支架稳定性验算方法
- 格式:docx
- 大小:50.12 KB
- 文档页数:3
模板支架验算内容
在进行模板支架的设计和施工时,为了保证其安全性和可靠性,需要进行一系列的验算。
以下是一些常见的验算内容:
强度验算
强度验算是保证模板支架在承载能力极限状态下不发
生破坏的重要步骤。
通过对支架的各个组成部分进行强度计算,可以确定其是否具有足够的承载能力。
刚度验算
刚度验算是保证模板支架在使用过程中不发生过大变
形的重要步骤。
通过对支架的各个组成部分进行刚度计算,可以确定其是否具有足够的刚度。
稳定性验算
稳定性验算是保证模板支架在使用过程中不发生失稳
现象的重要步骤。
通过对支架的各个组成部分进行稳定性计算,可以确定其是否具有足够的稳定性。
支撑杆件的长细比验算
支撑杆件的长细比是影响其承载能力和稳定性的重要
因素。
通过对支撑杆件进行长细比计算,可以确定其是否具有足够的承载能力和稳定性。
扣件抗滑移验算
扣件是连接支撑杆件和立杆的重要部件,其抗滑移能力
对模板支架的稳定性具有重要影响。
通过对扣件进行抗滑移验算,可以确定其是否具有足够的抗滑移能力。
支撑立杆地基承载力验算
支撑立杆地基承载力是保证模板支架在使用过程中不
发生下沉现象的重要因素。
通过对地基承载力进行验算,可以确定其是否具有足够的承载能力。
模板支架整体稳定性验算
除了对模板支架的各个组成部分进行验算外,还需要对整个支架进行稳定性验算。
通过对整个支架进行稳定性计算,可以确定其是否具有足够的整体稳定性。
钢管支架整体稳定性验算
1、支架钢管验算:主要验算钢管压应力、稳定性,经计算,钢管有关数据如下:
D=4.8cm h=4mm s=5.53cm2 I=13.49cm4 W=4.57cm3
I=1.56cm [σ]=72Mpa [τ]=80Mpa h为钢管壁厚
钢管在横隔板处的受力最大,因此只须验算此处的钢管受力即可。
P=0.4m×0.3m×1.3m×2.5T/m3=7.64KN<40KN(容许承载力)
钢管的稳定性验算:两端固定取μ=0.5
λ=μ×L/I=0.5×150cm/4.56cm=48
φ=1.02-0.55[(λ+20)/100]2
=1.02-0.55[(48+20)/100] 2
=0.766
则φ[σ]=55.2Mpa
σ=P/A=7.64/5.53=13.8Mpa
所以1.5σ=20.7Mpa<σ<φ[σ]
满足稳定性要求
抗剪计算
τ=P﹒S(I﹒b)
=2P/A
=2*7.64/5.53
=27.6Mpa
取安全系数K=1.5 则1.5τ=41.4Mpa<[τ]
所以抗弯满足要求
2、地基应力验算,为了提高钢管的承载力,就必须增大钢管与地基的接触面积,我们采取在钢管下垫8*8*0.5cm的小铁板。
σ=P/A=7.64/0.08*0.08=1.2Mpa
安全系数取K=1.5 则1.5σ=1.8Mpa<[σ]=20Mpa
所以满足地基承载力的要求。
xx高速公路xx连接线工程xx标段盖梁支架施工设计计算一、工程概况xx高速公路xx连接线工程主线桥墩柱结构设计为圆柱式、花瓶式。
其中花瓶墩盖梁68个,门式墩盖梁1个,采用门式满堂支架和少钢管支架两种支架形式;圆柱墩盖梁51个,采用双抱箍沉重支架现浇。
197号花瓶墩为过渡墩,墩身高8.192米;其盖梁结构尺寸:长24.5m×宽2m×高1.4~2.8m,盖梁上的背墙高70cm,宽82cm。
257号花瓶墩墩身高 11.47米,是全线花瓶墩盖梁最高的墩位,盖梁结构尺寸:长24.5m ×宽2m×高1.15~2.8m。
200号圆柱墩盖梁墩身高9.974米,墩柱直径1.5米,其盖梁尺寸为:长25.15m×宽2.2m×高1.8m。
二、计算依据(1)《公路桥涵设计通用规范》JTG D60-2004;(2)《公路桥涵钢结构及木结构设计规范》(JTJ 025—86);(3)《钢结构设计规范》GB50017-2003;(4)《公路桥涵施工技术规范》JTG/T F50-2011;(5)《路桥施工计算手册》人民交通出版社。
(6)各种材料的设计控制值采用《钢结构设计规范》GB50017-2003取值:A3钢材的允许拉、压应力[σ拉、压]=215MPa;A3钢材的允许剪切应力[τ]=125MPa;Mn16钢材的允许拉、压应力[σ拉、压]=310MPa;Mn16钢材的允许剪切应力[τ]=180MPa;变形控制按L/400进行控制。
三、盖梁支架计算3.1满堂支架计算(1)支架设计197号花瓶墩盖梁采用1019门式支架,门架立杆钢管为φ57×2.5mm,门架加强杆为φ26.8×2.2mm钢管,门架钢材均采用Q235,横向间距4×60+5×45+8×30+9×30+19+17×30+19+9×30+8×30+5×45+4×60cm,详见图3.1-1,纵向间距0.12cm,采用顶托与调节杆调节高度,顶托上放置[10型钢。
碗扣脚手架支架检算支架检算分三种分别计算,其中一种是碗扣支架,一种是扣件支架,一种是盘扣支架,分别根据各自对应的规范进行检算,依据规范分别是《建筑施工碗扣式钢管脚手架安全技术规范》(JGJ166-2008)、《建筑施工扣件式钢管脚手架安全技术规范》(JGJ130-2011)和《建筑施工临时支撑结构技术规范》(JGJ300-2013),具体检算过程如下:碗扣式支架检算1区、2区、3区带状区均采用本类型支架,梁下立杆间距0.6×0.6m,板下1.2×1.2m,基本步距为1.2m,支架高度约9.5~14m。
根据《建筑施工碗扣式钢管脚手架安全技术规范》(JGJ166-2008)检算支架。
1、荷载计算(1)模板及支架自重Q1选取主次梁最多、梁板截面最大、支架最高的区域为检算模型,即以2区最大跨度单元(18×8.5×15.5m)的支架为检算模型,梁下支架杆件基本间距为600mm,板下支架基本间距为1200mm,根据结构实际尺寸情况还配套间距900mm的支架间距,水平横杆竖向步距按1200mm考虑,为方便计算且不低于实际工况,取支架杆件间距为900mm统一考虑其自重。
①模板自重检算单元内梁截面按最大截面600×1600mm考虑,模板采用木模板,15mm厚木胶合板为面板,次楞为50×100×18000mm方木,间距不大于250mm,主背楞为100×100×1700mm方木,间距不大于900mm,则梁下模板自重为[(0.6+1.4×2)×18×0.015+0.1×0.05×18×6+0.1×0.1×1.7×21]×6/(18×0.6)=1.008KN/m2板下模板自重则按《建筑施工碗扣式钢管脚手架安全技术规范》(JGJ166-2008)中第4.2.4条规定取值0.5KN/m2。
大体积混凝土模板和支架验算
大体积混凝土模板和支架的验算主要是为了保证工程的安全和质量。
为了防止大体积混凝土工程中模板和支架系统出现倒塌或倾覆现象,确保人员安全,避免重大经济损失,规定了大体积混凝土模板和支架系统在设计时需开展承载力、刚度和稳定性验算。
具体来说,承载力的计算集中荷载p = 1.4×0.600=0.840 kN;最大弯距M = Pl/4 + ql2/8 = 0.840×1.000 /4 + 1.284×1.0002/8 = 0.371 kN.m。
此外,一般在大体积混凝土施工中,模板主要采用钢模、木模或胶合板,支架主要采用钢支撑体系。
在进行验算的同时,还需要根据大体积混凝土采用的养护方法进行保温构造设计。
例如,采用钢模时对保温不利,应根据保温养护的需要再增加保温措施。
这样既可以保证混凝土的养护质量,也可以防止由于温度变化引起的混凝土裂缝。
一、编制依据1. 《建筑施工模板安全技术规范》(JGJ162-2008)2. 《建筑施工扣件式钢管脚手架安全技术规范》(JGJ130-2011)3. 《建筑施工碗扣式脚手架安全技术规范》(JGJ166-2008)4. 工程施工图纸及设计文件5. 相关国家及行业标准二、编制原则1. 安全第一,预防为主,确保施工安全。
2. 符合国家及行业相关规范、标准。
3. 确保支架结构稳定、可靠。
4. 优化施工方案,提高施工效率。
三、验算内容1. 杆件强度验算2. 构件刚度验算3. 构件稳定性验算4. 构造节点验算5. 支架整体稳定性验算四、验算方法1. 杆件强度验算:根据杆件材料、截面尺寸、荷载等参数,按照《钢结构设计规范》(GB50017-2003)进行计算,确保杆件强度满足要求。
2. 构件刚度验算:根据构件材料、截面尺寸、长度等参数,按照《钢结构设计规范》进行计算,确保构件刚度满足要求。
3. 构件稳定性验算:根据构件材料、截面尺寸、长度、荷载等参数,按照《钢结构设计规范》进行计算,确保构件稳定性满足要求。
4. 构造节点验算:根据节点类型、材料、连接方式等参数,按照《钢结构设计规范》进行计算,确保节点强度和稳定性满足要求。
5. 支架整体稳定性验算:根据支架结构形式、材料、尺寸、荷载等参数,按照《钢结构设计规范》进行计算,确保支架整体稳定性满足要求。
五、验算步骤1. 收集工程资料,包括施工图纸、设计文件、材料参数等。
2. 分析支架结构,确定验算内容和方法。
3. 根据验算内容,进行计算,得出计算结果。
4. 对计算结果进行分析,判断支架结构是否满足要求。
5. 如不满足要求,优化设计,重新计算。
六、验算报告1. 验算报告应包括验算依据、验算内容、验算方法、计算过程、计算结果、分析结论等。
2. 验算报告应由具有相应资质的工程师签字,并加盖单位公章。
3. 验算报告应作为施工组织设计、施工方案的重要组成部分,指导施工。
七、注意事项1. 验算过程中,应严格按照规范、标准进行计算。
脚手架的抗倾覆验算与稳定性计算[摘要]当模板支架、施工用操作架等脚手架不设连墙杆时,必须首先对脚手架进行抗倾覆验算,然后才是强度、刚度和稳定性计算。
而现行的国家标准中没有倾覆验算和稳定性验算内容。
根据国家有关标准导出了脚手架倾覆验算公式,并有2个算例辅以说明。
最后指出脚手架高宽比与脚手架的倾覆有关,与脚手架稳定性承载能力无关。
[关键词]脚手架;倾覆;稳定性;验算结构设计中,“倾覆”与“稳定”这两个含义是不相同的,设计时都应考虑。
《建筑结构可靠度设计统一标准》gb50068-2001第3.0.2条第一款规定承载能力极限状态包括:“①整个结构或结构的一部分作为刚体失去平衡(如倾覆等)……。
④结构或结构构件丧失稳定(如压屈等)”。
可见它们同属于承载能力极限状态,但应分别考虑。
《建筑结构设计术语和符号标准》gb/t 50083-97,对“倾覆”和“稳定”分别作出了定义,并称“倾覆验算”和“稳定计算”。
《建筑地基基础设计规范》gb50007-2002,关于地基稳定性计算就是防止地基整体(刚体)滑动的计算。
《砌体结构设计规范》gb50003-2001对悬挑梁及雨篷的倾覆验算都有专门规定。
施工现场的起重机械在起吊重物时也要做倾覆验算。
对于脚手架,由于浮搁在地基上,更应该做倾覆验算。
《建筑施工扣件式钢管脚手架安全技术规范》jgj130-2001及《建筑施工门式钢管脚手架安全技术规范》jgj128-2000中都没有倾覆验算的内容,这是因为这两本规范规定的脚手架都设置了“连墙杆”,倾覆力矩由墙体抵抗,因此就免去了倾覆验算。
如果不设连墙杆,则脚手架的倾覆验算在这两本规范中就成为不可缺少的内容了。
所以,对于模板支架、施工用的操作架等无连墙杆的脚手架,首先应保证脚手架不倾覆而进行倾覆验算,然后才是强度、刚度和稳定性计算。
如果需要,还可进行正常使用极限状态计算。
1脚手架的倾覆验算1.1通用的验算公式推导无连墙杆的脚手架,作为一个刚体应按如下表达式进行倾覆验算:(1)式中:γg1、cg1、g1 k分别为起有利作用的永久荷载的分项系数、效应系数、荷载标准值;γg2、cg2、g2 k分别为起不利作用的永久荷载的荷载分项系数、效应系数、荷载标准值;cq1、q1 k 分别为第一个可变荷载的荷载效应系数、荷载标准值;cqi、qik分别为第i个可变荷载的荷载效应系数、荷载标准值;ψci为第i个可变荷载的组合值系数。
脚手架的抗倾覆验算与稳定性计算[摘要]当模板支架、施工用操作架等脚手架不设连墙杆时,必须首先对脚手架进行抗倾覆验算,然后才是强度、刚度和稳定性计算。
而现行的国家标准中没有倾覆验算和稳定性验算内容。
根据国家有关标准导出了脚手架倾覆验算公式,并有2个算例辅以说明。
最后指出脚手架高宽比与脚手架的倾覆有关,与脚手架稳定性承载能力无关。
[关键词]脚手架;倾覆;稳定性;验算结构设计中,“倾覆”与“稳定”这两个含义是不相同的,设计时都应考虑。
《建筑结构可靠度设计统一标准》gb50068-2001第3.0.2条第一款规定承载能力极限状态包括:“①整个结构或结构的一部分作为刚体失去平衡(如倾覆等)……。
④结构或结构构件丧失稳定(如压屈等)”。
可见它们同属于承载能力极限状态,但应分别考虑。
《建筑结构设计术语和符号标准》gb/t 50083-97,对“倾覆”和“稳定”分别作出了定义,并称“倾覆验算”和“稳定计算”。
《建筑地基基础设计规范》gb50007-2002,关于地基稳定性计算就是防止地基整体(刚体)滑动的计算。
《砌体结构设计规范》gb50003-2001对悬挑梁及雨篷的倾覆验算都有专门规定。
施工现场的起重机械在起吊重物时也要做倾覆验算。
对于脚手架,由于浮搁在地基上,更应该做倾覆验算。
《建筑施工扣件式钢管脚手架安全技术规范》jgj130-2001及《建筑施工门式钢管脚手架安全技术规范》jgj128-2000中都没有倾覆验算的内容,这是因为这两本规范规定的脚手架都设置了“连墙杆”,倾覆力矩由墙体抵抗,因此就免去了倾覆验算。
如果不设连墙杆,则脚手架的倾覆验算在这两本规范中就成为不可缺少的内容了。
所以,对于模板支架、施工用的操作架等无连墙杆的脚手架,首先应保证脚手架不倾覆而进行倾覆验算,然后才是强度、刚度和稳定性计算。
如果需要,还可进行正常使用极限状态计算。
1脚手架的倾覆验算1.1通用的验算公式推导无连墙杆的脚手架,作为一个刚体应按如下表达式进行倾覆验算: (1)式中:γg1、cg1、g1 k分别为起有利作用的永久荷载的分项系数、效应系数、荷载标准值;γg2、cg2、g2 k分别为起不利作用的永久荷载的荷载分项系数、效应系数、荷载标准值;cq1、q1 k分别为第一个可变荷载的荷载效应系数、荷载标准值;cqi、qik分别为第i个可变荷载的荷载效应系数、荷载标准值;ψci为第i个可变荷载的组合值系数。
现浇门式墩盖梁碗扣架稳定性的验算1、工程概况龙华河 1 号大桥是五台至盂县高速公路上跨越龙华河的一座大桥,位于盂县下社镇碾子坪村西约100m处,本桥中心桩号为K36+700,右前夹角为90°。
龙华河1 号大桥施工图设计方案为上部采用20 X 25米预应力混凝土连续箱梁,下部结构桥墩采用门式墩,基础采用灌注桩基础;承台采用肋板台,基础采用灌注桩基础。
2 施工方案1 、参考资料钢结构设计手册路桥施工计算手册起重机设计规范公路桥梁施工技术规范五台至盂县龙华河 1 号大桥设计图纸地基处理在支架架立前,在支架搭设范围内,首先进行基础处理,处理方案为对原地面开挖换填,根据现场情况,开挖表层70cm虚土,然后抛填50cm卵石,砂砾填筑按照路基96区填筑要求实施,用人工配合推土机平整场地后用20T以上压路机压实,如现场发现局部软弱地段,则重新开挖回填处理,砂砾填筑完成后,在地基表面浇筑20cmC2(砼,浇筑宽度为支架搭设宽度两边加1m在支架地基外侧设置排水沟,防止地基积水软化造成支架下沉。
满堂支架:采用满布搭设的碗扣式支架,采用10 cmX 15 cm方木做地梁,横向HG-90,通长布置;支架立杆间距普通段按X布置;门洞旁采用X双支,横杆采用竖向步距采用1.2m,立杆主要采用LG-300,结合梁体距地面的实际高度,可在顶托下加顶管(DG-210及DG-90进行调整,托架和底座的调节长度必须满足施工需要,支架的搭设宽度超出盖梁四周各。
支架安装就位后进行横、纵梁安装,横梁采用15 X 15 cm方木,横向间距同立杆间距;纵梁采用10X10 cm方木,置于纵梁之上,纵向间距30 cm。
盖梁底模采用1cm厚钢板加工、侧模采用定型模板。
为保证支架的稳定性,必须按安全规范纵横向每六排立杆设一道剪刀撑。
具体见箱梁支架横断面示意图:支架拼装注意事项:a.支撑架立杆接缝应在同一水平面,顶杆仅在顶端使用,以便能插入托座。
现浇梁板支架稳定性的验算方法摘要:结合芜湖长江大桥南岸接线立交工程G205国道高架桥现浇连续箱梁施工,介绍支架稳定性的验算方法。
关健词:现浇箱梁、施工方案、支架模板、内力验算
1 前言
随着我国目前公路建设的飞快发展,城市立交桥、高速公路桥梁对外观要求越来越高,只要条件允许,其梁板均采用现浇方法施工。
目前现浇梁板支承体系主要依赖于脚手架,而脚手架的施工成本与项目的经济效益、质量、安全等诸多因素密切相关,怎样采用科学的计算方法从诸多因素中找出最佳平衡点,是体现项目的技术能力和管理水准的一个重要方面。
下面就结合芜湖长江大桥南岸接线立交工程G205国道高架桥工程施工,介绍支架稳定性的验算方法。
2 工程概况
芜湖长江大桥南岸接线立交工程G205国道高架桥桥梁总长456.76米,分三联18跨。
箱梁采用单箱五室钢筋混凝土斜腹板等宽度等截面连续箱梁,横桥向为双向整体式断面。
箱梁梁高1.5米,单幅箱梁顶板宽21.00米,底板宽11.00米,箱梁顶、底板厚分别为0.22米、0.20米,中、边腹板厚分别为0.5米和0.3米,两侧悬臂长均为2.0米。
全联仅在桥墩支点截面处设置端、中横梁,其中中横梁宽1.6米,端横梁宽1.4米,桥墩高2.2~6.1米不等。
箱梁采用φ48×3.5mm碗扣式钢管满堂支架,自过渡墩往两端逐跨全断面现浇的方法施工。
3 施工方案
3.1 地基处理
桥宽范围内有一部分是原沥青路面,不做处理直接架设支架;剩余部分先清除表面杂草和废弃垃圾等,然后用素土分层回填碾压到位;个别软弱地段抛填片石,进行加固处理后填筑素土,结构层做10cm厚二灰结石,面层浇注10cm厚C20素混凝土,并做好排水处理。
3.2 支架架设、立模方法
首先进行测量放线(中心轴线和中心点法线),然后在搭设支架的带状位置用干硬性水泥砂浆精平地面,再铺上厚5cm×宽15cm的木板,最后在木板上搭设支架。
支架以两桥墩(或桥台)中心连线为轴线,并垂直于中心点法线往两翼及跨两端对称搭设。
竖杆纵横向间距为90cm×90cm,支架步距视架子实际高度采用120cm或60cm,利用可调下托调整支架横杆使之保持整体水平。
在支架搭设过程中结合模板、横梁、纵梁厚度,通过跟踪测量调整支架高度,同时确保可调U型顶托螺旋调节幅度不超过25 cm。
在支架U型顶托上沿线路纵向摆放横截面为10cm×10cm方木作为纵梁,在纵梁上横向摆放横截面为5cm×10cm、间距25cm 方木作为横梁,方木均使用东北红杉。
最后在横梁上铺设模板(“宝庆”牌厚1.2cm的竹胶板),模板接头之间放置海绵双面帖,以防止因模板摆放时间过长热胀冷缩造成模板鼓起或缝隙过大。
支架架设结构(见图1)。
益良好、成本最低、质量可靠、安全保险系数满足要求。
下面仅介绍上述方案的验算过程,其余方案可参照此方法进行验算比较。
4.1 模板计算
模板跨径L1=0.9m;模板宽度b=0.25m;新浇混凝土平均荷载g1=16KN/m2;施工人员、料、具行走运输堆放载荷g r=2.5KN/m2;倾倒混凝土时产生的冲击荷载和振捣混凝土时产生的荷载均按2KN/m2考虑。
模板每米上的荷载为:g=(g1+g r+2×2.0)×0.25=(16+2.5+2×2.0)×0.25=5.625 KN/m.
模板跨中弯距计算:
跨中弯距:M1/2=gL12/10=5.625×0.92/10=0.4556 KN•m -------------------------⑴按集中力P=1.5KN计算:M1/2=PL1/6=1.5×0.9/6=0.225KN•m<0.4556KN•m ----------⑵竹胶板其容许弯应力[σw]=90Mpa,并可提高1.2,模板需要的截面模量:
W=M/(1.2×[σw])=0.4556/(1.2×90×103)=4.22×10-6m3 ---------------------⑶根据W、b得h为:
h=√6×W/b=√6×4.22×10-6/0.25=0.010m ---------------------------------⑷故实际模板厚度采用0.012m是符合要求的。
4.2 纵梁计算:
纵梁跨度:L2=0.9m;横桥向宽度L1=0.9m;那么有:
纵梁单位荷载:g=(g1+g r+2×2.0)L1=22.5×0.9=20.25KN/m ----------------------⑸跨中弯距:M1/2= gL22/8=20.25×0.92/8=2.05KN•m ---------------------------⑹需要的截面模量:W=M/(1.2×[σw])=2.05/(1.2×13×103)=1.314×10-4m3 ------⑺纵梁方木宽度b为0.10 m,那么有:
h=√6×w/b=√6×1.314×10-4/0.10=0.09m ----------------------------------⑻纵梁方木截面积为0.10m×0.10m,核算其挠度,则有:
I= bh3/12=0.1×0.13/12=8.333×10-6m4 -------------------------------------⑼F= 5×gL24/(384×EI)=5×20.25×0.94/(384×10×106×8.333×10-6)=2.076×10-3m ⑽F/L2=2.076×10-3/0.9=1/434<[f/l]=1/400 -------------------------------⑾符合要求
4.3 立杆计算
立杆承受由纵梁传递来的荷载N=gL2=20.25×0.9=18.225 KN -------------------⑿钢管截面最小回转半径i=15.78mm,支撑立柱步距为1.2m,长细比λ=l/i=1200/15.78=76,查表得φ=0.676,那么有[N]=φA[σ]=0.676×489×215=71KN -----------------⒀由于N<[N],满足要求
端、中横梁部分为实心钢筋混凝土,立杆横向间距改为0.6m,纵梁间距相应改为0.6m,经计算均能满足要求,内力验算(略)。
5 结语
该桥连续箱梁经过6个月的艰苦奋战,于2004年01月08日结束。
通过对支架沉降观测点的跟踪观测,支架的非弹性变形量均<3mm,箱梁底板混凝土外表平整度<5mm,混凝土实体未出现任何裂缝,并己通过省质监站、业主等部门组织的初验,工程质量等级为优良。
实践证明本桥支架架设优化方案是切实可行的,连续箱梁做到了内实外洁、平整、美观,同时也降低了工程成本和取得了良好的经济效益。
参考文献:
[1]周水兴,何兆益,邹毅松.路桥施工计算手册.北京.人民交通出版社.2001。