苏科版平面直角坐标系讲义
- 格式:pdf
- 大小:845.02 KB
- 文档页数:8
学生姓名: 授课教师: 班主任:科目: 数学 上课日期: 2020 年 12 月 19 日教学负责人签字处一、知识要点梳理知识点一:有序数对比如教室中座位的位置,常用“几排几列”来表示,而排数和列数的先后顺序影响座位的位置,因此用有顺序的两个数a与b组成有序数时,记作(a,b),表示一个物体的位置。
我们把这种有顺序的两个数a与b组成的数对叫做有序数对,记作: (a,b).要点诠释:对“有序”要准确理解,即两个数的位置不能随意交换,(a,b)与(b,a)顺序不同,含义就不同,表示不同位置。
知识点二:平面直角坐标系以及坐标的概念1.平面直角坐标系在平面内画两条互相垂直、原点重合的数轴就组成平面直角坐标系。
水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向,两坐标轴的交点为平面直角坐标系的原点(如图1)。
注:我们在画直角坐标系时,要注意两坐标轴是互相垂直的,且有公共原点,通常取向右与向上的方向分别为两坐标轴的正方向。
平面直角坐标系是由两条互相垂直且有公共原点的数轴组成的。
2.点的坐标点的坐标是在平面直角坐标系中确定点的位置的主要表示方法,是今后研究函数的基础。
在平面直角坐标系中,要想表示一个点的具体位置,就要用它的坐标来表示,要想写出一个点的坐标,应过这个点A分别向x轴和y轴作垂线,垂足M在x轴上的坐标是a,注:①写点的坐标时,横坐标写在前面,纵坐标写在后面。
横、纵坐标的位置不能颠倒。
②由点的坐标的意义可知:点P(a,b)中,|a|表示点到y轴的距离;|b|表示点到x轴的距离。
知识点三:点坐标的特征l.四个象限内点坐标的特征:两条坐标轴将平面分成4个区域称为象限,按逆时针顺序分别叫做第一、二、三、四象限,如图2.这四个象限的点的坐标符号分别是(+,+),(-,+),(-,-),(+,-).2.数轴上点坐标的特征:x轴上的点的纵坐标为0,可表示为(a,0);y轴上的点的横坐标为0,可表示为(0,b).注意:x轴,y轴上的点不在任何一个象限内,对于坐标平面内任意一个点,不在这四个象限内,就在坐标轴上。
坐标轴上的点不属于任何一个象限,这一点要特别注意。
3.象限的角平分线上点坐标的特征:第一、三象限角平分线上点的横、纵坐标相等,可表示为(a,a);第二、四象限角平分线上点的横、纵坐标互为相反数,可表示为(a,-a).注:若点P(a,b)在第一、三象限的角平分线上,则a=b;若点P(a,b)在第二、四象限的角平分线上,则a=-b。
4.对称点坐标的特征:P(a,b)关于x轴对称的点的坐标为 (a,-b);P(a,b)关于y轴对称的点的坐标为 (-a,b);P(a,b)关于原点对称的点的坐标为 (-a,-b).平行于y 轴的直线上的点的横坐标相同。
五、特殊位置点的特殊坐标: 知识点四:简单应用l.用坐标表示地理位置根据已知条件,建立适当的平面直角坐标系,是确定点的位置的必经过程,一般地只有建立了适当的直角坐标系,点的位置才能得以确定,才能使数与形有机地结合在一起。
利用平面直角坐标系绘制区域内一些地点分布情况,也就是绘制平面图的过程:(1)建立坐标系,选择一个适当的参照点为原点,确定x 轴,y 轴的正方向; (2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度; (3)在坐标平面内画出这些点,写出各点的坐标和各个地点的名称. 要点诠释:在建立平面直角坐标系时,我们一般选择那些使点的位置比较容易确定的方法,例如借助于图形的某边所在直线为坐标轴等。
在具体问题中要注意分析题目,灵活运用。
而建立平面直角坐标系的方法是不唯一的。
a ,y)或(x -a ,y);将点(x ,y)向上或向下平移b 个单位长度,可以得到对应点(x ,y +b)或(x ,y -b)。
由上可归纳为:①在坐标系内,左右平移的点的坐标规律:右加左减; ②在坐标系内,上下平移的点的坐标规律:上加下减; ③在坐标系内,平移的点的坐标规律:沿x 轴平移纵坐标不变,沿y 轴平移横坐标不变. (2)图形的平移:在平面直角坐标系内,如果把一个图形各个点的横坐标都加上或减去一个正数a ,相应的新图形就是把原图形向右或向左平移a 个单位长度;如果把各个点的纵坐标都加上或减去一个正数a ,相应的新图形就是把原图形向上或向下平移了a 个单位长度。
注:平移是图形的整体位置的移动,图形上各点都发生相同性质的变化,因此图形的平移问题可以转化为点的平移问题来解决。
注意平移只改变图形的位置,图形的大小和形状不发生变化. 二、典型例题知识一、坐标系的理解1.平面内点的坐标是( )A 一个点B 一个图形C 一个数D 一个有序数对 2.在平面内要确定一个点的位置,一般需要________个数据; 在空间内要确定一个点的位置,一般需要________个数据.3.在平面直角坐标系内,下列说法错误的是( )A 原点O 不在任何象限内B 原点O 的坐标是0C 原点O 既在X 轴上也在Y 轴上D 原点O 在坐标平面内 知识二、已知坐标系中特殊位置上的点,求点的坐标1. 点P 在x 轴上对应的实数是3 ,则点P 的坐标是 ,若点Q 在y 轴上对应的实数是31,则点Q 的坐标是 , 3.点P (a-1,2a-9)在x 轴负半轴上,则P 点坐标是 。
4.点P(m+2,m-1)在y 轴上,则点P 的坐标是 . 5.已知点A (m ,-2),点B (3,m-1),且直线AB ∥x 轴,则m 的值为 。
6. 已知:A(1,2),B(x,y),AB ∥x 轴,且B 到y 轴距离为2,则点B 的坐标是 .7.平行于x 轴的直线上的点的纵坐标一定( )A .大于0B .小于0C .相等D .互为相反数 8.若点(a ,2)在第二象限,且在两坐标轴的夹角平分线上,则a= .A 、第一象限B 、第二象限C 、第三象限,D 、第四象限. 2.如果<0,那么点P (x ,y )在( )(A) 第二象限 (B) 第四象限 (C) 第四象限或第二象限 (D) 第一象限或第三象限 3.点P的坐标是(2,-3),则点P在第 象限.4.点P (x ,y )在第四象限,且|x|=3,|y|=2,则P 点的坐标是 。
5.点 A 在第二象限 ,它到 x 轴 、y 轴的距离分别是 3 、2,则坐标是 ;6.若点P(x ,y )的坐标满足xy ﹥0,则点P在第 象限;若点P(x ,y )的坐标满足xy ﹤0,且在x 轴上方,则点P在第 象限.若点P (a ,b )在第三象限,则点P '(-a ,-b +1)在第 象限; 7.若点P(m -1, m )在第二象限,则下列关系正确的是 ( ) A.10<<m B.0<m C.0>m D.1>m 8.点(x ,1-x )不可能在 ( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 知识四:求一些特殊图形,在平面直角坐标系中的点的坐标。
1.X 轴上的点P 到Y 轴的距离为2.5,则点P的坐标为( )A(2.5,0) B (-2.5,0) C(0,2.5) D(2.5,0)或(-2.5,0)2.点A(2,3)到x 轴的距离为 ;点B(-4,0)到y 轴的距离为 ;点C 到x 轴的距离为1,到y 轴的距离为3,且在第三象限,则C 点坐标是 。
3.若点A的坐标是(-3,5),则它到x 轴的距离是 ,到y 轴的距离是.4.点P到x 轴、y 轴的距离分别是2、1,则点P的坐标可能为 。
5.已知点M 到x 轴的距离为3,到y 轴的距离为2,则M 点的坐标为 . 6.若点P (a ,b )到x 轴的距离是2,到y 轴的距离是3,则这样的点P 有 ( ) A.1个 B.2个 C.3个 D.4个 知识点五:对称点的坐标特征。
1.已知A(-3,5),则该点关于x 轴对称的点的坐标为_________;关于y 轴对的点的坐标为____________;关于原点对称的点的坐标为___________;关于直线x=2对称的点的坐标为____________。
2.将三角形ABC 的各顶点的横坐标都乘以,则所得三角形与三角形ABC 的关系( )A .关于x 轴对称B .关于y 轴对称C .关于原点对称D .将三角形ABC 向左平移了一个单位1-4.已知0=mn ,则点(m ,n )在 ; 5.点A(3-,4)关于x 轴对称的点的坐标是 ( )A.(3,4-)B. (3-,4-) C . (3, 4) D. (4-, 3-)6.点P(1-,2)关于原点的对称点的坐标是 ( ) A.(1,2-) B (1-,2-) C (1,2) D. (2,1-)7.在直角坐标系中,点P(2-,3)关于y 轴对称的点P 1的坐标是 ( ) A (2,3) B. (2,3-) C. (2-, 3) D. (2-,3-) 知识点六:利用直角坐标系描述实际点的位置。
1.课间操时,小华、小军、小刚的位置如下图左,小华对小刚说,如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( ) A .(5,4) B .(4,5) C .(3,4) D .(4,3)2.如上右图,小明从点O 出发,先向西走40米,再向南走30米到达点M ,如果点M 的位置用(-40,-30)表示,那么(10,20)表示的位置是( ) A 、点A B 、点B C 、点C D 、点D 知识点七:平移、旋转的坐标特点。
1.小华若将平面直角坐标系中一只猫的图案向右平移了3个单位长度,而猫的形状,大小都不变,则她将图案上的各点坐标________.2.线段CD 是由线段AB 平移得到的,点A (-1,3)的对应点C (2,5),则B (-3,-2)的对应点D 的坐标为 。
3.在平面直角坐标系中,点P (2,1)向左平移3个单位得到的的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限4.将三角形ABC 的各顶点的横坐标不变,纵坐标分别减去3,连结所得三点组成的三角形是由三角形ABC ( )A .向左平移3个单位B .向右平移3个单位。