(2)把原来的糖水(淡)与加糖后的糖水(浓)混合到一起,得到的糖水一定 比原来的糖水浓、比加糖后的糖水淡.
解: (2)设原来的糖水 b1 克,含糖 a1 克,易知浓度为 a1 ; b1
加糖后的糖水 b2 克,含糖 a2 克,易知浓度为 a2 , b2
则混合后的浓度为 a1 a2 , b1 b2
课堂探究
题型一 用不等式来表示不等关系 【例1】 配制A,B两种药剂,需要甲,乙两种原料.已知配一剂A种药需甲料3 克,乙料5克;配一剂B种药需甲料5克,乙料4克.今有甲料20克,乙料25克,若 A,B两种药至少各配一剂,设A,B两种药分别配x,y剂(x,y∈N),请写出x,y应 满足的不等关系式.
第三章 不等式 3.1 不等关系与不等式
课标要求:1.通过具体情境,感受在现实世界和日常生活中存在着大量的不 等关系,会用不等式及不等式组表示不等关系.2.会用作差法(或作商法)比 较两个实数或代数式值的大小.3.掌握不等式的性质,能运用不等式的性质 解决问题.
自主学习
知识探究
1.不等式的有关概念 (1)不等式的定义 在客观世界中,量与量之间的不等关系是普遍存在的,我们用数学符号>、<、 ≥、≤、≠连接两个数或代数式来表示它们之间的不等关系,含有这些不等 号的式子,叫做不等式. (2)不等式的分类 在两个不等式中,如果每一个的左边都大于右边,或每一个的左边都小于右 边,这样的两个不等式叫做同向不等式;在两个不等式中,如果一个不等式的 左边大于右边,而另一个不等式的左边小于右边,那么这两个不等式叫做异 向不等式b ≥0,所以 a + b ≥ a + b .
ab
ba
法二 (平方后作差):( a + b )2= a2 + b2 +2 ab , b a ba