降价10元时,该商店每天销售利润为1200元。
第二十一章 一元二次方程21.1 一元二次方程知识点1.只含有 个未知数,并且未知数的 方程叫一元二次方程.2.一元二次方程的一般形式是 ,其中二次项为 ,一次项 ,常数项 ,二次项系数 ,一次项系数 .3.使一元二次方程左右两边 叫一元二次方程的解。
一.选择题1.下列方程是一元二次方程的是( )A .x-2=0B .x 2-4x-1=0C .x 2-2x-3D .xy+1=02.下列方程中,是一元二次方程的是( )A .5x+3=0B .x 2-x (x+1)=0C .4x 2=9D .x 2-x 3+4=03.关于x 的方程013)2(22=--+-x x a a 是一元二次方程,则a 的值是( )A .a=±2B .a=-2C .a=2D .a 为任意实数4.把一元二次方程4)3()1(2+-=-x x x 化成一般式之后,其二次项系数与一次项分别是( )A .2,-3B .-2,-3C .2,-3xD .-2,-3x5.若关于x 的一元二次方程x 2+5x+m 2-1=0的常数项为0,则m 等于( )A .1B .2C .1或-1D .06.把方程2(x 2+1)=5x 化成一般形式ax 2+bx+c=0后,a+b+c 的值是( )A .8B .9C .-2D .-17.(2013•安顺)已知关于x 的方程x 2-kx-6=0的一个根为x=3,则实数k 的值为( )A .1B .-1C .2D .-28.(2013•牡丹江)若关于x 的一元二次方程为ax 2+bx+5=0(a ≠0)的解是x=1,则2013-a-b 的值是( )A .2018B .2008C .2014D .2012二.填空题9.当m= 时,关于x 的方程5)3(72=---x x m m 是一元二次方程;10.若方程kx 2+x=3x 2+1是一元二次方程,则k 的取值范围是 .11.方程5)1)(13(=+-x x 的一次项系数是 .12.(2012•柳州)一元二次方程3x 2+2x-5=0的一次项系数是 .13.关于x 的一元二次方程3x (x-2)=4的一般形式是 .14.(2005•武汉)方程3x 2=5x+2的二次项系数为 ,一次项系数为 .15.(2007•白银)已知x=-1是方程x 2+mx+1=0的一个根,则m= .16.(2010•河北)已知x=1是一元二次方程x 2+mx+n=0的一个根,则m 2+2mn+n 2的值为 .17.(2013•宝山区一模)若关于x 的一元二次方程(m-2)x 2+x+m 2-4=0的一个根为0,则m 值是 .18.已知关于x 的一元二次方程ax 2+bx+c=0(a ≠0)有一个根为1,一个根为-1,则a+b+c= ,a-b+c= .三.解答题19.若(m+1)x |m|+1+6-2=0是关于x 的一元二次方程,求m 的值.20.(2013•沁阳市一模)关于x 的方程(m 2-8m+19)x 2-2mx-13=0是否一定是一元二次方程?请证明你的结论.21.一元二次方程0)1()1(2=++++c x b x a 化为一般式后为01232=-+x x ,试求0222=-+c b a 的值的算术平方根.21.1 一元二次方程知识点1.一,最高次数是2的整式。
人教版九年级数学上册 21.1--21.3基础检测含答案21.1 一元二次方程1.下列方程中,是关于x的一元二次方程的是( )(A)ax2+bx+c=0 (B)++2=0(C)3y2+x=1 (D)3(x+1)2=2(x+1)2.把一元二次方程x(x+1)=3x+2化为一般形式,正确的是( )(A)x2-2x-2=0 (B)x2-2x+2=0(C)x2-3x-1=0 (D)x2+4x+3=03.关于x的一元二次方程(m-2)x2+5x+m2-4=0的常数项是0,则( )(A)m=4 (B)m=2(C)m=2或m=-2 (D)m=-24.已知一元二次方程x2+kx-3=0有一个根为1,则k的值为( )(A)-2 (B)2 (C)-4 (D)45.(2019新疆)在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场.设有x个队参赛,根据题意,可列方程为( )(A)x(x-1)=36 (B)x(x+1)=36(C)x(x-1)=36 (D)x(x+1)=366.为创建“国家生态园林城市”,某小区在规划设计时,在小区中央设置一块面积为1 200平方米的矩形绿地,并且长比宽多40米.设绿地宽为x米,根据题意,可列方程为.7.(2019宜宾)某产品每件的生产成本为50元,原定销售价65元,经市场预测,从现在开始的第一季度销售价格将下降10%,第二季度又将回升5%.若要使半年以后的销售利润不变,设每个季度平均降低成本的百分率为x,根据题意可列方程是 .8.把下列方程化成一元二次方程的一般形式,并指出其中的二次项系数、一次项系数和常数项.(1)2x 2=1-3x;(2)5x(x-2)=-3(x 2+1).9.已知关于x 的方程(m 2+2)x 2+(m-1)x-4=3x 2.(1)当m 是何值时原方程是一元二次方程;(2)当m 是何值时原方程是一元一次方程.10.已知实数a,b 满足a 2-3a+1=0,b 2-3b+1=0,则关于一元二次方程x 2-3x+1=0的根的说法中正确的是( )(A)x=a,x=b 都不是该方程的解(B)x=a 是该方程的解,x=b 不是该方程的解(C)x=b 是该方程的解,x=a 不是该方程的解(D)x=a,x=b 都是该方程的解的值是2a -24a 则代数式,的一个根=x+422x 是方程)a 资阳11.(2019 .的值是a 则,是一元二次方程=11)-(a 的方程x 若关于12. .13.已知关于x 的一元二次方程x 2+mx+2=0与x 2+2x+m=0有一个公共根,则此公共根是x= ,m= .14.已知关于x的一元二次方程(m+1)x|m-1|+2x-n=0的一个根是1,求m,n的值.15.(核心素养—运算能力)如图,请作答以下三个房间的问题.第二十一章21.1 一元二次方程1.(2020东营期中)下列方程中,是关于x的一元二次方程的是( D )(A)ax2+bx+c=0 (B)++2=0(C)3y2+x=1 (D)3(x+1)2=2(x+1)2.把一元二次方程x(x+1)=3x+2化为一般形式,正确的是( A )(A)x2-2x-2=0 (B)x2-2x+2=0(C)x2-3x-1=0 (D)x2+4x+3=03.关于x的一元二次方程(m-2)x2+5x+m2-4=0的常数项是0,则( D )(A)m=4 (B)m=2(C)m=2或m=-2 (D)m=-24.已知一元二次方程x2+kx-3=0有一个根为1,则k的值为( B )(A)-2 (B)2 (C)-4 (D)45.(2019新疆)在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场.设有x个队参赛,根据题意,可列方程为( A )(A)x(x-1)=36 (B)x(x+1)=36(C)x(x-1)=36 (D)x(x+1)=366.为创建“国家生态园林城市”,某小区在规划设计时,在小区中央设置一块面积为1 200平方米的矩形绿地,并且长比宽多40米.设绿地宽为x米,根据题意,可列方程为x(x+40)=1 200 .7.(2019宜宾)某产品每件的生产成本为50元,原定销售价65元,经市场预测,从现在开始的第一季度销售价格将下降10%,第二季度又将回升5%.若要使半年以后的销售利润不变,设每个季度平均降低成本的65根据题意可列方程是百分率为×x,--(1+5%)×(110%)50(1-x)2=65-50 .8.把下列方程化成一元二次方程的一般形式,并指出其中的二次项系数、一次项系数和常数项.(1)2x2=1-3x;(2)5x(x-2)=-3(x2+1).解:(1)移项,得2x2+3x-1=0.二次项系数为2,一次项系数为3,常数项为-1.(2)去括号,得5x2-10x=-3x2-3.移项,合并同类项,得8x2-10x+3=0.二次项系数为8,一次项系数为-10,常数项为3.9.已知关于x的方程(m2+2)x2+(m-1)x-4=3x2.(1)当m是何值时原方程是一元二次方程;(2)当m是何值时原方程是一元一次方程.解:原方程可化为(m2-1)x2+(m-1)x-4=0,(1)当m2-1≠0,即m≠±1时,原方程是一元二次方程.(2)当m2-1=0且m-1≠0,即m=-1时,原方程是一元一次方程.10.已知实数a,b 满足a 2-3a+1=0,b 2-3b+1=0,则关于一元二次方程x 2-3x+1=0的根的说法中正确的是( D )(A)x=a,x=b 都不是该方程的解(B)x=a 是该方程的解,x=b 不是该方程的解(C)x=b 是该方程的解,x=a 不是该方程的解(D)x=a,x=b 都是该方程的解的值是2a -24a 则代数式,的一个根=x+422x 是方程)a 资阳11.(2019 8 .的值是a 则,方程是一元二次=11)-(a 的方程x 若关于12. -1 .13.已知关于x 的一元二次方程x 2+mx+2=0与x 2+2x+m=0有一个公共根,则此公共根是x= 1 ,m= -3 .14.已知关于x 的一元二次方程(m+1)x |m-1|+2x-n=0的一个根是1,求m,n 的值.解:由一元二次方程的定义得解得m=3,所以原方程为4x 2+2x-n=0,把x=1代入,得4+2-n=0,解得n=6,所以m=3,n=6.15.(核心素养—运算能力)如图,请作答以下三个房间的问题.21.2解一元二次方程一.选择题(共12小题)1.用配方法解一元二次方程x2-4x-9=0,可变形为()A.(x-2)2=9 B.(x-2)2=13 C.(x+2)2=9D.(x+2)2=132.下列方程中,没有实数根的是()A.x2-2x-3=0 B.(x-5)(x+2)=0 C.x2-x+1=0 D.x2=1 3.一元二次方程y2+y−0.75=0配方后可化为()A.(y+0.5)2=1 B.(y-0.5)2=1 C.(y+0.5)2=0.5 D.(y-0.5)2=0.754.已知关于x的一元二次方程x2-(2m-1)x+m2=0有实数根,则m的取值范围是()A.m≠0B.m≤0.25 C.m<0.25 D.m>0.255.关于x的方程ax2+(1-a)x-1=0,下列结论正确的是()A.当a=0时,方程无实数根B.当a=-1时,方程只有一个实数根C.当a=1时,有两个不相等的实数根D.当a≠0时,方程有两个相等的实数根6.已知a,b是方程x2+3x-5=0的两个实数根,则a2-3b+2020的值是()A.2016 B.2020 C.2025 D.20347.α、β是方程2x2-2x-3=0的两根,则(α+1)(β+1)的值为()A.-0.5 B.0.5 C.3.5 D.1.58.定义运算:a*b=2ab,若a、b是方程x2+x-m=0(m>0)的两个根,则(a+1)*b+2a 的值为()A.m B.2-2m C.2m-2 D.-2m-29.已知实数x满足(x2-2x+1)2+2(x2-2x+1)-3=0,那么x2-2x+1的值为()A.-1或3 B.-3或1 C.3 D.110.三角形两边的长是6和8,第三边满足方程x2-24x+140=0,则三角形周长为()A.24 B.28 C.24或28 D.以上都不对11.已知关于x的一元二次方程x2+(2m+1)x+m-1=0的两个根分别是x1,x2,且满足x12 +x22=3,则m的值是()A.0 B.-2 C.0 或-0.5 D.-2或012.若整数a使得关于x的一元二次方程(a+2)x2+2ax+a-1=0有实数根,且关于x的不等式组有解且最多有6个整数解,则符合条件的整数a的个数为()A.3 B.4 C.5 D.6二.填空题(共5小题)13.填空:x2-2x+3=(x- )2+2.14.关于x的一元二次方程mx2-(3m-1)x+2m-1=0.其根的判别式的值为1,则该方程的根为.15.若关于x的一元二次方程ax2-x+1=0有实数根,则a的最大整数值是.16.已知x1,x2是关于x的方程x2-(m-1)x-m=0的两个根,且x1+x2=3,则m的值是.17.对于实数a,b,定义运算“*“,a*b=例如4*2,因为4>2,所以4*2=4 2-4×2=8.若x1,x2是一元二次方程x2-8x+16=0的两个根,则x1*x2= .三.解答题(共5小题)18.解下列方程(1)x2-8x+15=0;(2)19.已知:关于x的一元二次方程x2+mx=3(m为常数).(1)证明:无论m为何值,该方程都有两个不相等的实数根;(2)若方程有一个根为2,求方程的另一个根.20.已知关于x的一元二次方程(x-m)2+2(x-m)=0(m为常数).(1)求证:不论m为何值,该方程总有两个不相等的实数根.(2)若该方程有一个根为4,求m的值.21.已知关于x的一元二次方程x2-4x-2k+8=0有两个实数根x1,x2.(1)求k的取值范围;(2)若x13x2+x1x23=24,求k的值.22.已知关于x的一元二次方程x2+2x-k=0有两个不相等的实数根.(1)求k的取值范围;(2)若方程的两个不相等的实数根是a,b,求的值.参考答案1-5:BCABC 6-10:DBDDA 11-12:CC13、114、15、-116、417、018、19、(1)证明:x2+mx-3=0,∵a=1,b=m,c=-3∴△=b2-4ac=m2-4×1×(-3)=m2+12,∵m2≥0,∴m2+12>0,∴△>0,∴无论m为何值,该方程都有两个不相等的实数根;(2)-1.520、(1)证明:(x-m)2+2(x-m)=0,原方程可化为x2-(2m-2)x+m2-2m=0,∵a=1,b=-(2m-2),c=m2-2m,∴△=b2-4ac=[-(2m-2)]2-4(m2-2m)=4>0,∴不论m为何值,该方程总有两个不相等的实数根.(2)解:将x=4代入原方程,得:(4-m)2+2(4-m)=0,即m2-10m+24=0,解得:m1=4,m2=6.故m的值为4或6.21、:(1)由题意可知,△=(-4)2-4×1×(-2k+8)≥0,整理得:16+8k-32≥0,解得:k≥2,∴k的取值范围是:k≥2.故答案为:k≥2.(2)k=322、:(1)∵方程有两个不相等的实数根,∴△=b2-4ac=4+4k>0,解得k>-1.∴k的取值范围为k>-1;(2)由根与系数关系得a+b=-2,a•b=-k,21.3 实际问题与一元二次方程一、选择题(本大题共12道小题)1.已知3是关于x的方程x2-(m+1)x+2m=0的一个实数根,并且这个方程的两个实数根恰好是等腰△ABC的两条边的边长,则△ABC的周长为( )A. 7B. 10C. 11D. 10或112.某市2008年国内生产总值(GDP)比2007年增长了12%,由于受到国际金融危机的影响,预计今年比2008年增长7%,若这两年GDP年平均增长率为x%,则x%满足的关系是( )A. 12%+7%=x%B. (1+12%)(1+7%)=2(1+x%)C. 12%+7%=2·x%D. (1+12%)(1+7%)=(1+x%)23. 绿苑小区在规划设计时,准备在两幢楼房之间设置一块面积为900平方米的矩形绿地,并且长比宽多10米.设绿地的宽为x米,根据题意,可列方程为()A.x(x-10)=900 B.x(x+10)=900C.10(x+10)=900 D.2[x+(x+10)]=9004.随着居民经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,抽样调查显示,截止至2015年底某市汽车拥有量为16.9万辆.已知2013年底该市汽车拥有量为10万辆.设2013年底至2015年底该市汽车拥有量的年平均增长率为x.根据题意列方程得( )A. 10(1+x)2=16.9B. 10(1+2x)=16.9C. 10(1-x)2=16.9D. 10(1-2x)=16.95. 有5人患了流感,经过两轮传染后共有605人患了流感,假设每轮传染中一个人传染相同数量的人,则第一轮传染后患流感的人数为()A.10 B.50 C.55 D.456. 如图,某小区有一块长为18 m,宽为 6m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为60m2,两块绿地之间及周边留有宽度相等的人行通道.若设人行通道的宽度为x m,则可列出关于x的方程是( )A. x2+9x-8=0B. x2-9x-8=0C. x2-9x+8=0D. 2x2-9x+8=07. 某企业2018年初获利润300万元,到2020年初计划利润达到507万元.设这两年的年利润平均增长率为x.应列方程是()A.300(1+x)=507B.300(1+x)2=507C.300(1+x)+300(1+x)2=507D.300+300(1+x)+300(1+x)2=5078. 某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为扩大销售,尽快减少库存,商场决定釆取降价措施.调查发现,每件衬衫每降价1元,平均每天可多售出2件,若商场每天要盈利1200元,则每件衬衫应降价()A.5元B.10元C.20元D.10元或20元9. 在一幅长为80 cm,宽为50 cm的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如图所示.如果要使整个挂图的面积是5400 cm2,设金色纸边的宽为x cm,那么x满足的方程是()A.x2+130x-1400=0 B.x2+65x-350=0C.x2-130x-1400=0 D.x2-65x-350=010. 如图,在△ABC中,∠ABC=90°,AB=8 cm,BC=6cm.动点P,Q分别从点A,B同时开始移动,点P的速度为1 cm/s,点Q的速度为2 cm/s,点Q移动到点C后停止运动,点P也随之停止运动.运动下列时间后,能使△PBQ的面积为15 cm2的是( )A.2 s B.3 sC.4 s D.5 s11. 某专卖店销售一种机床,三月份每台售价为2万元,共销售60台.根据市场调查知:这种机床每台售价每增加0.1万元,每个月就会少售出1台.四月份该专卖店想将销售额提高25%,则这种机床每台的售价应定为()A.3万元B.5万元C.8万元D.3万元或5万元12. 某市2018年GDP比2017年增长了11.5%,由于受到国际因素的影响,2019年的G DP比2018年增长了7%.若这两年GDP的年平均增长率为x,则x满足的关系式是() A.11.5%+7%=xB.(1+11.5%)×(1+7%)=2(1+x)C.11.5%+7%=2xD.(1+11.5%)×(1+7%)=(1+x)2二、填空题(本大题共6道小题)13. 中国“一带一路”给沿线国家和地区带来很大的经济效益,沿线某地区居民2016年人均年收入为20000元,到2018年人均年收入达到39200元,则该地区居民人均年收入平均增长率为.(用百分数表示)14. 某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是73,求每个支干又长出多少个小分支.如果设每个支干又长出x 个小分支,那么依题意可列方程为__________________.15. 某商场礼品柜台春节期间购进大量贺年卡,一种贺年卡平均每天可售出500张,每张盈利0.3元,为了尽快减少库存,商场决定采取适当的降价措施,调查发现,如果这种贺年卡每张的售价每降低0.1元,那么商场平均每天可多售出100张,商场要想平均每天盈利120元,设每张贺年卡应降低x个0.1元,则所列方程为__________________________________.16. 相邻的两个自然数,若它们的平方和比这两数中较小数的2倍大51,则这两个自然数分别为________.17.一个两位数,它的十位数字比个位数字大1,个位数字与十位数字的平方和比这个两位数小19,则这个两位数是________.18. 某校课外生物小组的试验园地是长32 m,宽20 m的矩形,为了便于管理,现要在试验园地开辟宽度均为x m的小道(图中的阴影部分).(1)如图①,在试验园地开辟一条纵向小道,则剩余部分的面积为________m2(用含x的代数式表示);(2)如图②,在试验园地开辟三条宽度相等的小道,其中一条是横向的,另两条互相平行.若使剩余部分的面积为570 m2,则小道的宽度为________m.三、解答题(本大题共3道小题)19. 某广告公司制作广告的收费标准是以面积为单位,在不超过规定的面积a(m2)的范围内,每张广告费1000元,如果超过a(m2),那么除了要交1000元的广告费以外,超过的部分还要按每平方米50a元交费.下表是该公司对两家用户广告的收费面积和广告费情况的记录.红星公司要制作一张大型公益广告,其材料形状是矩形,如果它的四周是空白,并且四周各空0.5 m,空白部分不收广告费,中间的矩形部分才是广告的收费面积.这张广告的长、宽之比为3∶2,并且红星公司为此支出110400元的广告费.(1)求a的值;(2)红星公司要制作的这张广告的长和宽各是多少米?解题突破(7题)利用烟草公司及食品公司的广告费建立方程求a的值,利用红星公司支出的广告费和收费标准求其广告的收费面积,利用收费面积和已知条件求这张广告的长与宽.20. 三个连续的正奇数,最大数与最小数的积比中间的一个数的6倍多3,求这三个奇数.21. 某批发商以每件50元的价格购进800件T恤,第一个月以单价80元/件销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,每件每降低1元,可多售出10件,但最低单价应高于购进的价格.第二个月结束后,批发商将对剩余的T恤一次性清仓销售,清仓时单价为40元/件,设第二个月每件降低x元.(1)填表:(不需化简)(2)如果批发商希望通过销售这批T恤获利9000元,那么第二个月的单价应是多少?人教版九年级数学21.3 实际问题与一元二次方程课时训练-答案一、选择题(本大题共12道小题)1. 【答案】D【解析】∵3是方程x2-(m+1)x+2m=0的一个实数根,∴9-3(m+1)+2m=0,解得m=6,∴方程为x2-7x+12=0,解得x1=3,x2=4,若等腰△ABC的腰长为3,底边长为4,则其周长为3+3+4=10;若等腰△ABC的腰长为4,底边长为3,则周长为4+4+3=11.2. 【答案】D【解析】设2007年国内生产总值为a ,依题意得a (1+12%)×(1+7%)=a (1+x %)2,即(1+12%)(1+7%)=(1+x %)2.3. 【答案】B4. 【答案】A【解析】因为年平均增长率为x ,从2013年到2015年连续增长两年,开始量为10万辆,结束量为16.9万辆,则可列方程10(1+x )2=16.9.5. 【答案】C6. 【答案】C【解析】因为人行道的宽度为x 米,所以阴影部分的长为(18-3x )米,宽为(6-2x )米,故阴影部分面积为(18-3x )(6-2x )=60,化简得x 2-9x +8=0.故选C.7. 【答案】B8. 【答案】C [解析] 设每件衬衫降价x 元,则每天可售出(20+2x )件,根据题意,得(40-x )(20+2x )=1200,解得x 1=10,x 2=20. ∵要扩大销售,减少库存,∴x =20.9. 【答案】B10. 【答案】B[解析] 设运动时间为t s ,则BP =(8-t)cm ,BQ =2tcm ,由三角形的面积公式列方程,得12·(8-t)·2t =15, 解得t 1=3,t 2=5(当t =5时,BQ =10 cm ,不合题意,舍去). ∴动点P ,Q 运动3 s 后,能使△PBQ 的面积为15 cm 2.11. 【答案】D [解析] 设这种机床每台的售价定为x 万元,则x ⎝ ⎛⎭⎪⎫60-x -20.1=2×60×(1+25%),解得x 1=3,x 2=5.12. 【答案】D[解析] 设2017年的GDP为1,∵2018年的GDP比2017年增长了11.5%,∴2018年的GDP为1+11.5%.∵2019年的GDP比2018年增长了7%,∴2019年的GDP为(1+11.5%)×(1+7%).∵这两年GDP的年平均增长率为x,∴2019年的GDP也可表示为(1+x)2,∴可列方程为(1+11.5%)×(1+7%)=(1+x)2.二、填空题(本大题共6道小题)13. 【答案】40%[解析]设该地区居民人均年收入平均增长率为x,则20000(1+x)2=39200,解得x1=0.4,x2=-2.4(舍去),∴该地区居民人均年收入平均增长率为40%.故答案为:40%.14. 【答案】x2+x+1=73[解析] 设每个支干又长出x个小分支,根据题意,得x2+x+1=73.15. 【答案】(0.3-0.1x)(500+100x)=12016. 【答案】5,6[解析] 设较小的自然数为x,则较大的自然数为(x+1).根据题意,得x2+(x+1)2=2x+51,解得x1=5,x2=-5(舍去).则这两个自然数分别为5,6.17. 【答案】32 [解析]设这个两位数的十位数字为x,则个位数字为x-1.根据题意,得x2+(x-1)2=10x+(x-1)-19,解得x1=3,x2=3.5(舍去),∴10x+(x-1)=32.18. 【答案】(1)20(32-x ) (2)1[解析] (1)根据题意,得剩余部分的面积为20(32-x )m 2. (2)根据题意,得(32-2x )(20-x )=570, 解得x 1=1,x 2=35(不合题意,舍去). 即小道的宽度为1 m.三、解答题(本大题共3道小题)19. 【答案】解:(1)由题中表格可知3≤a <6. 根据题意,得1000+50a (6-a )=1400, 解得a 1=4,a 2=2(舍去),则a =4.(2)设这张广告的收费面积为S m 2,根据题意,得 1000+50×4(S -4)=110400,解得S =551. 设这张广告的长、宽分别为3x m ,2x m. 根据题意,得(3x -1)(2x -1)=551, 整理,得6x 2-5x -550=0, 解得x 1=10,x 2=-556(舍去), 则3x =30,2x =20.答:红星公司要制作的这张广告的长和宽分别是30 m 和20 m.20. 【答案】解:设这三个连续的正奇数分别为2n -1,2n +1,2n +3(n 为正整数). 根据题意,得(2n +3)(2n -1)-6(2n +1)=3, 解得n 1=3,n 2=-1(舍去).当n =3时,2n -1=5,2n +1=7,2n +3=9. 即这三个奇数分别为5,7,9.21. 【答案】解:(1)填表如下:(2)根据题意,得200×(80-50)+(200+10x)(80-x-50)+[800-200-(200+10x)](40-50)=9000,整理,得10x2-200x+1000=0,解得x1=x2=10.当x=10时,80-x=70>50.答:第二个月的单价应是70元/件.。
第21章一元二次方程一.选择题1.下面关于x的方程中:①ax2+bx+c=0;②3(x﹣9)2﹣(x+1)2=1;③x+3=;④(a2+a+1)x2﹣a=0;(5)=x﹣1,一元二次方程的个数是()A.1B.2C.3D.42.用配方法解方程2x2﹣x﹣1=0,变形结果正确的是()A.(x﹣)2=B.(x﹣)2=C.(x﹣)2=D.(x﹣)2=3.将一元二次方程x2﹣8x﹣5=0化成(x+a)2=b(a,b为常数)的形式,则a,b的值分别是()A.﹣4,21B.﹣4,11C.4,21D.﹣8,694.若关于x的一元二次方程(k+2)x2﹣3x+1=0有实数根,则k的取值范围是()A.k<且k≠﹣2B.k C.k≤且k≠﹣2D.k5.已知一元二次方程ax2+bx+c=0(a≠0)中,下列说法:①若a+b+c=0,则b2﹣4ac>0;②若方程两根为﹣1和2,则2a+c=0;③若方程ax2+c=0有两个不相等的实根,则方程ax2+bx+c=0必有两个不相等的实根;④若b=2a+c,则方程有两个不相等的实根.其中正确的有()A.①②③B.①②④C.②③④D.①②③④6.已知(a2+b2+2)(a2+b2)=8,那么a2+b2的值是()A.2B.﹣4C.2或﹣4D.不确定7.若多项式M=a2+2b2﹣2a+4b+2023,则M的最小值是()A.2019B.2020C.2021D.20238.2020年,新型冠状病毒感染的肺炎疫情牵动着全国人民的心.雅礼中学某学生写了一份预防新型冠状病毒倡议书在微信朋友圈传播,规则为:将倡议书发表在自己的朋友圈,再邀请n个好友转发倡议书,每个好友转发倡议书,又邀请n个互不相同的好友转发倡议书,以此类推,已知经过两轮传播后,共有931人参与了传播活动,则方程列为()A.(1+n)2=931B.n(n﹣1)=931C.1+n+n2=931D.n+n2=9319.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1056张照片,如果全班有x名同学,根据题意,列出方程为()A.x(x+1)=1056B.x(x﹣1)=1056×2C.x(x﹣1)=1056D.2x(x+1)=105610.如图,若将左图正方形剪成四块,恰能拼成右图的矩形,设a=1,则这个正方形的面积为()A.B.C.D.(1+)2二.填空题11.方程(x﹣1)(2x+1)=2化成一般形式是,它的二次项系数是.12.关于x的方程(a﹣1)x|a|+1﹣3x+2=0是一元二次方程,则a=.13.已知x满足方程x2﹣3x+1=0,则x2+的值为.14.如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.当y=﹣1时,n =.15.如图,是一个长为30m,宽为20m的矩形花园,现要在花园中修建等宽的小道,剩余的地方种植花草.如图所示,要使种植花草的面积为532m2,那么小道进出口的宽度应为米.三.解答题16.用适当的方法解下列方程:(1)x2﹣6x﹣6=0(2)2x2﹣x﹣15=017.已知关于x的一元二次方程x2+(2m+1)x+m﹣2=0.(1)求证:无论m取何值,此方程总有两个不相等的实数根;(2)若方程有两个实数根x1,x2,且x1+x2+3x1x2=1,求m的值.18.某扶贫单位为了提高贫困户的经济收入,购买了33m的铁栅栏,准备用这些铁栅栏为贫困户靠墙(墙长15m)围建一个中间带有铁栅栏的矩形养鸡场(如图所示).(1)若要建的矩形养鸡场面积为90m2,求鸡场的长(AB)和宽(BC);(2)该扶贫单位想要建一个100m2的矩形养鸡场,请直接回答:这一想法能实现吗?19.某汽车专卖店经销某种型号的汽车.已知该型号汽车的进价为15万元/辆,经销一段时间后发现:当该型号汽车售价定为25万元/辆时,平均每周售出8辆;售价每降低0.5万元,平均每周多售出1辆.(1)当售价为22万元/辆时,求平均每周的销售利润.(2)若该店计划平均每周的销售利润是90万元,为了尽快减少库存,求每辆汽车的售价.20.春秋旅行社为吸引市民组团去天水湾风景区旅游,推出了如下收费标准:某单位组织员工去天水湾风景区旅游,共支付给春秋旅行社旅游费用27000元.请问该单位这次共有多少员工去天水湾风景区旅游?21.每年的3月15日是“国际消费者权益日”,许多家居商城都会利用这个契机进行打折促销活动.甲卖家的某款沙发每套成本为5000元,在标价8000元的基础上打9折销售.(1)现在甲卖家欲继续降价吸引买主,问最多降价多少元,才能使利润率不低于20%?(2)据媒体爆料,有一些卖家先提高商品价格后再降价促销,存在欺诈行为.乙卖家也销售相同的沙发,其成本、标价与甲卖家一致,以前每周可售出8套,现乙卖家先将标价提高m%,再大幅降价40m元,使得这款沙发在3月15日那一天卖出的数量就比原来一周卖出的数量增加了m%,这样一天的利润达到了50000元,求m的值.参考答案一.选择题1.B.2.D.3.A.4.C.5.C.6.A.7.B.8.C.9.C.10.A.二.填空题11.2x2﹣x﹣3=0;2.12.﹣1.13.7.14.﹣1.15.1.三.解答题16.解:(1)∵a=1,b=﹣6,c=﹣6,∴△=(﹣6)2﹣4×1×(﹣6)=60>0,则x==3±;(2)∵2x2﹣x﹣15=0,∴(x﹣3)(2x+5)=0,则x﹣3=0或2x+5=0,解得x=3或x=﹣2.5.17.(1)证明:∵△=(2m+1)2﹣4×1×(m﹣2)=4m2+4m+1﹣4m+8=4m2+9>0,∴无论m取何值,此方程总有两个不相等的实数根;(2)解:由根与系数的关系得出,由x1+x2+3x1x2=1得﹣(2m+1)+3(m﹣2)=1,解得m=8.18.解:(1)设BC=xm,则AB=(33﹣3x)m,依题意,得:x(33﹣3x)=90,解得:x1=6,x2=5.当x=6时,33﹣3x=15,符合题意,当x=5时,33﹣3x=18,18>18,不合题意,舍去.答:鸡场的长(AB)为15m,宽(BC)为6m.(2)不能,理由如下:设BC=ym,则AB=(33﹣3y)m,依题意,得:y(33﹣3y)=100,整理,得:3y2﹣33y+100=0.∵△=(﹣33)2﹣4×3×100=﹣111<0,∴该方程无解,即该扶贫单位不能建成一个100m2的矩形养鸡场.19.解:(1)由题意,可得当售价为22万元/辆时,平均每周的销售量是:×1+8=14,则此时,平均每周的销售利润是:(22﹣15)×14=98(万元);(2)设每辆汽车降价x万元,根据题意得:(25﹣x﹣15)(8+2x)=90,解得x1=1,x2=5,当x=1时,销售数量为8+2×1=10(辆);当x=5时,销售数量为8+2×5=18(辆),为了尽快减少库存,则x=5,此时每辆汽车的售价为25﹣5=20(万元),答:每辆汽车的售价为20万元.20.解:设该单位这次共有x名员工去天水湾风景区旅游.因为1000×25=25000<27000,所以员工人数一定超过25人.可得方程[1000﹣20(x﹣25)]x=27000.整理得x2﹣75x+1350=0,解得x1=45,x2=30.当x1=45时,1000﹣20(x﹣25)=600<700,故舍去x1;当x2=30时,1000﹣20(x﹣25)=900>700,符合题意.答:该单位这次共有30名员工去天水湾风景区旅游.21.解:(1)设降价x元,依题意,得:8000×0.9﹣x﹣5000≥5000×20%,解得:x≤1200.答:最多降价1200元,才能使利润率不低于20%.(2)依题意,得:[8000(1+m%)﹣40m﹣5000]×8(1+m%)=50000,整理,得:m2+275m﹣16250=0,解得:m1=50,m2=﹣325(不合题意,舍去).答:m的值为50元.。
人教版九年级数学第21章一元二次方程综合训练一、选择题(本大题共10道小题)1. 若关于x的方程x2-2x+c=0有一根为-1,则方程的另一根为()A. -1B. -3C. 1D. 32. 一元二次方程2x2-3x+1=0的根的情况是()A. 有两个相等的实数根B. 有两个不相等的实数根C. 只有一个实数根D. 没有实数根3. 绿苑小区在规划设计时,准备在两幢楼房之间设置一块面积为900平方米的矩形绿地,并且长比宽多10米.设绿地的宽为x米,根据题意,可列方程为()A.x(x-10)=900 B.x(x+10)=900C.10(x+10)=900 D.2[x+(x+10)]=9004. 若关于x的一元二次方程x2-2x+m=0无实数根,则实数m的取值范围是()A.m<1 B.m≥1C.m≤1 D.m>15. 关于x的一元二次方程x2+kx-2=0(k为实数)根的情况是()A.有两个不相等的实数根C.没有实数根B.有两个相等的实数根D.不能确定6. 以x=b±b2+4c2为根的一元二次方程可能是()A.x2+bx+c=0 B.x2+bx-c=0C.x2-bx+c=0 D.x2-bx-c=07. 在一幅长为80 cm,宽为50 cm的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如图所示.如果要使整个挂图的面积是5400 cm2,设金色纸边的宽为x cm,那么x满足的方程是()A.x2+130x-1400=0 B.x2+65x-350=0C.x2-130x-1400=0 D.x2-65x-350=08. 若方程(x+3)2=m的解是有理数,则实数m不能..取下列四个数中的()A.1 B.4 C.14 D.129. 若M=2x2-12x+15,N=x2-8x+11,则M与N的大小关系为() A.M≥N B.M>N C.M≤N D.M<N10. 定义:如果一元二次方程ax2+bx+c=0满足a+b+c=0,那么我们称这个方程为“和谐”方程;如果一元二次方程ax2+bx+c=0满足a-b+c=0,那么我们称这个方程为“美好”方程.如果一元二次方程2x2+mx+n=0既是“和谐”方程又是“美好”方程,那么mn的值为()A.2 B.0 C.-2 D.3二、填空题(本大题共7道小题)11. 一元二次方程3x2=4-2x的解是__________________.12. 方程x-1=2的解是________.13. 填空:(1)x2+4x+(____)=(x+____)2;(2)x2+(____)x+254=⎝⎛⎭⎪⎫x-522;(3)x2-73x+(______)=(x-______)2;(4)x2-px+(______)=(x-______)2.14. 三角形的两边长分别是3和4,第三边长是方程x2-13x+40=0的根,则该三角形的周长为________.15. 对于实数a,b,定义运算“◎”如下:a◎b=(a+b)2-(a-b)2.若(m+2)◎(m-3)=24,则m=________.16. 已知x=m是一元二次方程x2-9x+1=0的一个根,则m2-7m-18m2m2+1=________.17. 小明在解方程x2-2x-1=0时出现了错误,其解答过程如下:x2-2x=-1.(第一步)x2-2x+1=-1+1.(第二步)(x-1)2=0.(第三步)x1=x2=1.(第四步)(1)小明的解答过程是从第________步开始出现错误,其错误原因是________________;(2)请写出此题正确的解答过程.三、解答题(本大题共4道小题)18. 用配方法解下列方程:(1) x2+6x=-7;(2)4y2+4y+3=0;(3)(2x-1)2=x(3x+2)-7.19. 如图,某工程队在工地上利用互相垂直的两面墙AE,AF,另两边用铁栅栏围成一个矩形场地ABCD,中间再用铁栅栏分割成两个矩形,铁栅栏的总长为180米,已知墙AE的长为90米,墙AF的长为60米.(1)设BC=x米,则CD=________米,四边形ABCD的面积为____________平方米;(2)若矩形ABCD的面积为4000平方米,则BC的长为多少米?20. 某学校机房有100台学生用电脑和1台教师用电脑,现在教师用电脑被某种电脑病毒感染,且该电脑病毒传播得非常快,如果一台电脑被感染,经过两轮感染后就会有16台电脑被感染.(1)每轮感染中平均一台电脑会感染几台电脑?(2)若病毒得不到有效控制,多少轮感染后机房内所有电脑都将被感染?21. 2018·常州阅读材料:各类方程的解法:求解一元一次方程,根据等式的基本性质,把方程转化为x=a的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似地,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想——转化,把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x3+x2-2x=0,可以通过因式分解把它转化为x(x2+x-2)=0,解方程x=0和x2+x-2=0,可得方程x3+x2-2x=0的解.(1)问题:方程x3+x2-2x=0的解是x1=0,x2=________,x3=________;(2)拓展:用“转化”思想求方程2x+3=x的解;(3)应用:如图1-T-2,已知矩形草坪ABCD的长AD=8 m,宽AB=3 m,小华把一根长为10 m的绳子的一端固定在点B,沿草坪边沿BA,AD走到点P处,把长绳PB段拉直并固定在点P,然后沿草坪边沿PD,DC走到点C处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C.求AP的长.人教版九年级数学第21章一元二次方程综合训练-答案一、选择题(本大题共10道小题)1. 【答案】D【解析】设方程的另一个根为x2,则根据根与系数关系有-1+x2=2,解得x2=3.2. 【答案】B【解析】代入数据求出根的判别式Δ=b2-4ac的值,根据Δ的正负即可得出结论.∵Δ=b2-4ac=(-3)2-4×2×1=1>0,∴该方程有两个不相等的实数根.3. 【答案】 B4. 【答案】D[解析] ∵方程无实数根,∴Δ=b2-4ac=(-2)2-4×1·m=4-4m<0,解得m>1.故选D.5. 【答案】A[解析] ∵a=1,b=k,c=-2,∴Δ=b2-4ac=k2-4×1×(-2)=k2+8>0,∴方程有两个不相等的实数根.故选A.6. 【答案】D[解析] 对照求根公式,可确定二次项系数、一次项系数和常数项分别为1,-b,-c.故选D.7. 【答案】B8. 【答案】D9. 【答案】A[解析] M-N=(2x2-12x+15)-(x2-8x+11)=x 2-4x +4=(x -2)2.∵(x -2)2≥0,∴M≥N.10. 【答案】B [解析] 根据“和谐”方程和“美好”方程的定义得2+m +n =0,2-m +n =0,解得m =0,n =-2,所以mn =0.二、填空题(本大题共7道小题)11. 【答案】x 1=-1+133,x 2=-1-133[解析] 直接利用公式法解一元二次方程得出答案.整理,得3x 2+2x -4=0,则Δ=b 2-4ac =4-4×3×(-4)=52>0,∴x =-2±526,∴x 1=-1+133,x 2=-1-133.12. 【答案】x =5 【解析】方程两边平方得,x -1=4,解得 x =5,经检验,x =5是原方程的解.13. 【答案】(1)4 2 (2)-5 (3)4936 76 (4)p 24 p 214. 【答案】12【解析】解一元二次方程x 2-13x +40=0得x 1=5,x 2=8.当x=5时,∵3+4>5,∴3,4,5能构成三角形,此时三角形周长为:3+4+5=12;当x =8时,∵3+4<8,不满足三角形的三边关系,∴3,4,8不能构成三角形.故此三角形的周长为12.15. 【答案】-3或4[解析] 根据题意,得[(m+2)+(m-3)]2-[(m+2)-(m-3)]2=24.整理,得(2m-1)2=49,即2m-1=±7,所以m1=-3,m2=4.16. 【答案】-1[解析] 由题意可得m2-9m+1=0,所以m2+1=9m,m≠0,所以m2-7m-18m2m2+1=m2-9m+2m-18m29m=-1+2m-2m=-1.17. 【答案】解:(1)一移项时没有变号(2)x2-2x=1.x2-2x+1=1+1.(x-1)2=2.x-1=±2.所以x1=1+2,x2=1- 2.三、解答题(本大题共4道小题)18. 【答案】解:(1)配方,得x2+6x+9=-7+9. 即(x+3)2=2.方程两边开方,得x+3=±2.所以x1=-3+2,x2=-3- 2.(2)移项,得4y2+4y=-3.配方,得(2y+1)2=-2.因为无论y为何实数,总有(2y+1)2≥0,所以此方程无解.(3)去括号,得4x2-4x+1=3x2+2x-7.整理,得x2-6x=-8.配方,得(x-3)2=1.所以x-3=±1,所以x1=2,x2=4.19. 【答案】解:(1)(180-2x)x(180-2x)(2)设红星公司要制作的BC=x米.由题意,得x(180-2x)=4000,整理,得x2-90x+2000=0,解得x1=40,x2=50.当x=40时,180-2x=100>90,不符合题意,舍去;当x=50时,180-2x=80<90,符合题意.答:BC的长为50米.20. 【答案】解:(1)设每轮感染中平均一台电脑会感染x台电脑.根据题意,得1+x+x(1+x)=16,解得x1=3,x2=-5(舍去).答:每轮感染中平均一台电脑会感染3台电脑.(2)三轮感染后,被感染的电脑台数为16+16×3=64,四轮感染后,被感染的电脑台数为64+64×3=256>101.答:若病毒得不到有效控制,四轮感染后机房内所有电脑都将被感染.21. 【答案】解:(1)x3+x2-2x=0,x(x2+x-2)=0,x(x+2)(x-1)=0,∴x=0或x+2=0或x-1=0,∴x1=0,x2=-2,x3=1.故答案为:-2,1.(2)2x+3=x,方程两边平方,得2x+3=x2,即x2-2x-3=0,(x-3)(x+1)=0,∴x-3=0或x+1=0,∴x1=3,x2=-1.当x=-1时,2x+3=1=1≠-1,∴-1不是原方程的解.∴方程2x+3=x的解是x=3.(3)∵四边形ABCD是矩形,∴∠A=∠D=90°,AB=CD=3 m.设AP=x m,则PD=(8-x)m.∵BP+CP=10 m,BP=AB2+AP2,CP=PD2+CD2,∴9+x2+(8-x)2+9=10,∴(8-x)2+9=10-9+x2,两边平方,得(8-x)2+9=100-20 9+x2+9+x2,整理,得5 9+x2=4x+9,两边平方并整理,得x2-8x+16=0,即(x-4)2=0,解得x1=x2=4.经检验,x=4是方程的解.答:AP的长为4 m.。
人教版数学九年级上册第二十一章解一元二次方程计算题练习卷一、计算题1.解下列方程:x2−4x=0(1);(x−6)(x+1)=−12(2) .2.解方程:(1)(x+2)2﹣9=0;(2)x2﹣2x﹣3=0.3.解方程:(1)x2-2x-3=0;(2)x (x-2)-x+2=0.4.解方程:(x+3)2−25=0x(x+2)=2x+45.解方程:.(x+3)(x−3)=x−36.解方程:.7.解方程:(1)x2=4x;(2)x(x﹣2)=3x﹣6.(1)4x(2x+1)=3(2x+1);(2)﹣3x2+4x+4=0.9.解下列方程:(1)x2−2x−8=0(2)(x−1)2=(x−1)10.用适当方法解下列一元二次方程:(1)x2﹣6x=1;(2)x2﹣4=3(x﹣2).11.解方程:x(x﹣3)=x﹣312.解方程:(x+3)2﹣2x(x+3)=0.13.解方程:x(2x﹣5)=2x﹣5.14.解下列关于x的方程.6x(x−1)=x−1(1);3x2−2x=x2+x+1(2).(1)x2−2x+1=0(2)2x2−7x+3=016.解方程:(x−2)2=3(x−2)(1);3x2−4x−1=0(2).17.解方程:(1)(x﹣4)(5x+7)=0;(2)x2﹣4x﹣6=0.18.解方程:(1)x2﹣3x=0;(2)2x(3x﹣2)=2﹣3x.答案解析部分1.【答案】(1)解:x2−4x=0x(x−4)=0解得x1=0,x2=4(2)解:(x−6)(x+1)=−12x2−5x−6=−12x2−5x+6=0即(x−2)(x−3)=0解得x1=3,x2=22.【答案】(1)解:(x+2)2﹣9=0(x+2)2=9x+2=±3x1=−5,x2=1所以 .(2)解:x2﹣2x﹣3=0(x+1)(x-3)=0x-3=0或x+1=0x1=−1,x2=3所以 .3.【答案】(1)解:x2-2x-3=0x2-2x+1=3+1(x-1)2=4x-1=±2∴x1=3,x2=-1;(2)解:x (x-2)-(x-2)=0(x-2)(x-1)=0x-2=0或x-1=0∴x1=2,x2=1.4.【答案】解:(x+3)2=25,∴x+3=±5,解得:x1=2,x2=-8.5.【答案】解:x(x+2)=2x+4,x(x+2)-2(x+2)=0,(x+2)(x-2)=0,x+2=0或x-2=0,∴x1=-2,x2=2.6.【答案】解:,(x+3)(x−3)−(x−3)=0.(x−3)[(x+3)−1]=0即.(x−3)(x+2)=0∴或,x−3=0x+2=0∴或.x1=3x2=−27.【答案】(1)解:∵x2=4x,∴x2-4x=0,则x(x-4)=0,∴x=0或x-4=0,解得x1=0,x2=4;(2)解:∵x(x-2)=3x-6,∴x(x-2)-3(x-2)=0,则(x-2)(x-3)=0,∴x-2=0或x-3=0,解得x1=2,x2=3.8.【答案】(1)解:4x(2x+1)=3(2x+1)(4x−3)(2x+1)=0x1=34,x2=−12(2)解:−3x2+4x+4=0a=−3,b=4,c=4,Δ=42+3×4×4=64∴x=−b±b2−4ac2a=−4±8−6∴x1=−23,x2=29.【答案】(1)解:x2−2x−8=0(x−4)(x +2)=0解得: , .x 1=−2x 2=4(2)解: (x−1)2=(x−1)(x−1−1)(x−1)=0(x−2)(x−1)=0解得: , .x 1=1x 2=210.【答案】(1)解:两边同加.得,32x 2−6x +32=1+32即,(x−3)2=10两边开平方,得,x−3=±10即,或,x−3=10x−3=−10∴,x 1=10+3x 2=−10+3(2)解:,(x +2)(x−2)=3(x−2)∴,(x +2)(x−2)−3(x−2)=0∴,(x−2)(x−1)=0∴,或,x−2=0x−1=0解得x 1=2,x 2=111.【答案】解:x (x-3)=x-3x (x-3)-(x-3)=0,(x-3)(x-1)=0,解得:x 1=3,x 2=1.12.【答案】解:(x+3)2﹣2x (x+3)=0(x +3)(x +3−2x)=0(x +3)(3−x)=0解得x 1=3,x 2=−313.【答案】解:(2x -5)(x -1)=0x 1=,x 2=15214.【答案】(1)解:移项,得6x (x−1)−(x−1)=0由此可得(6x−1)(x−1)=06x−1=0,x−1=0解得,.x 1=16x 2=1(2)解:移项,得2x 2−3x−1=0,,a =2b =−3c =−1Δ=b 2−4ac =(−3)2−4×2×(−1)=17>0∴x =−(−3)±172×2=3±174∴x 1=3+174,x 2=3−17415.【答案】(1)解:,x 2−2x +1=0即(x-1)2=0,∴x 1=x 2=1(2)解:,2x 2−7x +3=0因式分解得:(2x-1)(x-3)=0,∴2x-1=0或x-3=0,∴x 1=,x 2=31216.【答案】(1)解:原方程可化为(x−2)(x−5)=0即或,x−2=0x−5=0∴,x 1=2x 2=5(2)解:∵,,,a =3b =−4c =−1∴,Δ=b 2−4ac =28>0∴,x =4±282×3=2±73∴,x 1=2+73x 2=2−7317.【答案】(1)解:,(x−4)(5x +7)=0或,x−4=05x +7=0或,x =4x =−75即x 1=4,x 2=−75(2)解:,x 2−4x−6=0,x 2−4x =6,x 2−4x +4=6+4,(x−2)2=10,x−2=±10,x =2±10即x 1=2+10,x 2=2−1018.【答案】(1)解:x 2﹣3x =0,x (x﹣3)=0,∴x =0或x﹣3=0,∴x 1=0,x 2=3;(2)解:2x (3x﹣2)=2﹣3x , 2x (3x﹣2)+(3x﹣2)=0,则(3x﹣2)(2x+1)=0,∴3x﹣2=0或2x+1=0,解得x 1=,x 2=﹣.2312。
第二十一章一元二次方程21.1一元二次方程1.下列方程中是关于x的一元二次方程的是()A.x2+1x2=1 B.ax2+bx+c=0C.(x-1)(x+2)=1 D.3x2-2xy-5y2=02.方程(m+2)x|m|+3mx+1=0是关于x的一元二次方程,则()A.m=±2 B.m=2C.m=-2 D.m≠±23.将方程3x(x-1)=5(x+2)化为一元二次方程的一般式,正确的是()A.4x2-4x+5=0 B.3x2-8x-10=0C.4x2+4x-5=0 D.3x2+8x+10=04.若关于x的一元二次方程(m-3)x2+2x+m2-9=0的常数项为0,则m的值为() A.3 B.-3 C.±3 D.±95.已知关于x的方程x2+3mx+m2=0的一个根是x=1,那么m2+3m=______.6.方程(k2-1)x2+(k-1)x+2k-1=0,(1)当k______时,方程为一元二次方程;(2)当k______时,方程为一元一次方程.7.写出下列一元二次方程的二次项系数、一次项系数及常数项.一元二次方程二次项系数一次项系数常数项x2-3x+4=04x2+3x-2=03x2-5=06x2-x=08.设未知数列出方程,将方程化成一般形式后,指出二次项系数,一次项系数和常数项:一个矩形的面积是50平方厘米,长比宽多5厘米,求这个矩形的长和宽.9.已知关于x的方程x2-mx+1=0的一个根为1,求m2-6m+9+1-2m+m2的值.10.已知a 是方程x 2-2011x +1=0的一个根,求a 2-2010a +2011a 2+1的值.21.2 解一元二次方程 第1课时 配方法、公式法1.方程(x -2)2=9的解是( )A .x 1=5,x 2=-1B .x 1=-5,x 2=1C .x 1=11,x 2=-7D .x 1=-11,x 2=72.把方程x 2-8x +3=0化成(x +m )2=n 的形式,则m ,n 的值是( ) A .4,13 B .-4,19 C .-4,13 D .4,193.方程x 2-x -2=0的根的情况是( ) A .有两个相等的实数根 B .有两个不相等的实数根 C .无实数根 D .不能确定4.方程x 2+x -1=0的根是( )A .1- 5 B.-1+52C .-1+ 5 D.-1±525.(2012年广东广州)已知关于x 的一元二次方程x 2-2 3+k =0有两个相等的实数根,则k 值为________.6.用配方法解下列方程: (1)x 2+5x -1=0; (2)2x 2-4x -1=0; (3)2x 2+1=3x .7.用公式法解下列方程:(1)x2-6x-2=0;(2)4y2+4y-1=-10-8y.8.阅读下面的材料并解答后面的问题:小力:能求出x2+4x+3的最小值吗?如果能,其最小值是多少?小强:能.求解过程如下:因为x2+4x+3=x2+4x+4-4+3=(x2+4x+4)+(-4+3)=(x+2)2-1,而(x+2)2≥0,所以x2+4x+3的最小值是-1.问题:(1)小强的求解过程正确吗?(2)你能否求出x2-8x+5的最小值?如果能,写出你的求解过程.9.已知关于x的一元二次方程x2-mx-2=0.(1)若x=-1是这个方程的一个根,求m的值和方程的另一根;(2)对于任意的实数m,判断方程的根的情况,并说明理由.10.已知关于x的方程x2-2x-2n=0有两个不相等的实数根.(1)求n的取值范围;(2)若n<5,且方程的两个实数根都是整数,求n的值.第2课时因式分解法1.方程x2+2x=0的根是()A.x=0 B.x=-2C.x1=0,x2=-2 C.x1=x2=-22.一元二次方程(x-3)(x-5)=0的两根分别为()A.3,-5 B.-3,-5C.-3,5 D.3,53.用因式分解法把方程5y(y-3)=3-y分解成两个一次方程,正确的是() A.y-3=0,5y-1=0B.5y=0,y-3=0C.5y+1=0,y-3=0D.3-y=0,5y=04.解一元二次方程x2-x-12=0,正确的是()A.x1=-4,x2=3B.x1=4,x2=-3C.x1=-4,x2=-3D.x1=4,x2=35.(2011年四川南充)方程(x+1)(x-2)=x+1的解是()A.2 B.3C.-1,2 D.-1,36.用因式分解法解方程3x(x-1)=2-2x时,可把方程分解成______________.7.已知[(m+n)2-1][(m+n)2+3]=0,则m+n=___________.8.(2012年广东珠海)已知关于x的一元二次方程x2+2x+m=0.(1)当m=3时,判断方程的根的情况;(2)当m=-3时,求方程的根.9.关于x 的一元二次方程x 2+bx +c =0的两根为x 1=1,x 2=2,则x 2+bx +c 分解因式的结果为________.10.用换元法解分式方程x -1x -3x x -1+1=0时,如果设x -1x =y ,将原方程化为关于y的整式方程,那么这个整式方程是( )A .y 2+y -3=0B .y 2-3y +1=0C .3y 2-y +1=0D .3y 2-y -1=011.阅读题例,解答下题: 例:解方程x 2-|x -1|-1=0.解:(1)当x -1≥0,即x ≥1时,x 2-(x -1)-1=x 2-x =0. 解得x 1=0(不合题设,舍去),x 2=1.(2)当x -1<0,即x <1时,x 2+(x -1)-1=x 2+x -2=0. 解得x 1=1(不合题设,舍去),x 2=-2. 综上所述,原方程的解是x =1或x =-2. 依照上例解法,解方程x 2+2|x +2|-4=0. *第3课时 一元二次方程的根与系数的关系1.若x 1,x 2是一元二次方程x 2-5x +6=0的两个根,则x 1+x 2的值是( ) A .1 B .5 C .-5 D .62.设方程x 2-4x -1=0的两个根为x 1与x 2,则x 1x 2的值是( ) A .-4 B .-1 C .1 D .0 3.两个实数根的和为2的一元二次方程可能是( ) A .x 2+2x -3=0 B .2x 2-2x +3=0 C .x 2+2x +3=0 D .x 2-2x -3=04.孔明同学在解一元二次方程x 2-3x +c =0时,正确解得x 1=1,x 2=2,则c 的值为______.5.已知一元二次方程x 2-6x -5=0的两根为a ,b ,则1a +1b的值是________.6.求下列方程两根的和与两根的积: (1)3x 2-x =3; (2)3x 2-2x =x +3.7.已知一元二次方程x 2-2x +m =0. (1)若方程有两个实数根,求m 的范围;(2)若方程的两个实数根为x 1,x 2,且x 1+3x 2=3,求m 的值.8.点(α,β)在反比例函数y =kx的图象上,其中α,β是方程x 2-2x -8=0的两根,则k=__________9.已知x 1,x 2是方程x 2+6x +3=0的两实数根,则x 2x 1+x 1x 2的值为________.10.已知关于x 的方程x 2-2(k -1)x +k 2=0有两个实数根x 1,x 2. (1)求k 的取值范围;(2)若|x 1+x 2|=x 1x 2-1,求k 的值.21.3 实际问题与一元二次方程1.制造一种产品,原来每件成本是100元,由于连续两次降低成本,现在的成本是81元,则平均每次降低成本的( )A .8.5%B .9%C .9.5%D .10% 2.用13 m 的铁丝网围成一个长边靠墙面积为20 m 2的长方形,求这个长方形的长和宽,设平行于墙的一边为x m ,可得方程( )A .x (13-x )=20B .x ·13-x2=20C .x (13-12x )=20 D .x ·13-2x 2=203.(2012年广东湛江)湛江市2009年平均房价为每平方米4000元,连续两年增长后,2011年平均房价达到每平方米5500元,设这两年平均房价年平均增长率为x ,根据题意,下面所列方程正确的是( )A .5500(1+x )2=4000B .5500(1-x )2=4000C .4000(1-x )2=5500D .4000(1+x )2=55004.将进货单价为40元的商品按50元出售时,能卖500个,已知该商品每涨价1元,其销量就要减少10个,为了赚8000元利润,则应进货( )A .400个B .200个C .400个或200个D .600个5.三个连续正偶数,其中两个较小的数的平方和等于第三个数的平方,则这三个数是( )A .-2,0,2B .6,8,10C .2,4,6D .3,4,56.读诗词解题(通过列方程,算出周瑜去世时的年龄): 大江东去浪淘尽,千古风流人物. 而立之年督东吴,早逝英才两位数. 十位恰小个位三,个位平方与寿符. 哪位学子算得快,多少年华属周瑜. 周瑜去世时 ________岁.7.注意:为了使同学们更好地解答本题,我们提供了一种解题思路,你可以依照这个思路按下面的要求填空,完成本题的解答也可以选用其他的解题方案,此时不必填空,只需按照解答题的一般要求进行解答.青山村种的水稻2007年平均每公顷产8000 kg,2009年平均每公顷产9680 kg ,求该村水稻每公顷产量的年平均增长率.解题方案:设该村水稻每公顷产量的年平均增长率为x . (1)用含x 的代数式表示:①2008年种的水稻平均每公顷的产量为__________________; ②2009年种的水稻平均每公顷的产量为__________________; (2)根据题意,列出相应方程________________; (3)解这个方程,得________________;(4)检验:_________________________________________________________________; (5)答:该村水稻每公顷产量的年平均增长率为____________%.8.如图21-3-2,有一长方形的地,长为x米,宽为120米,建筑商将它分成三部分:甲、乙、丙.甲和乙为正方形.现计划甲建设住宅区,乙建设商场,丙开辟成公司.若已知丙地的面积为3200平方米,试求x的值.图21-3-29.某工厂生产的某种产品按质量分为10个档次,第1档次(最低档次)的产品一天能生产76件,每件利润10元,每提高一个档次,每件利润增加2元,但一天产量减少4件.(1)若生产第x档次的产品一天的总利润为y元(其中x为正整数,且1≤x≤10),求出y 关于x的函数关系式;(2)若生产第x档次的产品一天的总利润为1080元,求该产品的质量档次.10.国家发改委公布的《商品房销售明码标价规定》,从2011年5月1日起商品房销售实行一套一标价.商品房销售价格明码标价后,可以自行降价、打折销售,但涨价必须重新申报.某市某楼盘准备以每平方米5000元的均价对外销售,由于新政策的出台,购房者持币观望.为了加快资金周转,房地产开发商对价格两次下调后,决定以每平方米4050元的均价开盘销售.(1)求平均每次下调的百分率;(2)某人准备以开盘均价购买一套100平方米的房子,开发商还给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,送两年物业管理费,物业管理费是每平方米每月1.5元.请问哪种方案更优惠?第二十一章 一元二次方程 21.1 一元二次方程 【课后巩固提升】 1.C 2.B 3.B4.B 解析:m 2-9=0,且m -3≠0,解得m =-3. 5.-1 6.(1)≠±1 (2)=-1 解析:当所给方程为一元二次方程时,k 2-1≠0,即k ≠±1;当所给方程为一元一次方程时,需满足k 2-1=0且k -1≠0,即k =-1.7.解:8.所列方程为x (x -5)=50.整理后,得一般形式:x 2-5x -50=0.二次项系数为1,一次项系数为-5,常数项为-50. 解法二:设宽为x 厘米,则长为(x +5)厘米, 所列方程为x (x +5)=50.整理后,得一般形式:x 2+5x -50=0.二次项系数为1,一次项系数为5,常数项为-50.9.解:把x =1代入方程x 2-mx +1=0中,得1-m +1=0,所以m =2,故m 2-6m +9+1-2m +m 2=(m -3)2+(1-m )2=|2-3|+|1-2|=2.10.解:a 是方程x 2-2011x +1=0的一个根, 则a 2-2011a +1=0,所以a 2+1=2011a ,a 2=2011a -1.a 2-2010a +2011a 2+1=2011a -1-2010a +20112011a=a -1+1a =a 2-a +1a =2011a -aa =2010.21.2 解一元二次方程第1课时 配方法、公式法 【课后巩固提升】 1.A 2.C 3.B 4.D 5.D6.解:(1)移项,得x 2+5x =1.配方,得x 2+5x +254=294,⎝⎛⎭⎫x +522=294. ∴x +52=±292.∴x 1=29-52,x 2=-29-52.(2)系数化为1,得x 2-2x -12=0.移项,得x 2-2x =12.配方,得x 2-2x +1=32,(x -1)2=32.∴x -1=±62.∴x 1=6+22,x 2=-6+22.(3)移项,得2x 2-3x =-1.系数化为1,得x 2-32x =-12.配方,得x 2-32x +⎝⎛⎭⎫342=-12+⎝⎛⎭⎫342,⎝⎛⎭⎫x -342=116,x -34=±14,∴x 1=1,x 2=12. 7.解:(1)∵a =1,b =-6,c =-2, ∴b 2-4ac =(-6)2-4×1×(-2)=44>0.∴x =6±442=6±2 112=3±11.∴x 1=3+11,x 2=3-11.(2)原方程可化为4y 2+12y +9=0. ∵a =4,b =12,c =9,∴b 2-4ac =122-4×4×9=0.∴y =-12±02×4=-32.∴y 1=y 2=-32.8.解:(1)正确.(2)能.过程如下:x 2-8x +5=x 2-8x +16-16+5=(x -4)2-11, ∵(x -4)2≥0,∴x 2-8x +5的最小值是-11.9.解:(1)因为x =-1是方程的一个根, 所以1+m -2=0,解得m =1.方程为x 2-x -2=0,解得x 1=-1,x 2=2. 所以方程的另一根为x =2.(2)b 2-4ac =m 2+8,因为对于任意实数m ,m 2≥0,所以m 2+8>0,所以对于任意的实数m ,方程有两个不相等的实数根.10.解:(1)∵关于x 的方程x 2-2x -2n =0, a =1,b =-2,c =-2n , ∴Δ=b 2-4ac =4+8n >0.解得n >-12.(2)由原方程,得(x -1)2=2n +1. ∴x =1±2n +1.∵方程的两个实数根都是整数,且n <5, ∴0<2n +1<11,且2n +1是完全平方形式. ∴2n +1=1,2n +1=4或2n +1=9. 解得,n =0,n =1.5或n =4. 第2课时 因式分解法 【课后巩固提升】 1.C 2.D 3.C 4.B 5.D 6.(x -1)(3x +2)=07.±1 解析:∵[(m +n )2-1][(m +n )2+3]=0,∴(m +n )2=1或(m +n )2=-3.又∵(m +n )2≥0,∴(m +n )2=1,即m +n =±1.8.解:(1)当m =3时,b 2-4ac =22-4×1×3=-8<0,∴原方程没有实数根.(2)当m =-3时,x 2+2x -3=0,(x +3)(x -1)=0.∴x 1=-3,x 2=1.9.(x -1)(x -2)10.A 解析:由题意可将方程化为y -3y+1=0,两边同乘以y ,得y 2+y -3=0. 11.解:①当x +2≥0,即x ≥-2时,x 2+2(x +2)-4=0,x 2+2x =0,解得x 1=0,x 2=-2;②当x +2<0,即x <-2时,x 2-2(x +2)-4=0,x 2-2x -8=0,解得x 1=4(不合题设,舍去),x 2=-2(不合题设,舍去).综上所述,原方程的解是x =0或x =-2.*第3课时 一元二次方程的根与系数的关系【课后巩固提升】1.B 2.B 3.D 4.25.-65解析:∵a ,b 是一元二次方程的两根, ∴a +b =6,ab =-5.1a +1b =a +b ab =-65. 6.解:(1)原方程化为一般形式为3x 2-x -3=0.所以x 1+x 2=--13=13,x 1x 2=-33=-1. (2)原方程化为一般形式为3x 2-3x -3=0,即x 2-x -1=0.所以x 1+x 2=--11=1,x 1x 2=-11=-1. 7.解:(1)∵方程x 2-2x +m =0有两个实数根,∴Δ=(-2)2-4m ≥0.解得m ≤1.(2)由两根关系可知,x 1+x 2=2,x 1·x 2=m .解方程组121223 3.x x x x ⎧⎨⎩+=,+=解得123,21.2x x ⎧⎪⎪⎨⎪⎪⎩== ∴m =x 1·x 2=34. 8.-89.10 解析:x 1+x 2=-6,x 1x 2=3, x 2x 1+x 1x 2=x 22+x 21x 1x 2=(x 1+x 2)2-2x 1x 2x 1x 2=10. 10.解:(1)由方程有两个实数根,可得Δ=b 2-4ac =4(k -1)2-4k 2=4k 2-8k +4-4k 2=-8k +4≥0.解得k ≤12. (2)依据题意,可得x 1+x 2=2(k -1).由(1)可知k ≤12, ∴2(k -1)<0,x 1+x 2<0.∴|x 1+x 2|=-x 1-x 2=x 1·x 2-1.∴-2(k -1)=k 2-1.解得k 1=1(舍去),k 2=-3.∴k 的值是-3.21.3 实际问题与一元二次方程【课后巩固提升】1.D 解析:设每次降低x ,则100(1-x )2=81,解得x =10%.2.B 3.D 4.C 5.B6.36 解析:设周瑜去世时的年龄的个位数字为x ,则十位数字为x -3. 依题意,得x 2=10(x -3)+x ,即x 2-11x +30=0.解得x 1=5,x 2=6.当x =5时,十位数字是2,即是25,与“而立之年督东吴”不符,故舍去; 当x =6时,其年龄为36.即周瑜去世时36岁.7.解:(1)①8000(1+x )②8000(1+x )(1+x )=8000(1+x )2(2)8000(1+x )2=9680(3)x 1=0.1,x 2=-2.1(4)x 1=0.1,x 2=-2.1都是原方程的根,但x 2=-2.1不符合题意,所以只取x =0.1.(5)108.解:根据题意,得(x -120)[120-(x -120)]=3200,即x 2-360x +32 000=0.解得x 1=200,x 2=160.答:x 的值为200或160.9.解:(1)由题意,得y =[10+2(x -1)][76-4(x -1)].整理,得y =-8x 2+128x +640.(2)由题意,得-8x 2+128x +640=1080.x 2-16x +55=0,解得x 1=5,x 2=11(舍去).即当一天的利润为1080元时,生产的是第5档次的产品.10.解:(1)设平均每次下调的百分率为x .5000×(1-x )2=4050.(1-x )2=0.81,解得1-x =0.9或1-x =-0.9(不合题意,舍去).∵1-x =0.9,∴x =0.1=10%.答:平均每次下调的百分率为10%.(2)方案一的总费用为:100×4050×9.810=396 900(元); 方案二的总费用为:100×4050-2×12×1.5×100=401 400(元). ∴方案一优惠.。
学海迷津:数学学习十大方法
1、配方法
所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。
通过配方解决数学问题的方法叫配方法。
其中,用的最多的是配成完全平方式。
配方法是数学中一种重要的恒等变形的方法,它的应用
十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值
和解析式等方面都经常用到它。
2、因式分解法
因式分解,就是把一个多项式化成几个整式乘积的形式。
因式分解是恒等变形的
基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起
着重要的作用。
因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
3、换元法
换元法是数学中一个非常重要而且应用十分广泛的解题方法。
我们通常把未知数
或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替
原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
4、判别式法与韦达定理
一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用
来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。
韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。
5、待定系数法
在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定
的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或
找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。
它是中学数学中常用的方法之一。
6、构造法
在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为
构造法。
运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利
于问题的解决。
7、反证法
反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这
个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正
确的一种方法。
反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论
的反面不只一种)。
用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。
反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形
式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/
不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n一1)个;至多有一个/至少有两个;唯一/至少有两个。
归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否
则推导将成为无源之水,无本之木。
推理必须严谨。
导出的矛盾有如下几种类型:与
已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。
8、面积法
平面几何中讲的面积公式以及由面积公式推出的与面积计算有关的性质定理,不
仅可用于计算面积,而且用它来证明平面几何题有时会收到事半功倍的效果。
运用面
积关系来证明或计算平面几何题的方法,称为面积方法,它是几何中的一种常用方法。
用归纳法或分析法证明平面几何题,其困难在添置辅助线。
面积法的特点是把已
知和未知各量用面积公式联系起来,通过运算达到求证的结果。
所以用面积法来解几
何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置补助线,即使需要添置辅助线,也很容易考虑到。
9、几何变换法
在数学问题的研究中,,常常运用变换法,把复杂性问题转化为简单性的问题而
得到解决。
所谓变换是一个集合的任一元素到同一集合的元素的一个一一映射。
中学
数学中所涉及的变换主要是初等变换。
有一些看来很难甚至于无法下手的习题,可以
借助几何变换法,化繁为简,化难为易。
另一方面,也可将变换的观点渗透到中学数
学教学中。
将图形从相等静止条件下的研究和运动中的研究结合起来,有利于对图形
本质的认识。
几何变换包括:(1)平移;(2)旋转;(3)对称。
10、客观性题的解题方法
选择题是给出条件和结论,要求根据一定的关系找出正确答案的一类题型。
选择
题的题型构思精巧,形式灵活,可以比较全面地考察学生的基础知识和基本技能,从
而增大了试卷的容量和知识覆盖面。
填空题是标准化考试的重要题型之一,它同选择题一样具有考查目标明确,知识
复盖面广,评卷准确迅速,有利于考查学生的分析判断能力和计算能力等优点,不同
的是填空题未给出答案,可以防止学生猜估答案的情况。
要想迅速、正确地解选择题、填空题,除了具有准确的计算、严密的推理外,还
要有解选择题、填空题的方法与技巧。
下面通过实例介绍常用方法。
(1)直接推演法:直接从命题给出的条件出发,运用概念、公式、定理等进行推理
或运算,得出结论,选择正确答案,这就是传统的解题方法,这种解法叫直接推演法。
(2)验证法:由题设找出合适的验证条件,再通过验证,找出正确答案,亦可将供
选择的答案代入条件中去验证,找出正确答案,此法称为验证法(也称代入法)。
当遇到定量命题时,常用此法。
(3)特殊元素法:用合适的特殊元素(如数或图形)代入题设条件或结论中去,从而获得解答。
这种方法叫特殊元素法。
(4)排除、筛选法:对于正确答案有且只有一个的选择题,根据数学知识或推理、演算,把不正确的结论排除,余下的结论再经筛选,从而作出正确的结论的解法叫排除、筛选法。
(5)图解法:借助于符合题设条件的图形或图像的性质、特点来判断,作出正确的选择称为图解法。
图解法是解选择题常用方法之一。
(6)分析法:直接通过对选择题的条件和结论,作详尽的分析、归纳和判断,从而选出正确的结果,称为分析法。