当前位置:文档之家› 支架稳定性验算计算书

支架稳定性验算计算书

支架稳定性验算计算书
支架稳定性验算计算书

xx高速公路xx连接线工程

xx标段

一、工程概况

xx高速公路xx连接线工程主线桥墩柱结构设计为圆柱式、花瓶式。其中花瓶墩盖梁68个,门式墩盖梁1个,采用门式满堂支架和少钢管支架两种支架形式;圆柱墩盖梁51个,采用双抱箍沉重支架现浇。

197号花瓶墩为过渡墩,墩身高8.192米;其盖梁结构尺寸:长24.5m×宽2m×高1.4~2.8m,盖梁上的背墙高70cm,宽82cm。

257号花瓶墩墩身高 11.47米,是全线花瓶墩盖梁最高的墩位,盖梁结构尺寸:长24.5m ×宽2m×高1.15~2.8m。

200号圆柱墩盖梁墩身高9.974米,墩柱直径1.5米,其盖梁尺寸为:长25.15m×宽2.2m×高1.8m。

二、计算依据

(1)《公路桥涵设计通用规范》JTG D60-2004;

(2)《公路桥涵钢结构及木结构设计规范》(JTJ 025—86);

(3)《钢结构设计规范》GB50017-2003;

(4)《公路桥涵施工技术规范》JTG/T F50-2011;

(5)《路桥施工计算手册》人民交通出版社。

(6)各种材料的设计控制值采用《钢结构设计规范》GB50017-2003取值:

A3钢材的允许拉、压应力[σ拉、压]=215MPa;

A3钢材的允许剪切应力[τ]=125MPa;

Mn16钢材的允许拉、压应力[σ拉、压]=310MPa;

Mn16钢材的允许剪切应力[τ]=180MPa;

变形控制按L/400进行控制。

三、盖梁支架计算

3.1满堂支架计算

(1)支架设计

197号花瓶墩盖梁采用1019门式支架,门架立杆钢管为φ57×2.5mm,门架加强杆为φ26.8×2.2mm钢管,门架钢材均采用Q235,横向间距4×60+5×45+8×30+9×30+19+17×30+19+9×30+8×30+5×45+4×60cm,详见图3.1-1,纵向间距0.12cm,采用顶托与调

节杆调节高度,顶托上放置[10型钢。

每步门架设置纵、横向水平加固杆,水平加固杆采用φ48×3mm钢管,水平加固杆横向每两榀门架设置一道水平加固杆,纵向水平杆横向间距2.4m,墩柱四周每榀门架内外侧用水平杆将支架连接成整体,水平顶部纵向水平杆需增设,横向间距1.2m。

支架四周纵、横向由底到顶连续设置竖向剪刀撑,中间每隔2.5~3.5米设一道剪刀撑,剪刀撑斜杆与地面较角45~60度之间,门架横向之间采用交叉拉杆连接,支架顶部设置一道水平剪刀撑,详见图3.1-2。

3.1-1 盖梁支架平面布置图(单位:cm)

图3.1-2 盖梁满堂支架模型

(2)荷载类型

①现浇支架结构自重:按实际结构自重计算,程序自动计入;

②砼自重:容重γ=26KN/m3,一次完成边跨现浇段砼加载;

③模板自重:底板、侧模板按3KN/m2、顶模及支撑系统按2.0KN/m2计;

④施工人员、机具荷载:按2.5KN/m2计;

⑤振捣砼产生的荷载:按4.0KN/m2计。

(3)(3)荷载组合

荷载系数:静载系数取2.11=γ,活载系数去4.12=γ时,总荷载: 43214.1)(2.1q q q q Q ?+++?= (4)计算方法、模式

支架结构采用midas 程序进行验算。 (5)作用在分配梁上的荷载

图3.1-3 混凝土荷载分配情况

(6)支架计算

图3.1-4 支架反力图

由上图可见,支架最大反力15.8KN 。

图3.1-5 分配梁[10型钢组合应力图

由上图可见,分配梁[10#型钢最大组合应力][2158.45max σσ=<=Mpa Mpa ,满足要求。

图3.1-6 分配梁[10型钢剪力图

由上图可见,分配梁[10#型钢最大剪应力max τ=30.04MPa<[]τ,满足要求。

图3.1-7 分配梁[10槽钢扰度变形图

由上图可见,分配梁[10槽钢最大挠度1.55mm ,最大计算跨径1m ,f=1.55mm <[f]=1000/400=2.5mm ,满足要求。

图3.1-8 钢管支架组合应力图

由上图可见,钢管支架最大组合应力][21531.169max σσ=<=Mpa Mpa ,满足要求。

图3.1-9 钢管轴力图

由上图可知,钢管支架最大轴力][12564.44max σσ=<=Mpa Mpa 。满足要求。

图3.1-10 满堂支架稳定性分析

由上图可知,临界荷载系数为9.49>3.5,所以支架的整体稳定性满足要求。 3.2钢管支架计算

(1)支架设计

257号花瓶墩盖梁支架采用钢管桩与贝雷梁组合式,钢管桩630×10mm ,钢管桩上设置双拼I45a 承重梁,承重梁上设贝雷梁,贝雷梁上设间距50cmI32a 分配梁,中间四根钢管桩落在承台基础上,其余四根钢管桩基础采用钢筋混凝土扩大基础。详见图3.2-1。

图3.2-1 钢管桩平面布置图(单位:cm )

图3.2-2 少钢管支架模型

(2)荷载类型

①现浇支架结构自重:按实际结构自重计算,程序自动计入; ②砼自重(q 1):容重γ=26KN/m 3; ③模板自重(q 2):底板、侧模板按3KN/m 2; ④施工人员、机具荷载(q 3):按2.5KN/m 2计; ⑤振捣砼产生的荷载(q 4):按4.0KN/m 2计。 (4)荷载组合

荷载系数:静载系数取2.11=γ,活载系数去4.12=γ时,总荷载: 43214.1)(2.1q q q q Q ?+++?=

(4)计算方法、模式

支架结构采用midas程序进行验算。

(5)作用在分配梁上的荷载

图3.2-3 混凝土荷载分配情况(6)支架计算

图3.2-4 支架反力图

由上图可见,支架最大反力689KN。

图3.2-5 分配梁I32a型钢组合应力图

由上图可见分配梁I32a 型钢最大组合应力][21558max σσ=<=Mpa Mpa ,满足要求。

图3.2-6 分配梁I32a 型钢剪力图

由上图可见,分配梁I32a 型钢最大剪应力max τ=26.9MPa<[]τ,满足要求。

图3.2-7 分配梁I32a 型钢扰度变形图

由上图可见,分配梁I32a 型钢最大挠度0.99mm ,最大计算跨径2m ,f=0.99mm <[f]=2000/400=5mm ,满足要求。

图3.2-8 贝雷梁组合应力图

由上图可见,贝雷梁最大组合应力][3106.174max σσ=<=Mpa Mpa ,满足要求。

图3.2-9 贝雷片剪力图

由上图可见,贝雷梁最大剪应力max τ=114.4MPa<[]τ,满足要求。

图3.2-10 贝雷梁扰度变形图

由上图可见,贝雷梁最大挠度10mm ,最大计算跨径9.5m ,f=10mm <[f]=9500/400=23.75mm ,满足要求。

图3.2-11 双拼I45a 型钢承重梁组合应力图

由上图可见,承重梁双拼I45a 型钢最大组合应力][21586.54max σσ=<=Mpa Mpa ,满足要求。

图3.2-12 双拼I45a型钢承重梁剪力图

由上图可见,承重梁双拼I45a型钢最大剪应力

τ=50.5MPa<[]τ,满足要求。

max

图3.2-13 双拼I45a型钢扰度变形图

由上图可见,双拼I45a承重梁最大挠度3mm,最大计算跨径3m,f=3mm<[f]=3000/400=7.5mm,满足要求。

图3.2-14 630×10mm钢管支架组合应力图

由上图可见,钢管桩最大组合应力][21533.55max σσ=<=Mpa Mpa ,满足要求。

图3.2-15 630×10mm 钢管轴力图

由上图可知,钢管桩最大轴力max 35.4215[]Mpa Mpa σσ=<=。满足要求。 (7)钢管桩稳定性计算

单根φ630×10钢管桩反力设计值最大值为35.4/2194.7792686F N mm cm KN =?= 截面面积:A=194cm2 , 钢管桩抗弯惯性矩I=93615.532cm4, 回转半径:0.25

(/)15.7;i

I A

强度检算:/ 686*10/19435.4N A Mpa == < f=190Mpa 强度满足要求。 弯矩作用平面内稳定性检算: 计算长度L 取10m 。

长细比 /1000/15.763.7 []100l i λλ===<=杆件刚度符合要求。 由λ=63.7查表可得稳定系数φx=0.813

故有

/ 686*10/0.813*19443.5? 19()()0N xA Mpa f Mpa ?==<= 符合要求。 (8)条形基础计算

中间四根钢管柱利用承台基础,在承台施工时,在承台顶对应钢管柱位置预埋80*80cm 厚为2.0cm 钢板,并漏出混凝土面1cm,安装时将钢管柱与预埋钢板进行焊接。另外两端四根钢管柱落在原地面上,由于全线均为软基,施工前需要进行软基处理。在软基上填筑一层80cm 的宕渣,用压路机碾压密实,同时硬化区域四周修筑排水沟(40cm ×40cm ),防

止雨季导致便道泥泞,影响现场通行及场地清洁。两端钢管柱基础采用C25条形钢筋混凝土基础,条形基础平面尺寸为4.2m ×1.0×0.5m,基础内部铺设Φ16、Φ10钢筋;基础顶对应钢管柱位置预埋80*80cm 厚为2.0cm 钢板,并露出混凝土面1cm ,条形基础结构见下图;

1)计算参数

C35混凝土:fc=11.9Mpa ,ft=1.28Mpa 钢筋:I 级(φ):fy =210Mpa II 级(Φ):fy =300Mpa 2)配筋计算

将条形基础按倒梁法计算,则作用在梁上部的均布荷载:

()/360.1385.8/4.2177.8/q F l kn m ==+=总

条形基础最大跨度为2.7m ,按单跨简支梁,计算最大跨中弯矩和支座剪力:

20.125*177.8*122.3*max M kn m ==

0.50.5*177.8*188.9F ql KN ===

按照原条形基础配筋,主筋A s =2011mm 2,箍筋Ф10@20进行截面校核

=(300*2011)/(11.9*1000*4002)=0.000316<ξb =0.517

M u =ξ*(1-ξ)f c bh 0=0.000316*(1-0.000316)*11.9*1000*4002=601.4KN*m >M max 故主筋满足要求。

0.7f t bh 0=0.7*1.28*1000*400=35.8KN <F=177.8KN

=(177.8-35.8)*500/(210*400)=0.084

采用Ф10双肢箍,S ≤2*78.5/0.084=1869mm 即采用Ф10@200mm ,满足要求。 故条形基础配筋满足要求。 2)强度计算

以钢管柱与混凝土接触面进行计算。

接触面面积=0.301m 2,单根钢管桩所受最大压力=386KN 。 混凝土强度设计值(N/mm2)

3861286.66 1.3[]11.90.301

N KPa MPa fc MPa A ===<=,满足规范要求。 (9)地基承载力计算

《建筑地基基础设计规范》(GB 50007-2011), 本文简称《地基规范》 《建筑抗震设计规范》(GB 50011-2010), 本文简称《抗震规范》

-----------------------------------------------------------------------

1 设计资料 1.1 已知条件 (1) 计算简图

(2) 设计参数

基础宽 B (m) 2.000 轴力标准值(kN/m) 55.340 弯矩标准值M(kN.m/m) 25.000 基础与覆土平均容重(kN/m3) 20.000 地面标高 (m) 0.000 基底标高 (m) -0.800 考虑地震√

基底零应力区容许率(%) 0

软弱下卧层验算方法 应力扩散角法

(3) 土层数据 土层数: 2

1.2 计算内容 (1) 基底反力计算 (2) 地基承载力验算 (3) 软弱下卧层验算

2 计算过程及计算结果 计算时按单位米计算。 2.1 基底反力计算

(1) 基底全反力计算

基底面积 A=B ×1.000=2.000×1.000=2.000m 2

竖向荷载 N k =55.340kN, G k =A ×γ0×h=2.000×20.000×0.800=32.000kN 偏心距 e=M k /(F k +G k )=0.286m

基底全反力(kPa):

最大 p kmax =81.170, 最小 p kmin =6.170, 平均 p k =43.670 端点 p k1=6.170, p k2=81.170

(2) 基底附加应力计算

最大 p amax =66.770, 最小 p amin =0.000, 平均 p a =29.270 角点 p a1=0.000, p a2=66.770

2.2 地基承载力验算

根据《建筑地基基础设计规范》(GB 50007-2011) 式5.2.4 计算

+

+

=f a

f ak b

()-b 3d

m (

)

-d 0.5

修正后的抗震地基承载力特征值 = 95.400(kPa) 验算 p k =43.670 < f a =95.400

验算 p kmax =81.170 < 1.2f a =114.480 地基承载力验算满足

2.3反力简图

(m)(kN/m3)(kN/m3)征值(kPa)修正修正抗震调整(MPa)

3.3抱箍支撑体系计算

3.3.1、抱箍设计

抱箍具体尺寸见抱箍设计图,主要包括钢带与外伸牛腿的焊接设计两方面的内容,其中牛腿为小型构件,一般不作变形计算,只作应力计算。

3.3.2、受力计算

(1)施工荷载

1)盖梁混凝土和钢筋笼(86.81方,平均密度2.5吨/3

m)自重为:2.5×86.81=217.025(吨)

2)钢模(每平方米100kg)自重为:10(吨)

3)脚手架钢管(采用50钢管,线密度为3.7kg/m,模板底部10根,每根长4m;模板两侧护栏20根,每根长1.5m;模板两侧扶手4根,每根长18m)自重为:1(吨)4)支垫槽钢(采用16型槽钢,理论线密度19.752kg/m,共63根,每根长4m)自重为:0.019.752×4×63=4.98吨)

5)工字钢(采用45b型工字钢,理论线密度为87.485kg/m,共2根,每根长27.15m)自重为:2×27.15×0.087485=4.75(吨)

6)工字钢拉杆(每根直径18mm,共5根,每根长1.5m)自重为:5×1.5×0.00617×23

1810-

?=0.015(吨)

7)连接工字钢的钢板(共4块,每块重79kg)自重为:4×0.079=0.316(吨)

8)施工活荷载:

10人+混凝土动载+振捣力+风荷载+振动荷载=10×0.075+0.5×

1.2+0.3+0.3+0.25=

2.2(吨)

9)总的施工荷载为:217.025+10+1+4.98+4.75+0.015+0.316+2.2=240.286(吨)

10)考虑安全系数为1.2,则施工总荷载为:240.286*1.2=288.343(吨)

11)单个牛腿受力:288.343÷8=36.04吨)

(2)计算钢带对砼的压应力

钢带对立柱的压应力1

σ可由下式计算求得:

1

μσBπD=KG

其中:

μ—摩阻系数,取0.35

B—钢带宽度,B=300mm

D—立柱直径,D=1500mm

K—荷载安全系数,取1.2

G—作用在单个抱箍上的荷载,G=720.8kN

则:=1.1

σ=KG/(μBπD)=1.2×720.8×1000/(0.35×300×2×3.14×

1500)=0.874Mpa<[]

c σ

=16.8Mpa,满足要求。

其中:—砼立柱抗压强度容许值,其值不大于0.8Rab,立柱砼标号为30Mpa ,轴心抗压强度Rab=0.7×30=21Mpa ,0.8 Rab =0.8×21=16.8Mpa

(3) 钢带内应力

2

σ的合成图如下:

2

化简得:21σδ=σD/2

其中:

δ—钢板厚度 求得

2σ=1σD/(2)δ=0.874×1500/(2×10)=65.55MPa

其中:

f —查《钢结构设计规范GB500172003》,厚度≤16mm 的Q235钢抗拉、压、弯强度设计值,为215 Mpa 。

(4)牛腿螺栓受力计算 1)牛腿螺栓抗拉承载力计算

牛腿腹板采用10根10.9级M24高强螺栓(布置方式见设计图),螺栓直径为24mm 。钢带所受拉力:F=

2σA

=65.55×10×300×2×-3

10=393.3kN ,则单个螺栓所受拉力为:

N=F/5=393.3/10=39.33kN

其中:

Nt —10.9级M24高强螺栓设计拉力。查《钢结构设计规范GB500172003》10.9级M24螺栓预拉力P=225kN ,Nt =0.8P=180kN

2)牛腿螺栓抗剪承载力计算

已计算得作用在单个牛腿上的竖向荷载为G=36.04吨,螺栓连接方式为双剪结合,如下图:

单个螺栓所受的竖向总荷载为:T=360.4/10=36.04kN ,单个螺栓所受剪力Q=T/2=18.02kN 。

螺栓截面为圆形,故其截面所受的最大切应力为:

max e 4Q τ=

3A

其中:

e

A —M24螺栓的有效面积,为3532

mm

max e 4Q

τ=

3A =4*18.02*1000/3*353=71.72Mpa 。

螺栓的许用切应力:[τ]=s σ/n

其中:

s

σ—材料的屈服极限,10.9级螺栓的屈服极限为940Mpa (摘自GB 3098.1--82)

n —安全系数,静载时取2.5 则许用应切力:[τ]=s σ/n

=940/2.5=376Mpa 。

max

τ<[τ],满足条件。

3)牛腿螺栓紧固力计算

紧固螺栓时要按照钢板容许应力控制紧固力。 考虑2倍的安全系数,紧固力取393.75×2=787.5kN , 每个螺栓紧固力为:787.5 10=78.75kN 。

查《公路桥涵施工技术规范041-2000》 P236公式:TC=KPCd 其中:

TC —终拧扭矩(N ·M )

K —高强度螺栓连接扭矩系数平均值,范围为0.11~0.15之间,取0.15。

侧墙模板支架稳定性验算

侧墙模板支架稳定性验算: (1)最大侧压力计算 F=0.22γct0β1β2ν1/2 F=γcH 按上二式计算,并取二式中的较小值。 F=0.22γct0β1β2ν1/2=0.22×25×(200/28+15)×1.2×1.15×21/2=0.22×25×4.65×1.2×1.15×1.414=49.91KN/m2 砼侧压力的计算高度高度取5.6m(取最大值) F=γcH=25×5.6=140 KN/m2 按取最小值,故最大侧压力为49.91KN/m2 (2)有效压头高度 h=F/γc=49.91/25=1.996m (3)荷载组合 1.2×(4.991+0.4)+1.4(0.3+0.4)=7.45t/m2 (4)支架布置 取柱网0.6m×0.6m(纵向×横向),横杆步距为0.8m,则每根立杆受力:0.6m×0.6m/根×7.45t/m2×2=5.36t/根=107.41N/mm2。(两侧墙同时对称浇筑) (5)立杆的稳定性验算 N/ΨA≤f Ψ=N/Af=53600/(391×205)=0.668 按《建筑施工扣件式钢管脚手架安全技术规范》JGJ 130—2001附录C查得长细比λ=89 钢管的回转半径i=1/4√(D2+d2)=16mm Ψ为轴心受压构件稳定系数 由λ=L0 /i可得立杆的允许长度即横杆的步距L0 =λi=89×16=1424mm 所以横杆的步距选择为0.8m满足要求。 (6)模板计算 侧墙面板为受弯结构,需要验算其抗弯强度和刚度。强度验算要考虑新浇混凝土侧压力和倾倒混凝土时产生的荷载;挠度验算只考虑新浇混凝土侧压力,取单位宽度0.6m的面板作为计算单元。 面板的截面惯性矩I和截面抵抗矩W分别为: W=60×1.82/6=32.4cm3; I=60×1.83/12=29.16cm4; 模板面板的按照三跨连续梁计算(@200mm)。 1)强度计算 最大弯矩考虑为静荷载与活荷载的计算值最不利分配的弯矩和,计算公式如下: M=0.1×7.45×0.22=0.0298t.m; 面板最大应力计算值σ=29800/32400=0.920N/mm2; 面板的抗弯强度设计值[f]=13N/mm2; 面板的最大应力计算值为0.920N/mm2小于面板的抗弯强度设计值13N/mm2,满足要求。2)挠度计算 挠度计算公式为 1 / 2

桥梁支架计算书

**高速公路(贵州境)***合同段 **分离式桥现浇箱梁支架计算书 编制: 复核: 审核: *********有限公司 年月日

**分离式立交桥现浇箱梁支架计算书 一、计算依据: 1、《路桥施工计算手册》; 2、《材料力学》; 3、《结构力学》; 4、《**高速公路两阶段施工图设计变更设计》 二、工程概况: **分离式立交桥为连接原有道路的主线跨线桥,上部结构跨径组合为:2×30m,桥宽5.5m;采用单箱单室截面,梁高150cm,箱梁采用满堂支架现浇施工。 梁体范围内地面为煤系地层,施工满堂支架时需将地面压实,上铺石粉或浇筑混凝土进行找平,支架底托下垫10cm×15cm方木,顶托上纵向铺工字钢,横向铺设10cm×10cm方木。 一、底板纵向分配梁的计算 现浇箱梁跨径组合为2×30m,由于箱梁整体为对称结构,因此计算时纵向只需考虑2个截面即可,及跨中和梁端(见图)。横向分为中间部分、腹板部分和翼板部分,翼板部分荷载较小,不予考虑。采用容许应力计算不考虑荷载分项系数,为了支架安全,总体考虑1.3倍的安全系数进行计算。

根据《路桥施工计算手册》查得,钢材的力学指标取下值: []σ145Μpa =,[]85pa τ=M ,52.110pa E =?M 。 纵梁选用10号工字钢,设计受力参数为: W=49.0cm 3,I=245.0cm 4,S=28.2cm 3,d=0.45cm 一、验算截面分析 我们根据箱梁截面,初步选定支架的纵向间距为90cm ,横向间距为60cm 。根据梁体截面分析,梁端截面为支架受力的最不利截面,因此只需要计算梁端截面处支架的受力情况即可。具体截面如下: 二、计算 支架纵向间距为90cm 处的分配梁计算 梁端截面

满堂支架计算

精心整理 满堂支架计算 1、荷载计算 根据支架布置方案,采用满堂支架,对其刚度、强度、稳定性必须进行检算。 钢管的内径Ф41mm 外径Ф48mm 、壁厚3.5mm 。 截面积 转动惯量 1A W 砼B ((C 、人员及机器重 W=1KN/m 2(《JGJ166-2008建筑施工碗扣式脚手架安全技术规范》) D 、振捣砼时产生的荷载 W=2KN/m 2(《JGJ166-2008建筑施工碗扣式脚手架安全技术规范》) E 、倾倒混凝土时冲击产生的荷载 W=3KN/m 2(采用汽车泵取值3.0KN/m 2) F 、风荷载 W 模板W 方木22222893.44)1.48.4(14.34/)(cm d D A =÷-?=-=π2/144444187.1264)1.48.4(14.364/)(cm d D J =÷-?=-=π2/12.0105.33 .01m kN kg W =??=钢管

按照《建筑施工碗扣式脚手架安全技术规范》,风荷载W k =0.7u z u s W o 其中u z 为风压高度变化系数,按照《建筑结构荷载规范》取值为1; u s 为风荷载体型系数,按照《建筑结构荷载规范》取值为0.8; W o 为基本风压,按照贵阳市市郊离地高度5m 处50年一遇值为0.3KN/m 2。 风荷载W k =0.7×1×0.8×3=1.68KN/m 2 由风荷载产生立杆弯矩值: 式中: w M k ωα0l 22.1(1)βγW E N ——欧拉临界力; (2)立杆稳定验算 结论:立杆满足强度及稳定性要求。 (3)横向钢管(次楞)强度和刚度验算 次楞荷载组合N=1.2×(27.2+0.4)+0.9×1.4×(1+2+3+1.68)=42.8KN/m 2 按照次楞最不利位置0.3m 间距布置,单根次楞荷载q=42.8×0.3=12.8KN/m A 、横向钢管抗弯强度验算 []MPa f MPa 1704.761712.278.0108.515.12.019.01089.4728.0102.2743=≤=?-????+???=-)(σ

脚手架及安全网量计算规则

1.综合脚手架 为了简化脚手架工程量的计算,一些地区以建筑面积为综合脚手架的工程量。 综合脚手架不管搭设方式,一般综合了砌筑、浇筑、吊装、抹灰等所需脚手架材料的摊销量;综合了木制、竹制、钢管脚手架等,但不包括浇灌满堂基础等脚手架的项目。 综合脚手架一般按单层建筑物或多层建筑物分不同檐口高度来计算工程量,若是高层建筑还须以高层建筑高增加费。 2.单项脚手架 2.1一般规则 1)建筑物外墙脚手架:凡设计室外地坪至于檐口(或女儿墙上表面)的砌筑高度在15m以上的或砌筑高度虽不足15m,但外墙门窗及装饰面积超过外墙表面积60%以上时,均按双排脚手架计算。 2)建筑物内墙脚手架:凡设计室内坪至顶板下表面(或山墙高度的1/2处)的砌筑高度在3.6m以下的(含3.6m),按里脚手架计算;砌筑高度超过3.6m 以上时,按单排脚手架计算。 3)石砌墙体,凡砌筑高度超过1.0m以上时,按外脚手架计算 4)计算内、外墙脚手架时,均不扣除门、窗洞口、空圈洞口等所占的面积。 5)同一建筑物高度不同时,应按不同高度分别计算。 例1 根据图11-4图示尺寸,计算建筑物外墙脚手架工程量。

解 单排脚手架(15m高) =(26+12×2+8)×15=870m2 双排脚手架(24m高) =(18×2+32)×24=1632m2 双排脚手架(27 m高)=32×27=864m2 双排脚手架(36 m高)=(26-8)×36=648m2 双排脚手架(51m高)=(18+24×2+4)×51=3570m2 6)现浇钢筋混凝土框架柱、梁按双排脚手架计算。 7)围墙脚手架:凡室外自然地坪至围墙顶面的砌筑高度在3.6m以下的,按里脚手脚计算;砌筑高度超过3.6m以上时,按单排脚手架计算。

脚手架的抗倾覆验算与稳定性计算

脚手架的抗倾覆验算与稳定性计算[摘要]当模板支架、施工用操作架等脚手架不设连墙杆时,必须首先对脚手架进行抗倾覆验算,然后才是强度、刚度和稳定性计算。而现行的国家标准中没有倾覆验算和稳定性验算内容。根据国家有关标准导出了脚手架倾覆验算公式,并有2个算例辅以说明。最后指出脚手架高宽比与脚手架的倾覆有关,与脚手架稳定性承载能力无关。 [关键词]脚手架;倾覆;稳定性;验算 结构设计中,“倾覆”与“稳定”这两个含义是不相同的,设计时都应考虑。《建筑结构可靠度设计统一标准》gb50068-2001第条第一款规定承载能力极限状态包括:“①整个结构或结构的一部分作为刚体失去平衡(如倾覆等)……。④结构或结构构件丧失稳定(如压屈等)”。可见它们同属于承载能力极限状态,但应分别考虑。《建筑结构设计术语和符号标准》gb/t 50083-97,对“倾覆”和“稳定”分别作出了定义,并称“倾覆验算”和“稳定计算”。《建筑地基基础设计规范》gb50007-2002,关于地基稳定性计算就是防止地基整体(刚体)滑动的计算。《砌体结构设计规范》gb50003-2001对悬挑梁及雨篷的倾覆验算都有专门规定。施工现场的起重机械在起吊重物时也要做倾覆验算。对于脚手架,由于浮搁在地基上,更应该做倾覆验算。 《建筑施工扣件式钢管脚手架安全技术规范》jgj130-2001及《建筑施工门式钢管脚手架安全技术规范》jgj128-2000中都没有

倾覆验算的内容,这是因为这两本规范规定的脚手架都设置了“连墙杆”,倾覆力矩由墙体抵抗,因此就免去了倾覆验算。如果不设连墙杆,则脚手架的倾覆验算在这两本规范中就成为不可缺少的内容了。所以,对于模板支架、施工用的操作架等无连墙杆的脚手架,首先应保证脚手架不倾覆而进行倾覆验算,然后才是强度、刚度和稳定性计算。如果需要,还可进行正常使用极限状态计算。 1脚手架的倾覆验算 通用的验算公式推导 无连墙杆的脚手架,作为一个刚体应按如下表达式进行倾覆验算: (1)式中:γg1、cg1、g1 k分别为起有利作用的永久荷载的分项系数、效应系数、荷载标准值;γg2、cg2、g2 k分别为起不利作用的永久荷载的荷载分项系数、效应系数、荷载标准值;cq1、q1 k 分别为第一个可变荷载的荷载效应系数、荷载标准值;cqi、qik分别为第i个可变荷载的荷载效应系数、荷载标准值;ψci为第i个可变荷载的组合值系数。当风荷载与一个以上的其它可变荷载组合时采用;当风荷载仅与永久荷载组合时采用。 对于平、立面无突出凹凸不平的脚手架,以下简称为规整脚手架,其倾覆验算应按如下表达式进行: (2)式中:为起有利作用的永久荷载的荷载分顶系数;cw、wk为风荷载的效应系数、风荷载的标准值。 对于规整脚手架,其上作用的永久荷载、可变荷载是抗倾覆的,

扣件式钢管模板支架的设计计算

扣件式钢管 模板支架的设计计算 ××省××市××建设有限公司 二O一四年七月十八日

前言 近几年,国内连续发生多起模板支架坍塌事故,尤其是2000年10月,南京电视台新演播大厅双向预应力井式屋盖混凝土浇筑途中,发生了36m高扣件式钢管梁板高支撑架倒塌的重大伤亡事故。从此以后,模板支架设计和使用安全问题引起了人们的高度注意。 虽然采用钢管脚手架杆件搭设各类模板支架已是现代施工常用的做法,但由于缺少系统试验和深入研究,因而尚无包括其设计计算方法的专项标准。几年来,钢管模板支架和高支撑架(h≥4m的模板支架),均采用《建筑施工扣件式钢管脚手架安全技术规范》(JGJ130-2001)(以下简称《扣件架规范》)中“模板支架计算”章节提供的有关公式及相应规定来进行设计计算的,但是惨痛的“事故”教训和深入的试验研究,已经充分揭示了《扣件架规范》中“模板支架计算”对于高支撑架的计算确实尤其是存在重要疏漏,致使计算极容易出现不能完全确保安全的计算结果。 在新规范或标准尚未颁布之前,为了保证扣件式钢管梁板模板支架的使用安全,总工室参考近期发表的论文,论著以及相关的技术资料,收集整理了有关“扣件式钢管梁板模板支架”的设计计算资料,提供给公司工程技术人员设计计算参考使用;与此同时,《扣件架规范》中“模板支架计算”的相关公式、计算资料,相应停止使用。 特此说明! 总工程师室 二O一四年七月十八日

目录 CONTENTS 第一节模板支架计算………………………………………………1-1 第二节关于模板支架立杆计算长度L有关问题的探讨……………2-1 第三节模板支架的构造要求…………………………………………3-1 第四节梁板楼板模板高支撑架的构造和施工设计要求……………4-1 第五节模板支架设计计算实例………………………………………5-1 第六节附录:模板支架设计计算资料………………………………6-1 [附录A]扣件式钢管脚手架每米立杆承受的结构自重、常用构配件与材料自重[附录B]钢管截面特性 [附录C]钢材的强度设计值 [附录D]钢材和钢铸件的物理性能指标 [附录E]Q235-A钢轴心受压构件的稳定系数 [附录F]立杆计算长度L修正系数表

脚手架计算规则(全)

外脚手架搭拆工程量按外墙外边线的凹凸(包括凸出阳台)总长度乘以脚手架的搭设高度计算搭设面积以m2计算。门、窗洞口、空圈洞口等所占面积不扣除。 一、建筑物外脚手架工程量按以下规则计算。 1.外脚手架搭拆工程量按外墙外边线的凹凸(包括凸出阳台)总长度乘以脚手架的搭设高度计算搭设面积以m2计算。门、窗洞口、空圈洞口等所占面积不扣除。 2.外脚手架使用工程量按脚手架搭设面积乘以脚手架在施工现场的有效使用天数以"100m2·10天"为单位计算。 3.脚手架搭设高度的确定。 (1)有施工组织设计文件的,按照经审核的施工组织设计文件中的规定确定;无施工组织设计文件时,可按平均的设计室外地坪标高与建筑物的顶板面的结构标高(有女儿墙时计至女儿墙顶)的高度差,再加上1.5m综合取定。地下室外墙脚手架搭设高度为从设计室外地坪至底板垫层底高度。 (2)同一建筑物高度不同时按不同高度分别计算。如果沿建筑物的顶层板外墙外边线的结构标高(有女儿墙时计至女儿墙顶)出现不同时:间断变化时(标高变化不连续,如局部突出屋面的楼梯间)可按不同高度分段计算脚手架的搭设高度;连续变化时(如坡屋面)按照平均标高计算脚手架的搭设高度。 (3)当屋顶楼梯间、设备房平面面积大于屋顶平面面积的三分之一时,其脚手架工程量并入整个建筑物,高度计至屋顶楼梯间、设备房顶板结构标高(有女儿墙时计至女儿墙顶)。 (4)当屋顶楼梯间、设备房平面面积小于屋顶平面面积的三分之一时,其脚手架工程量按其自身高度单独计算,按相应高度的单排脚手架子目执行。 (5)建筑物上部外墙缩入或者裙楼上部塔楼缩入时,计算脚手架搭拆时应该分段计算搭设面积,但搭设高度步距应统一自室外地坪标高算起。 (6)裙楼外墙边线与塔楼外墙边线间的距离1.5m的裙楼区段,单独按规定计算该区段脚手架,高度计至裙楼檐口(或女儿墙上表面);当裙楼外墙边线与塔楼外墙边线间的距离≤1.5m的裙楼区段,与该区段塔楼脚手架一并计算,高度计至塔楼檐口(或女儿墙上表面)。 4.单排脚手架与综合脚手架的区分。 (1)当沿建筑物外墙外边线的建筑物脚手架的搭设高度小于15m时,按单排脚手架计算;大于15m时,按综合脚手架计算。 (2)建筑物上部墙体外边线挑出1.5m以上时,按照上层的外墙外边线凹凸长度乘以建筑物总高度计算外脚手架搭设面积;下部墙体缩入部分按照围护结构的垂直投影面积按相应自身高度的单排脚手架计算。 (3)凹入部分的采光开井:当外口宽度(外墙结构间距)≤3.5m时,按凹入部分内侧外墙垂直投影面积计算单排脚手架,采光井外口不论有无连梁,均与外墙一并计算综合脚手架;当外口宽度(外墙结构间距)3.5m时,按凹入部分内侧外墙垂直投影面积以m2计算综合脚手架,采光井外口有连梁的,与外墙一并计算综合脚手架,无连梁的不计算脚手架。 (4)石墙砌筑不论内外墙,高度超过1.2m时,计算一面综合脚手架;墙厚大于40cm 时,计算一面综合脚手架及一面单排脚手架。 (5)大型设备基础高度超过2m时,按其外形周长乘以基础高度以面积(m2)计算单排脚手架。 (6)屋顶女儿墙内面超过屋面高度1.2m时,可按其内面垂直投影面积以m2计算单排脚手架。 (7)围墙高度超过1.2m时,按相应垂直投影面积以m2计算单排脚手架,围墙单面装饰的按单面计算,双面装饰的按双面计算

脚手架稳定性验算

附件: 脚手架受力验算 1、参数信息 (1)脚手架参数 本计算书按照脚手架搭设高度拟定为20米来计算;搭设尺寸为:立杆的纵距为米,立杆的横距为米,大横杆和横撑(以下称小横杆)的步距为米; 采用的钢管类型为Φ; 横杆与立杆连接方式为双扣件:取扣件抗滑承载为系数为; (2)活荷载参数 施工均布活荷标准值: m3;脚手架用途:施工行走脚手架; 同时施工层数:2层。 (3)风荷载参数 本工程地处四川盆地南部,基本风压取 m2; 风荷载高度变化系数U z 为,风荷载体型系数U s 为; 脚手架计算中考虑风荷载作用。 (4)静荷载参数 每米立杆承受的结构自重标准值 (kN/m2):; 脚手板自重标准值 (kN/m3):; 安全设施与安全网 (kN/m3):; 脚手板类别: 5分板; 每米脚手架钢管自重标准值。 2、大横杆的计算 按照《扣件式钢管脚手架安全技术规范》(JGJ130-2001 ) 第条规定,大横杆按照三跨连续梁进行强度和挠度计算,大横杆在小横杆的上面。将大横杆上面的脚手板自重和施工活荷载作为均布荷载计算大横杆的最大弯矩和变形。

(1)均布荷载值计算 大横杆的自重标准值 10.0384/P kN m = 5 分板的荷载标准值 20.5x1/20.25/P kN m == 活荷载标准值 1.5x1/20.75/Q kN m == 静荷载的计算值 11.2x0.03841.2x0.250.3461/q kN m =+= 活荷载的计算值 21.4x0.751.05/q kN m == 大横杆计算荷载组合简图(跨中最大弯矩和跨中最大挠度) (2)抗弯强度计算 最大弯矩考虑为三跨连续梁均布荷载作用下的弯矩 跨中最大弯矩计算公式如下: 221max 11 0 .080.10M q l q l =+ 跨中最大弯矩为 ()22max 0.08x0.34610.10x1.05x10.1327M kN m =+=? 支座最大弯矩计算公式如下: 222max 110.100.117M q l q l =-- 支座最大弯矩为 ()22max 0.10x0.34610.117x1.05x 10.1575M kN m =-+=-? 我们选择支座弯矩和跨中弯矩的最大值进行强度验算: 620.157510/508031.004/kN mm σ=?= 大横杆的计算强度小于mm 2,满足要求。 q 1q 1 q 1q 1

现浇箱梁支架计算书-(midas计算稳定性)

温州龙港大桥改建工程 满堂支架法现浇箱梁设计计算书 计算: 复核: 审核: 中铁上海工程局 温州龙港大桥改建工程项目经理部 2015年12月30日

目录 1 编制依据、原则及范围·············- 1 - 1.1 编制依据·················- 1 - 1. 2 编制原则·················- 1 - 1.3 编制范围·················- 2 - 2 设计构造···················- 2 - 2.1 现浇连续箱梁设计构造···········- 2 - 2.2 支架体系主要构造·············- 2 - 3 满堂支架体系设计参数取值···········- 8 - 3.1 荷载组合·················- 8 - 3.2 强度、刚度标准··············- 9 - 3.3 材料力学参数···············- 10 - 4 计算·····················- 10 - 4.1 模板计算·················- 11 - 4.2 模板下上层方木计算············- 11 - 4.3 顶托上纵向方木计算············- 13 - 4.4 碗扣支架计算···············- 14 - 4. 5 地基承载力计算··············- 18 -

温州龙港大桥改建工程 现浇连续梁模板支架计算书 1 编制依据、原则及范围 1.1 编制依据 1.1.1 设计文件 (1)《温州龙港大桥改建工程两阶段施工图设计》(2013年8月)。 (2)其它相关招投标文件、图纸及相关温州龙港大桥改建工程设计文件。 1.1.2 行业标准 (1)《公路桥涵施工技术规范》(JTG/T F50-2011)。 (2)《建筑施工碗扣式钢管脚手架安全技术规范》 JGJ166-2008。 (3)《公路桥涵钢结构及木结构设计规范》(JTJ 025-86)。 (4)《建筑施工扣件式钢管脚手架安全技术规范》 JGJ130-2011。 (5)《建筑结构荷载规范》GB50009-2001。 (6)《竹胶合板模板》(JG/T156-2004)。 (7)《建筑施工模板安全技术规范》(JGJ 162-2008)。 (8)《混凝土结构设计规范》(GB50010-2010)。 (9)《路桥施工计算手册》(2001年10月第1版)。 1.1.3 实际情况 (1)通过对施工现场的踏勘、施工调查所获取的资料。 (2)本单位现有技术能力、机械设备、施工管理水平以及多年来参加公路桥梁工程建设所积累的施工经验。 1.2 编制原则 (1)依据招标技术文件要求,施工方案涵盖技术文件所规定的内容。

脚手架立杆稳定性计算

屋面搭设满堂红脚手架立杆稳定性计算 1、钢管脚手架主要验算立杆的稳定性,可简化为按两端铰接的受压杆件计算。 2、荷载统计 钢管支架自重力 钢管:0.8*4*5*3.84*9.8=602n/m 2 扣件:4*5*13.2=264n/m 2 木板:0.8*0.8*0.35=224n/m 2 小计:602+264+224=1090n/m 2 吊篮后支座及配重 (1000+50)*9.8=10290n/m 2 合计:1090+10290=11380n/m 2 3、立杆纵距、横距均800mm ,每区格面积0.8*0.8=0.64m 2。 每根立杆承受的荷载为0.64*11380=7283.2n 。 4、设用ф48*3mm 钢管,A=424mm 2 钢管回转半径 15.9mm 442484d d i 2 221 2=+=+= 按强度计算,立杆的受压力为 2mm 17.17424 2.7283a n ===? 按稳定性计算立杆的受压力为 长细比47.759 .151200i l ===λ 查表得750.0=? 22mm n 215f mm n 90.22424 *750.02.7283a n =?===?? 考虑组合风荷载,计算公式 f w ≤+W M A N ?。 10 h 4.1*85.04.1*85.02 a wk w L W M M K == O W U U W s z k 7.0=,经查表得知,U z =1.27,U s =0.115,W O =0.65,

W K =0.7*1.27*0.115*0.65=0.066 立杆纵距L a =0.8 立杆步距h=1.2 009.010 2.1*8.0*066.0*4.1*85.0Mw 2 == 经计算 223mm n 215f mm n 67.2477.19.2210 *08.5009.090.22=?=+=+- 满堂红脚手架进过计算,立杆稳定性满足要求。

脚手架的计算方法

脚手架的计算方法 目前,在我国脚手架工程量的计算方法有两种:即综合脚手架和单项脚手架。 比如北京(综合)、河北(单项)。 ?综合脚手架 为简化脚手架工程量的计算,以建筑面积做为脚手架的工程量,不分搭设方式,一般综合了砌筑,浇注,吊装,装饰等所需脚手架的摊销量,综合了木制,竹制,钢管脚手架等(满堂基础另算)计算原则一般按多层,高层及檐高来计算,若是高层建筑要计算高层建筑超高增加费。( 20M ) ?单项脚手架 依工程项目不同的方式搭设 ( 1 )砌筑脚手架:按墙面垂直投影面积以 M 2 计算 外墙脚手架: S= 外墙外边线长 * 外墙高度 内墙脚手架: S= 内墙净长 * 内墙净宽 山墙脚手架: S= 山墙长 * 平均墙高 独立柱脚手架: H ≤ 3.6M S= 柱周长 * 高 H > 3.6 S= (柱周长 +3.6 ) * 高 外墙双面抹灰脚手架:外墙含在砌筑中, H > 3.6 考虑抹灰脚手架 砖基础脚手架:室外地坪至垫层上面,大于 1.5M ,按砌墙计算 ( 2 )现浇混凝土脚手架: 基深> 1.5M B 条> 3M B 坑> 16M 2 按土方放坡内的底面积计算,套满堂脚手架定额后乘 0.3 。 梁、柱、墙高大于 3.6M ,计算浇捣脚手架 S (梁) = 梁净长 * 高度(地面到顶面) S (柱) = (周长 +3.6 ) * 柱高 S (墙) = 墙净长 * 室内地面至板底高度 ( 3 )抹灰脚手架 梁,柱,墙高度大于 3.6M ,计算抹灰脚手架,公式同上,如有满堂脚手架可利用时,不再计算。 ( 4 )满堂脚手架 天棚高度大于 3.6M ,按净面积计算,不扣除柱,垛所占面积。 室内高度超过 5.2M ,计算增加层, 1.2M 为一层,少于 0.6M 不计 三、工程量计算规则( P114-115 ) 四、定额说明

脚手架稳定性计算

脚手架立杆的稳定性计算 2010-09-12 外脚手架采用双立杆搭设,按照均匀受力计算稳定性。 稳定性计算考虑风荷载,按立杆变截面处和架体底部不同高度分别计算风荷载标准值。风荷载标准值按照以下公式计算 Wk=0.7μz μs ω0 其中ω0 -- 基本风压(kN/m2),按照《建筑结构荷载规范》(GB50009-2001)的规定采用: ω0=0.37kN/m2; μz -- 风荷载高度变化系数,按照《建筑结构荷载规范》(GB50009-2001)的规定采用:μz= 0.74,0.74; μs -- 风荷载体型系数:取值为1.132; 经计算得到,立杆变截面处和架体底部风荷载标准值分别为: Wk1=0.7 ×0.37×0.74×1.132=0.217kN/m2; Wk2=0.7 ×0.37×0.74×1.132=0.217kN/m2; 风荷载设计值产生的立杆段弯矩MW 分别为: Mw1=0.85 ×1.4Wk1Lah2/10=0.85 ×1.4×0.217×1.5×1.82/10=0.125kN?m; Mw2=0.85 ×1.4Wk2Lah2/10=0.85 ×1.4×0.217×1.5×1.82/10=0.125kN?m; 1. 主立杆变截面上部单立杆稳定性计算。 考虑风荷载时,立杆的稳定性计算公式 σ=N/(φA) + MW/W ≤ [f] 立杆的轴心压力设计值:N=Nd=8.487kN; 不考虑风荷载时,立杆的稳定性计算公式 σ=N/(φA)≤ [f] 立杆的轴心压力设计值:N=N'd= 8.991kN; 计算立杆的截面回转半径:i=1.59 cm; 计算长度附加系数参照《建筑施工扣件式钢管脚手架安全技术规范》(JGJ130-2001)表5.3.3得: k=1.155 ; 计算长度系数参照《建筑施工扣件式钢管脚手架安全技术规范》(JGJ130-2001)表5.3.3得:μ=1.5 ;

桥梁满堂支架计算书说明书

满堂支架及模板方案计算说明书 西滨互通式立体交叉地处厦门市翔安区西滨村附近,采用变形苜蓿叶型方案,利用空间分隔的方法消除翔安大道和窗东路两线的交叉车流的冲突,使两条交叉道路的直行车辆畅通无阻。Q匝道桥为窗东路上与翔安大道相交的主线桥梁,桥跨布置为5×28+5×28+(28+2×35+34+33)+3×27m,预应力砼连续箱梁,梁高2.0m,箱梁顶宽为~,箱梁采用C50混凝土。 以Q桥左线第一联为例,梁高2m,顶宽,支架最高6m,跨径5×28m,支架采用碗扣式多功能脚手杆(Φ搭设,使用与立杆配套的横杆及立杆可调底座、立杆可调顶托,墩旁两侧各范围内的支架采用60×60×120cm的布置形式,墩旁外侧~8m范围内、纵横隔板梁下的支架采用60×90×120cm的布置形式,其余范围内(即跨中部分)的支架采用90×90×120cm的布置形式支架及模板方案。立杆顶设二层方木,立杆顶托上纵向设10×15cm方木;纵向方木上设10×10cm的横向方木,其中在端横梁和中横梁下间距,在跨中其他部位间距。 1荷载计算 荷载分析 根据本桥现浇箱梁的结构特点,在施工过程中将涉及到以下荷载形式:——箱梁自重荷载,新浇混凝土密度取2600kg/m3。 ⑴ q 1 ⑵ q ——箱梁内模、底模、内模支撑及外模支撑荷载,按均布荷载计算,经计算 2 =(偏于安全)。 取q 2 ⑶ q ——施工人员、施工材料和机具荷载,按均布荷载计算,当计算模板及其下 3 肋条时取;当计算肋条下的梁时取;当计算支架立柱及替他承载构件时 取。 ⑷ q ——振捣混凝土产生的荷载,对底板取,对侧板取。 4 ——新浇混凝土对侧模的压力。 ⑸ q 5 ⑹ q ——倾倒混凝土产生的水平荷载,取。 6 ⑺ q ——支架自重,经计算支架在不同布置形式时其自重如下表所示: 7 1.1.1荷载组合

(完整版)支架承载力计算

支架竖向承载力计算: 按每平方米计算承载力, 中板恒载标准值:f=2.5*0.4*1*1*10=10KN ; 活荷载标准值N Q = (2.5+2 )*1*1=4.5KN ; 则:均布荷载标准值为: P1=1.2*10+1.4*4.5=18.3KN ; 根据脚手架设计方案,每平方米由2根立杆支撑,单根承载力标准值为100.3KN ,故:P1=18.3/2=9.15KN<489.3*205=100.3KN 。满足要求。 或根据中板总重量(按长20m 计算)与该节立杆总数做除法, 中板恒载标准值:f=2.5*0.4*10*20*19.6=3920KN ; 活荷载标准值NQ = (2.5+2 )*20*19.6=1764KN ; 则:均布荷载标准值为: P1=1.2*3920+1.4*1764=7173KN ; 得P1=7173KN<100.3*506=50750KN 。 满足要求。 支架整体稳定性计算: 根据公式: [] N f A σ?≤= 式中: N -立杆的轴向力设计值,本工程取15.8kN ; -轴心受压构件的稳定系数,由长细比λ决定,本工程λ=136,故=0.367; λ-长细比,λ=l 0 /i =2.15/1.58*100=136; l 0-计算长度,l 0=kμh =1.155*1.5*1.2=2.15m ;

k-计算长度附加系数,取 1.155;μ-单杆计算长度系数 1.55;h-立杆步距0.75m。 i-截面回转半径,本工程取1.58cm; A-立杆的截面面积,4.89cm2; f-钢材的抗压强度设计值,205N/mm2。 σ=15.8/(0.367*4.89)=88.04N/mm2<[f]=205N/mm。 满足要求. 支架水平力计算 支架即作为竖向承力支架,也作为侧墙内撑支架,因此需计算支架水平支撑力,即侧墙施工时产生的侧压力。 混凝土作用于模板的侧压力,根据测定,随混凝土的浇筑高度而增加,当浇筑高度达到某一临界时,侧压力就不再增加,此时的侧压力即为新浇筑混凝土的最大侧压力。侧压力达到最大值的浇筑高度称为混凝土的有效压头。通过理论和实践,可按下列二式计算,并取其最小值: F=0.22γc t0β1β2V1/2 F= γc*H 式中 F------新浇筑混凝土对模板的最大侧压力(KN/m2) γc------混凝土的重力密度(kN/m3)取26 kN/m3 t0------新浇混凝土的初凝时间(h),可按实测确定。当缺乏实验资料时,可采用t=200/(T+15)计算;t=200/(25+15)=5 T------混凝土的温度(°)取25° V------混凝土的浇灌速度(m/h);取2m/h H------混凝土侧压力计算位置处至新浇混凝土顶面的总高度(m);取5.0m β1------外加剂影响修正系数,不掺外加剂时取1.0; β2------混凝土塌落度影响系数,当塌落度小于30mm时,取0.85;50—

单排脚手架计算公式

单排脚手架计算公式: ±0.000以上 立杆:34.130-7 = 27.13 M 27.13÷1.6 = 16.95根,取17根 17×2 = 34根 水平杆:取平均高度 2/3×(13.319+19.896)= 22.143 M 22.143÷1.8 = 12.3根,取13根 13×2 = 26根 小横杆:17×13 = 221根 ±0.000以下(比赛池内) 25.5-14 = 11.5M , 11.5÷2 = 5.75 M 立杆:5.75 ÷1.6 = 3.59根,取4根 4×2 = 8根 水平杆:3.2÷1.8 = 1.78根,取2根 2×2 = 4根 小横杆:8根 共计: 立杆:(34+8)×22.143 = 930.006 M 水平杆:(26+4)×27.13 = 705.35 M 小横杆:(221+8)×1.8 = 412.2 M 操纵面:2.5m×34条=85 M 填心杆:6m×4条=24 M 护栏:6m×20条=120 M 护栏立杆:1.2m×18条=21.6 M 剪刀撑:6m×16条=96 M 八字杆:6m×10条=60 M 水平拉杆:6m×5条=30 M 拔杆:1.5m×8条=12 M 总吨数:(930.006+911.4+412.2+85+24+120+21.6+96+60+30+12)×3.85 = 10.403 t 扣件分类 活动扣:32个(剪刀撑用) 十字扣:操作面40×4=160 个 护栏杆25×2=50 个 小横杆170×4=680 个 八字杆10×2=20 个 水平拉杆 5×2=10 个 护立杆 20×1=20 个 接头:水平杆15×6=90 个 立杆 34×2=68 个 操作面20×1=20 个 共计1150个

支架稳定性验算

现浇门式墩盖梁碗扣架稳定性的验算 1、工程概况 龙华河1号大桥是五台至盂县高速公路上跨越龙华河的一座大桥,位于盂县下社镇碾子坪村西约100m处,本桥中心桩号为K36+700,右前夹角为90°。龙华河1号大桥施工图设计方案为上部采用20×25米预应力混凝土连续箱梁,下部结构桥墩采用门式墩,基础采用灌注桩基础;承台采用肋板台,基础采用灌注桩基础。 2 施工方案 1、参考资料 1.1钢结构设计手册 1.2路桥施工计算手册 1.3GB3811-2008起重机设计规范 1.4公路桥梁施工技术规范 1.5五台至盂县龙华河1号大桥设计图纸 2.1 地基处理 在支架架立前,在支架搭设范围内,首先进行基础处理,处理方案为对原地面开挖换填,根据现场情况,开挖表层70cm虚土,然后抛填50cm卵石,砂砾填筑按照路基96区填筑要求实施,用人工配合推土机平整场地后用20T以上压路机压实,如现场发现局部软弱地段,则重新开挖回填处理,砂砾填筑完成后,在地基表面浇筑20cmC20砼,浇筑宽度为支架搭设宽度两边加1m,在支架地基外侧设置排水沟,防止地基积水软化造成支架下沉。 2.2满堂支架:采用满布搭设的碗扣式支架,采用10㎝×15㎝方木做地梁,横向通长布置;支架立杆间距普通段按0.3m×0.3m布置;门洞旁采用0.3m×0.3m双

支,横杆采用HG-90,竖向步距采用1.2m,立杆主要采用LG-300,结合梁体距地面的实际高度,可在顶托下加顶管(DG-210及DG-90)进行调整,托架和底座的调节长度必须满足施工需要,支架的搭设宽度超出盖梁四周各0.5m。支架安装就位后进行横、纵梁安装,横梁采用15×15㎝方木,横向间距同立杆间距;纵梁采用10×10㎝方木,置于纵梁之上,纵向间距30㎝。盖梁底模采用1cm厚钢板加工、侧模采用定型模板。为保证支架的稳定性,必须按安全规范纵横向每六排立杆设一道剪刀撑。具体见箱梁支架横断面示意图: 支架拼装注意事项:a.支撑架立杆接缝应在同一水平面,顶杆仅在顶端使用,以便能插入托座。 b.支撑架拼装到3~5层时,应检查每根立杆底座下是否上浮松动,否则应旋紧可调底座或用薄铁片填实。 c.整架拼装完后应检查所有扣件是否扣紧,松动的应用锤敲紧。d.支撑架宽高比一般不能超过5,否则必须按有关规定设置缆风绳。 2.3 支架预压 采用砂袋按100%荷载进行预压,在地面上以纵横间隔5m和在模板上按高程控制点位分别设置观测点,预压时逐日对其进行沉降观测,做好记录。沉降稳定的标准为沉降量<1mm/d,卸载后算出地面沉降、支架的弹性和非弹性变形数值。根据各点对应的弹性变形数值及设计预拱度调整模板的高程,具体布置按二次抛物线方*x(30-x)/302,实测弹性变形加上箱梁自重及1/2汽车荷载和第1000 程分配y=4*f 拱 天混凝土收缩徐变所产生的竖向挠度即:f+L/1600。 3 支架受力验算方法

落地脚手架计算书(适用于24米以下)

目录 一、编制依据 (1) 二、工程参数 (1) 三、横向水平杆(小横杆)验算 (2) 四、纵向水平杆(大横杆)验算 (4) 五、扣件抗滑承载力验算 (4) 六、立杆的稳定性计算 (5) 七、脚手架搭设高度计算 (8) 八、连墙件计算 (9) 九、立杆地基承载力计算 (10)

一、编制依据 1、工程施工图纸及现场概况 2、《建筑施工扣件式钢管脚手架安全技术规范》JGJ130-2011 3、《建筑施工安全检查标准》JGJ59-2011 4、《混凝土结构工程施工质量验收规范》GB50204-2015 5、《混凝土结构设计规范》GB50010-2010 6、《建筑结构荷载规范》GB50009-2012 7、《建筑地基基础设计规范》GB50007-2011 8、《建筑施工高处作业安全技术规范》JGJ80-2016 9、《危险性较大的分部分项工程安全管理办法》建质[2009]87号文 二、工程参数

1800 3001050 三、横向水平杆(小横杆)验算 《建筑施工扣件式钢管脚手架安全技术规范》规定:

“当使用冲压钢脚手板、木脚手板、竹串片脚手板时,纵向水平杆应作为横向水平杆的支座,用直角扣件固定在立杆上。”施工荷载的传递路线是:脚手板→横向水平杆→纵向水平杆→纵向水平杆与立杆连接的扣件→立杆,如图: 横向水平杆按照简支梁进行强度和挠度计算,小横杆在大横杆的上面。 (一)抗弯强度计算 1、作用横向水平杆线荷载标准值: q k =(Q K +Q P1 )×S=(3+×= kN/m 2、作用横向水平杆线荷载设计值: q=×Q K ×S+×Q P1 ×S=×3×+××= kN/m 3、考虑活荷载在横向水平杆上的最不利布置(验算弯曲正应力、挠度不计悬挑荷载,但计算支座最大支反力要计入悬挑荷载),最大弯矩: M max = ql b 2 = × =·m 88 4、钢管载面模量W= 5、Q235钢抗弯强度设计值,f=205N/mm2 6、计算抗弯强度 σ=M max = ×106 =mm2〉205N/mm2 W×103 7、结论:不满足要求!建议减少脚手架纵距或横距或小横杆间距,或控制施工荷载!(二)变形计算 1、钢材弹性模量E=×105N/mm2 2、钢管惯性矩I= 3、容许挠度 [ν]=l/150与10mm

脚手架计量规则

说明 一、本章包括外脚手架、里脚手架、满堂脚手架、电动吊篮式脚手架、活动脚手架、电梯井架、烟囱、水塔脚手架及安全防护设施等措施项目;适用于建筑、装饰工程中的脚手架工程。 二、本章各类脚手架子目均按钢管脚手架编制。 三、建筑用外脚手架是指单独为建筑物外墙外边线上所有构件及部位的整体结构、装饰工程施工所需搭设的外脚手架。装饰用外脚手架是指单独为建筑物外墙外边线上所有构件的装饰工程施工所搭设的外脚手架。 四、同一栋建筑物不同高度部位的脚手架周转用材的使用时间不同,因此外脚手架按搭拆、使用分别编制子目,脚手架搭拆及使用的时间规律如图13-1所示: 外脚手架全部周转材料在施工现场的加权平均使用天数为外脚手架的“有效使用天数”。 五、外脚手架分为综合脚手架、单排脚手架,外脚手架包括脚手架、平桥、斜桥、平台、护栏、挡脚板等。建筑物的外脚手架区分不同的高度、用途(建筑用、装饰用),分别按照相应单排脚手架、综合脚手架子目计算。 六、里脚手架包括外墙内面装饰脚手架、内墙砌筑及装饰用脚手架、外走廊及阳台的外墙砌筑和装饰脚手架、走廊柱、独立柱的砌筑和装饰脚手架、现捣混凝土柱、混凝土墙结构及装饰脚手架费用。 七、满堂基础脚手架按满堂脚手架基本层子目的50%执行。条形基础宽度大于3m,且深度大于1.5m时,按满堂基础脚手架计算。 八、架空运输道,适用特殊施工环境,按施工组织设计计算。子目以架宽2m为准,如架宽大于2m时应按相应子目乘以系数1.20;超过3m时按相应子目乘以系数1.50。 九、独立安全水平挡板和垂直防护架,是指脚手架以外单独搭设的,用于车辆通道、人行通道、临街防护和施工现场和其他危险场所隔离等防护。 十、超过1.5m宽以上雨蓬的檐口装饰线,如没有计算综合脚手架的,按单排脚手架计算(顶层雨篷不适用)。 十一、凿桩头的高度如超过1.2m时,混凝土灌注桩、预制方桩、管桩每凿1m3桩头,计算单排脚手架16m2;钻(冲)孔桩按直径乘以4加3.6m再乘以高,按单排脚手架子目执行。人工挖孔桩凿护壁,不得计算脚手架。 十二、斜板、拱形板、弧形板屋面和架空阶梯的计算高度按平均高度。 十三、建筑物脚手架托架适用于高层建筑外脚手架沿建筑高度分区搭拆时的脚手架承托结

支架稳定性验算计算书

xx高速公路xx连接线工程 xx标段 盖 梁 支 架 施 工 设 计 计 算

一、工程概况 xx高速公路xx连接线工程主线桥墩柱结构设计为圆柱式、花瓶式。其中花瓶墩盖梁68个,门式墩盖梁1个,采用门式满堂支架和少钢管支架两种支架形式;圆柱墩盖梁51个,采用双抱箍沉重支架现浇。 197号花瓶墩为过渡墩,墩身高8.192米;其盖梁结构尺寸:长24.5m×宽2m×高1.4~2.8m,盖梁上的背墙高70cm,宽82cm。 257号花瓶墩墩身高 11.47米,是全线花瓶墩盖梁最高的墩位,盖梁结构尺寸:长24.5m ×宽2m×高1.15~2.8m。 200号圆柱墩盖梁墩身高9.974米,墩柱直径1.5米,其盖梁尺寸为:长25.15m×宽2.2m×高1.8m。 二、计算依据 (1)《公路桥涵设计通用规范》JTG D60-2004; (2)《公路桥涵钢结构及木结构设计规范》(JTJ 025—86); (3)《钢结构设计规范》GB50017-2003; (4)《公路桥涵施工技术规范》JTG/T F50-2011; (5)《路桥施工计算手册》人民交通出版社。 (6)各种材料的设计控制值采用《钢结构设计规范》GB50017-2003取值: A3钢材的允许拉、压应力[σ拉、压]=215MPa; A3钢材的允许剪切应力[τ]=125MPa; Mn16钢材的允许拉、压应力[σ拉、压]=310MPa; Mn16钢材的允许剪切应力[τ]=180MPa; 变形控制按L/400进行控制。 三、盖梁支架计算 3.1满堂支架计算 (1)支架设计 197号花瓶墩盖梁采用1019门式支架,门架立杆钢管为φ57×2.5mm,门架加强杆为φ26.8×2.2mm钢管,门架钢材均采用Q235,横向间距4×60+5×45+8×30+9×30+19+17×30+19+9×30+8×30+5×45+4×60cm,详见图3.1-1,纵向间距0.12cm,采用顶托与调

相关主题
文本预览
相关文档 最新文档