人教版九年级上册数学一元二次方程
- 格式:ppt
- 大小:4.32 MB
- 文档页数:19
九年级上册数学人教版一元二次方程一元二次方程学习资料。
一、一元二次方程的概念。
1. 定义。
- 只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程。
- 一般形式:ax^2+bx + c = 0(a≠0),其中ax^2是二次项,a是二次项系数;bx 是一次项,b是一次项系数;c是常数项。
2. 举例。
- 方程x^2+2x - 3 = 0,这里a = 1,b = 2,c=-3,它是一元二次方程。
- 而方程x^2+(1)/(x)=1不是一元二次方程,因为它不是整式方程(分母中含有未知数x)。
二、一元二次方程的解法。
1. 直接开平方法。
- 对于形如x^2=k(k≥slant0)的方程,可以直接开平方求解。
- 例如,方程x^2=9,解得x=±3。
- 对于方程(x - 1)^2=4,则x - 1=±2,即x = 1±2,所以x = 3或x=-1。
2. 配方法。
- 步骤:- 把方程ax^2+bx + c = 0(a≠0)变形为x^2+(b)/(a)x=-(c)/(a)。
- 在等式两边加上一次项系数一半的平方,即x^2+(b)/(a)x+((b)/(2a))^2=-(c)/(a)+((b)/(2a))^2。
- 把左边写成完全平方式(x +(b)/(2a))^2=frac{b^2-4ac}{4a^2},然后用直接开平方法求解。
- 例如,解方程x^2+4x - 1 = 0。
- 首先将方程变形为x^2+4x=1。
- 然后在两边加上4(因为4 = ((4)/(2))^2),得到x^2+4x + 4 = 1+4,即(x + 2)^2=5。
- 解得x=-2±√(5)。
3. 公式法。
- 对于一元二次方程ax^2+bx + c = 0(a≠0),其求根公式为x=frac{-b±√(b^2)-4ac}{2a}。
- 其中b^2-4ac叫做判别式,记作Δ。
21章 一元二次方程知识点一、一元二次方程1、一元二次方程概念:等号两边是整式,含有一个未知数,并且未知数的最高次数是2的方程叫做一元二次方程。
注意:(1)一元二次方程必须是一个整式方程;(2)只含有一个未知数;(3)未知数的最高次数是2 ;(4)二次项系数不能等于02、一元二次方程的一般形式:)0(02≠=++a c bx ax ,它的特征是:等式左边是一个关于未知数x 的二次三项式,等式右边是零,其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。
注意:(1)二次项、二次项系数、一次项、一次项系数,常数项都包括它前面的符号。
(2)要准确找出一个一元二次方程的二次项系数、一次项系数和常数项,必须把它先化为一般形式。
(3)形如02=++c bx ax 不一定是一元二次方程,当且仅当0≠a 时是一元二次方程。
二、 一元二次方程的解使方程左、右两边相等的未知数的值叫做方程的解,如:当2=x 时,0232=+-x x 所以2=x 是0232=+-x x 方程的解。
一元二次方程的解也叫一元二次方程的根。
一元二次方程有两个根(相等或不等)三、一元二次方程的解法1、直接开平方法:直接开平方法理论依据:平方根的定义。
利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。
根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。
三种类型:(1)()02≥=a a x 的解是a x ±=;(2)()()02≥=+n n m x 的解是m n x -±=;(3)()()0,02≥≠=+c m c n mx 且的解是mn c x -±=。
2、配方法:配方法的理论根据是完全平方公式222)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。