代数拓扑17_胞腔分解的例子
- 格式:pdf
- 大小:294.31 KB
- 文档页数:7
拓扑学拓扑学是近代发展起来的一个研究连续性现象的数学分支。
中文名称起源于希腊语Τοπολογ?α的音译。
Top ology原意为地貌,于19世纪中期由科学家引入,当时主要研究的是出于数学分析的需要而产生的一些几何问题。
发展至今,拓扑学主要研究拓扑空间在拓扑变换下的不变性质和不变量。
拓扑定义拓扑学,是近代发展起来的一个研究连续性现象的数学分支。
中文名称起源于希腊语Τοπολογ的音译。
To polog y原意为地貌,于19世纪中期由科学家引入,当时主要研究的是出于数学分析的需要而产生的一些几何问题。
发展至今,拓扑学主要研究拓扑空间在拓扑变换下的不变性质和不变量。
拓扑学是数学中一个重要的、基础的分支。
起初它是几何学的一支,研究几何图形在连续变形下保持不变的性质(所谓连续变形,形象地说就是允许伸缩和扭曲等变形,但不许割断和粘合);现在已发展成为研究连续性现象的数学分支。
编辑本段学科方向由于连续性在数学中的表现方式与研究方法的多样性,拓扑学又分成研究对象与方法各异的若干分支。
在拓扑学的孕育阶段,19世纪末,就拓扑已出现点集拓扑学与组合拓扑学两个方向。
现在,前者演化为一般拓扑学,后者则成为代数拓扑学。
后来,又相继出现了微分拓朴学、几何拓扑学等分支。
数学的一个分支,研究几何图形在连续改变形状时还能保持不变的一些特性,它只考虑物体间的位置关系而不考虑它们的距离和大小。
[英top ology] 举例来说,在通常的平面几何里,把平面上的一个图形搬到另一个图形上,如果完全重合,那么这两个图形叫做全等形。
但是,在拓扑学里所研究的图形,在运动中无论它的大小或者形状都发生变化。
Topology -拓扑拓扑学学基础一.拓扑空间与连续性 §1.拓扑空间1.1定义:设X 是一非空集合,X 的一个子集族τ称为X 的一个拓扑,如果它满足: (1)X Φ,包含在τ中;(2)τ中任意多个成员的并仍在τ中; (3)τ中有限个成员的交集仍在τ中。
X 和τ一起称为拓扑空间,记作:(X τ,),称τ中的成员为拜年空间的开集。
(3′)τ中任意两个成员的并仍在τ中。
这是一个等价条件。
离散拓扑离散拓扑:X 上X 2构成X 上的拓扑。
最大最大最大((精细精细))的拓扑。
平凡拓扑平凡拓扑:由X,Φ{}构成的拓扑。
最小最小最小的拓扑。
当X 含有多于一个元素时,X 上可以有许多不同的拓扑。
如:X ={a,b,c},则{,,{}},{,,{,}},{,,{}{,}}X a X a b X a a b ΦΦΦ都是X 上的拓扑,但{,,{},{}}X a b Φ不是,因不满足(2)。
例1:X 是无穷集合,{X c f A A τ=Φ∪是的有限子集}{}τf 则不难验证是一个拓扑,称为余有限拓扑余有限拓扑余有限拓扑。
例2:X 是一个可数无限集合。
{X cc A A τ=Φ∪是的可数子集}{},则c τ是X 的拓扑,称为余可数拓扑余可数拓扑余可数拓扑。
例3:R 是实数集,{e U U τ=是若干开区间的并},若干可以是无限、有限或零,因此,e τΦ∈,e τ是R 上的拓扑,称为R 上的欧氏拓扑上的欧氏拓扑,记作:1(,)e E R τ= 以上五个拓扑的关系:,,,fc f e c e ττττττ<<不能比较大小。
1.2度量空间集合X 上的一个度量d 是一个映射d: X X R ×→,满足 (1)正定性:(,)0,,(,)0,d x x x X d x y when x y =∀∈>≠(2)对称性:(,)(,)d x y d y x =(3)三角不等式:(,)(,)(,)d x z d x y d y z ≤+集合X 上规定度量d 后称为度量空间,记为:(,)X d ,如:(,)nnE R d = 度量空间(,)X d 中,0,0x X ε∈>,00(,){(,)}B x x X d x x εε=∈< 称为以0x 为心,ε为半径的球形邻域。
代数拓扑的主要内容及其历史拓扑学的名称首见于德国数学家利斯廷(listing,-),拓扑是topology 的中文音译,以前长期被称作位置分析(analysis situs),关于位置分析的经典例子是欧拉解决的(Eluer,1707-1783)科尼斯堡七桥问题。
拓扑学是研究几何图形在被弯曲,拉大,缩小或任意变形下保持性质不变得一门学科。
20世纪中期最伟大的数学家赫尔曼·外尔(H.weyl,1885-1955)曾经说过:20世纪将是抽象代数的魔鬼和拓扑学的天使争夺数学灵魂的时期。
诚如此,从1900年希尔伯特在国际数学家大会上宣读的23个问题中竟然没有一个是拓扑的问题开始,到1935年在苏联召开的国际拓扑学大会的召开,拓扑学的发展可谓天翻地覆,一大批新的概念和理论建立了起来,整个拓扑学仿佛有做不完的问题。
数学灵魂争夺的最终结果是群进入了拓扑学。
一方面20世纪数学(特别是抽象代数学)的发展为拓扑学提供了工具从而形成了代数拓扑这一学科,另一方面拓代数扑学的发展反过来又促进了新的数学的产生(典型的例子是同调代数,范畴论)。
代数拓扑是现代数学的主流。
法国布尔巴基学派的迪厄多内说过:代数拓扑和微分拓扑是现代数学的女王。
陈省身先生当年在中央研究院主持工作训练新人时,吸取了苏联函数论学派的和波兰泛函分析学派的成功的经验,认为当时数学的主流乃是代数拓扑,应当以代数拓扑为主要学习内容,培养从全国各地选拔的青年才俊。
这种方式取得了很大的成效,如首届国家最高科技奖吴文俊的早期工作就是代数拓扑,廖山涛,张素诚,杨忠道等都出自代数拓扑讨论班。
代数拓扑起源于庞加莱的组合拓扑学,本文旨在简要叙述一下代数拓扑的历史。
毫无疑问,早期的代数拓扑学已经成为经典。
本文简要介绍一下同调的思想发展史,即组合拓扑学是如何发展到代数拓扑学的。
那么组合拓扑学的主要研究对象是什么?同调群是如何引入拓扑学的?同调群的拓扑不变性又是由谁证明的?上同调群、相对上同调群、局部同调群、上同调环之间有什么关系呢?通过一学期的学习,使我下定决心以这种方式写这篇作业。
庞加莱猜想-前言Wir m\"ussen wissen! Wir werden wissen!(我们必须知道!我们必将知道!)—— David Hilbert两年前科学版举行过一次版聚,我报告了低维拓扑里面的一些问题和进展,其中有一半篇幅是关于Poincar\'e 猜想。
版聚后,flyleaf 要求大家回去后把自己所讲的内容发在版上。
当时我甚至已经开始写了一两段,但后来又搁置了。
主要是因为自己对于低维拓扑还是一个门外汉,写出来的东西难免有疏漏之处,不敢妄下笔。
两年过去,我对低维拓扑这门学科的了解比原先多了,说话的底气也就比原先足了。
另外,由于Clay 研究所的百万巨赏,近年来Poincar\'e 猜想频频在媒体上曝光;而且Perelman 最近的工作使数学家们有理由相信我们已经充分接近于这一猜想的最后解决。
所以大概会有很多人对Poincar\'e 猜想的来龙去脉感兴趣,我也好借机一偿两年来的宿愿。
现代科学的高速发展使各学科之间的鸿沟加大,不同学科之间难以互相理解,所以非数学专业的读者在阅读本文时可能会遇到一些困难。
但限于篇幅和文章的形式,我也不可能对很多东西详细解释。
一些最基本的拓扑概念如“流形”,我将在本文的附录中解释。
还有一些“同调群”、“基本群”之类的名词,读者见到时大可不去理会它们的确切含义。
我将尽量避免使用这一类的专业术语。
作者并非拓扑方面的专家,对下面要说的很多内容都是道听途说,只知其然而不知其所以然;作者更不善于写作,写出来的东东总会枯燥无味,难登大雅之堂。
凡此种种,还请读者诸君海涵。
问题的由来Consid\'erons maintenant une vari\'et\'e [ferm\'ee] $V$ \`a trois dimensions ... Est-il possible que le groupe fondamental de $V$ ser\'eduise \`a la substitution identique, et que pourtant $V$ ne soit pas simplement connexe?—— Henri Poincar\'e在拓扑学家的眼里,篮球、排球和乒乓球并没有什么不同,它们都同胚于三维空间中的球面S^2. (我们把n+1维欧氏空间中到原点距离为1的点的集合记作S^n,称为n维球面(sphere)。
基础拓扑学知识点(简介拓扑知识)日期:2022-07-08 20:181.简介拓扑知识拓扑学是数学中一个重要的、基础的分支。
起初它是几何学的一支,研究几何图形在连续变形下保持不变的性质(所谓连续变形,形象地说就是允许伸缩和扭曲等变形,但不许割断和粘合);现在已发展成为研究连续性现象的数学分支。
由于连续性在数学中的表现方式与研究方法的多样性,拓扑学又分成研究对象与方法各异的若干分支。
在拓扑学的孕育阶段,19世纪末,就拓扑已出现点集拓扑学与组合拓扑学两个方向。
现在,前者演化为一般拓扑学,后者则成为代数拓扑学。
后来,又相继出现了微分拓朴学、几何拓扑学等分支。
拓扑学的英文名是Topology,直译是地志学,也就是和研究地形、地貌相类似的有关学科。
我国早期曾经翻译成“形势几何学”、“连续几何学”、“一对一的连续变换群下的几何学”,但是,这几种译名都不大好理解,1956年统一的《数学名词》把它确定为拓扑学,这是按音译过来的。
拓扑学是几何学的一个分支,但是这种几何学又和通常的平面几何、立体几何不同。
通常的平面几何或立体几何研究的对象是点、线、面之间的位置关系以及它们的度量性质。
拓扑学对于研究对象的长短、大小、面积、体积等度量性质和数量关系都无关。
2.简单介绍一下拓扑学拓扑学是几何学的一个分支,主要研究图形在连续变换下不变的性质。
可参看百科的“拓扑”或“拓扑学”条目。
我下面引述的例子不多作解释,可以直接查到。
例如,Euler的七桥问题就是一个拓扑学的问题,因为把七桥连成路径,不论桥和路如何连续的变化,都不影响问题的结果,也就是说,这个问题研究的是一个连续变换下不变的性质。
又如,四色定理(地图可用四色着色)是一个拓扑学的问题,因为地图中的区域大小和具体形状在问题中并不重要,都可以连续的变化,不改变地图可以用四色着色这一性质。
所以,在拓扑学的观点下,圆和三角形的性质没有什么区别,轮胎和戒指的性质没有什么区别,因为它们都可以通过连续变换互相得到。
以下是代数拓扑的简单例子:
1.莫比乌斯带:这是一个经典的代数拓扑例子。
莫比乌斯带是一个单侧曲面,可以从一个
长方形通过扭曲和粘接边界得到。
它展示了一个非平凡的拓扑空间,即它不能被连续变形为一个平面区域。
2.克莱因瓶:克莱因瓶是另一个有趣的例子。
它是一个在四维空间中可以无交点地浸入的
三维流形。
在三维空间中,克莱因瓶的内部和外部是相互连接的,这意味着它没有明确的边界。
3.环面:环面是一个通过将一个矩形的两个对边进行粘合而得到的拓扑空间。
它可以被视
为一个圆绕着另一个圆旋转而形成的曲面。
环面具有一些特殊的拓扑性质,例如它是一个紧致且连通的拓扑空间。
4.拓扑等价:在代数拓扑中,两个拓扑空间如果可以通过连续的变形相互转换,则被认为
是拓扑等价的。
例如,一个圆和一个椭圆是拓扑等价的,因为可以通过连续的拉伸和压缩将一个变形为另一个,而不改变其基本的拓扑性质。
5.连通性:连通性是代数拓扑中的一个基本概念。
一个拓扑空间是连通的,意味着它不能
被分解为两个不相交的非空开子集。
例如,一个圆是连通的,但一个由两个不相交的圆组成的空间则不是连通的。
以上例子展示了代数拓扑中的一些基本概念和性质,包括拓扑空间、连续变形、紧致性、连通性等。