人教版初一数学下册二元一次方程和它的解
- 格式:doc
- 大小:16.50 KB
- 文档页数:4
《二元一次方程和它的解》讲义一、什么是二元一次方程在数学的世界里,二元一次方程是一个非常基础且重要的概念。
那到底什么是二元一次方程呢?简单来说,二元一次方程就是含有两个未知数,并且含有未知数的项的次数都是 1 的整式方程。
我们可以用一般形式来表示二元一次方程,即:ax + by = c (其中 a、b 都不为 0)。
比如说,像 2x + 3y = 7 、5x 2y = 9 这样的方程,都是二元一次方程。
这里的 x 和 y 就是两个未知数,a 和 b 分别是 x 和 y 的系数,c 是常数项。
需要注意的是,方程中的系数 a、b 以及常数项 c 都是实数。
二、二元一次方程的特点了解了二元一次方程的定义,我们再来看看它有哪些特点。
首先,二元一次方程有两个未知数。
这两个未知数在方程中地位是平等的,没有主次之分。
其次,方程中含未知数的项的次数都是 1。
这意味着 x 和 y 的指数都是 1,不会出现像 x²或者 y³这样的情况。
再者,二元一次方程是整式方程。
也就是说,方程的分母中不含未知数。
比如 2/(x + y) = 3 就不是二元一次方程,因为分母中含有未知数x 和 y 。
三、二元一次方程的解既然有方程,那就必然有解。
那什么是二元一次方程的解呢?对于一个二元一次方程,如果能找到一组未知数的值,使得方程左右两边相等,那么这组未知数的值就叫做这个二元一次方程的一个解。
比如对于方程 2x + 3y = 7 ,如果 x = 1 ,y = 1 ,代入方程左边得到:2×1 + 3×1 = 5 ,不等于右边的 7 ,所以 x = 1 ,y = 1 不是方程的解。
而如果 x = 2 ,y = 1 ,代入方程左边得到:2×2 + 3×1 = 7 ,等于右边的 7 ,所以 x = 2 ,y = 1 就是方程 2x + 3y = 7 的一个解。
一般来说,一个二元一次方程有无数个解。
第八章二元一次方程(组)8.2 二元一次方程(组)的解法Ⅰ——代入法(能力提升)【要点梳理】知识点一、消元法1.消元思想:二元一次方程组中有两个未知数,如果消去其中一个未知数,那么就把二元一次方程组转化为我们熟悉的一元一次方程,我们就可以先求出一个未知数,然后再求出另一个未知数. 这种将未知数由多化少、逐一解决的思想,叫做消元思想.2.消元的基本思路:未知数由多变少.3.消元的基本方法:把二元一次方程组转化为一元一次方程.要点二、代入消元法通过“代入”消去一个未知数,将方程组转化为一元一次方程,这种解法叫做代入消元法,简称代入法.要点诠释:(1)代入消元法的关键是先把系数较简单的方程变形为:用含一个未知数的式子表示另一个未知数的形式,再代入另一个方程中达到消元的目的.(2)代入消元法的技巧是:①当方程组中含有一个未知数表示另一个未知数的代数式时,可以直接利用代入法求解;②若方程组中有未知数的系数为1(或-1)的方程.则选择系数为1(或-1)的方程进行变形比较简便;③若方程组中所有方程里的未知数的系数都不是1或-1,选系数绝对值较小的方程变形比较简便.【典型例题】类型一、用代入法解二元一次方程组例1.用代入法解方程组:237 338x yx y+=⎧⎨-=⎩①②【思路点拨】比较两个方程未知数的系数,发现①中x的系数较小,所以先把方程①中x用y表示出来,代入②,这样会使计算比较简便.【答案与解析】解:由①得732yx-=③将③代入②733382yy-⨯-=,解得13y=.将13y=代入③,得x=3所以原方程组的解为313 xy=⎧⎪⎨=⎪⎩.【总结升华】代入法是解二元一次方程组的一种重要方法,也是同学们最先学习到的解二元一次方程组的方法,用代入法解二元一次方程组的步骤可概括为:一“变”、二“消”、三“解”、四“代”、五“写”.举一反三:【变式】m取什么数值时,方程组的解(1)是正数;(2)当m取什么整数时,方程组的解是正整数?并求它的所有正整数解.【答案】(1)m 是大于-4 的数时,原方程组的解为正数;(2)m=-3,-2,0,.例2.对于某些数学问题,灵活运用整体思想,可以化难为易.在解二元一次方程组时,就可以运用整体代入法:如解方程组:解:把②代入①得,x+2×1=3,解得x=1.把x=1代入②得,y=0.所以方程组的解为请用同样的方法解方程组:.【思路点拨】仿照已知整体代入法求出方程组的解即可.【答案与解析】解:由①得,2x﹣y=2③,把③代入②得,1+2y=9,解得:y=4,把y=4代入③得,x=3,则方程组的解为【总结升华】本题体现了整体思想在解二元一次方程组时的优越性,利用整体思想可简化计算.举一反三:【变式1】解方程组2320, 2352y9.7x yx y--=⎧⎪-+⎨+=⎪⎩【答案】解:232235297x yx yy-=⎧⎪⎨-++=⎪⎩①②将①代入②:2529 7y++=,得 y=4,将y=4代入①:2x-12=2得 x=7,∴原方程组的解是74 xy=⎧⎨=⎩.(2)45:4:3x yx y-=⎧⎨=⎩①②解:由②,设x=4k,y=3k 代入①:4k-4·3k=5 4k-12k=5-8k=558k=-∴542x k==-,1538y k==-,∴原方程组的解为52158 xy⎧=-⎪⎪⎨⎪=-⎪⎩.类型二、方程组解的应用例3.如果方程组的解是方程3x+my=8的一个解,则m=()A.1 B.2 C.3 D.4【思路点拨】求出方程组的解得到x与y的值,代入已知方程即可求出m的值.【答案】B.【解析】解:,由①得y=3-x ③将③代入②得:6x=12,解得:x=2,将x=2代入②得:10﹣y=9,解得:y=1,将x=2,y=1代入3x+my=8中得:6+m=8,解得:m=2.【总结升华】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.例4.已知2564x yax by+=-⎧⎨-=-⎩①②和方程组35168x ybx ay-=⎧⎨+=-⎩③④的解相同,求2011(2)a b+的值.【思路点拨】两个方程组有相同的解,这个解是2x+5y=-6和3x-5y=16的解.由于这两个方程的系数都已知,故可联立在一起,求出x、y的值.再将x、y的值代入ax-by=-4,bx+ay=-8中建立关于a、b的方程组即可求出a、b的值.【答案与解析】解:依题意联立方程组256 3516①x yx y+=-⎧⎨-=⎩③①+③得5x=10,解得x=2.把x=2代入①得:2×2+5y=-6,解得y=-2,所以22 xy=⎧⎨=-⎩,又联立方程组48ax bybx ay-=-⎧⎨+=-⎩,则有224228a ba b+=-⎧⎨-+=-⎩,解得13 ab=⎧⎨=-⎩.所以(2a+b)2011=-1.【总结升华】求方程(组)中的系数,需建立关于系数的方程(组)来求解,本例中利用解相同,将方程组重新组合换位联立是解答本题的关键.举一反三:【变式】小明和小文解一个二元一次组小明正确解得小文因抄错了c,解得已知小文除抄错了c外没有发生其他错误,求a+b+c的值.【答案】解:把代入cx﹣3y=﹣2,得c+3=﹣2,解得:c=﹣5,把与分别代入ax+by=2,得,解得:,则a+b+c=2+﹣5=3﹣5=﹣2.【巩固练习】一、选择题1.解方程组347910250m n m n -=⎧⎨-+=⎩①②的最好方法是( ).A .由①得743n m +=再代入②B .由②得25109n m +=再代入① C .由①得347m n =+再代入② D .由②得91025m n =-再代入①2. 若二元一次方程式组的解为x=a ,y=b ,则a+b 等于( )A .B .C .D .3.关于x ,y 的方程y kx b =+,k 比b 大1,且当12x =时,12y =-,则k ,b 的值分别是( ).A .13,23- B .2,1 C .-2,1 D .-1,0 4.已知24x y =-⎧⎨=⎩和41x y =⎧⎨=⎩都是方程y =ax+b 的解,则( ).A .125a b ⎧=⎪⎨⎪=⎩B .123a b ⎧=-⎪⎨⎪=⎩C .121a b ⎧=⎪⎨⎪=-⎩D .121a b ⎧=-⎪⎨⎪=-⎩5.如果二元一次方程组4x y a x y a +=⎧⎨-=⎩的解是二元一次方程3x-5y-30=0的一个解,那么a 的值是( ).A .3B .2C .7D .66.一艘缉毒艇去距90海里的地方执行任务,去时顺水用了3小时,任务完成后按原路返回,逆水用了3.6小时,求缉毒艇在静水中的速度及水流速度.设在静水中的速度为x 海里/时,水流速度为y 海里/时,则下列方程组中正确的是( ).A .33903.6 3.690x y x y +=⎧⎨+=⎩B .3 3.6903.6390x y y x +=⎧⎨+=⎩C .3()903()90x y x y +=⎧⎨-=⎩D .33903.6 3.690x y x y +=⎧⎨-=⎩二、填空题7.已知51,62x t y t =+=-,用含y 的式子表示x ,其结果是_______.8.若方程组的解为,则点P (a ,b )在第 象限.9.方程组的解是 . 10.若532y x a b +与2244x y a b --是同类项,则x = ________,y = ________.11.已知方程组3524x y ax y -=⎧⎨-=⎩的解也是方程 47135x y x by -=⎧⎨-=⎩的解,则a = _____,b = ____ . 12.关于,x y 的二元一次方程组1353x y m x y m +=-⎧⎨-=+⎩中,m 与方程组的解中的x y 或相等,则m 的值为 .三、解答题13.用代入法解方程组:(1)0.50.2 1.2,0.30.60.2;y x y x -=⎧⎨-=-⎩ (2)3252,2(32)117.x y x x y x +=+⎧⎨+=+⎩14.研究下列方程组的解的个数:(1)21243x y x y -=⎧⎨-=⎩; (2)2123x y x y -=⎧⎨-=⎩; (3)21242x y x y -=⎧⎨-=⎩.你发现了什么规律?15.若方程组的解是,求(a+b)2﹣(a﹣b)(a+b).16.甲、乙两位同学一起解方程组,甲正确地解得,乙仅因抄错了题中的c,解得,求原方程组中a、b、c的值.【答案与解析】一、选择题1. 【答案】C;2.【答案】A.【解析】把x=a,y=b代入方程组得:,将b=15a 代入5a-b=5,解得:,∴a+b=. 3. 【答案】A ;【解析】将12x =时,12y =-代入y kx b =+得1122k b -=+ ①,再由k 比b 大1得1k b -= ②,①②联立解得13k =,23b =-. 4. 【答案】B ;【解析】将24x y =-⎧⎨=⎩和41x y =⎧⎨=⎩分别代入方程y =ax+b 得二元一次方程组:2441a b a b -+=⎧⎨+=⎩,解得1,32a b =-=. 5. 【答案】B ;【解析】由方程组可得,代入方程,即可求得. 6. 【答案】D.二、填空题7. 【答案】151x y =-+;8.【答案】四.【解析】将x=2,y=1代入方程组得:,解得:a=2,b=﹣3, 则P (2,﹣3)在第四象限.9.【答案】;【解析】解:解方程组, 由①得:x=2﹣2y ③,将③代入②,得:2(2﹣2y )+y=4,解得:y=0,将y=0代入①,得:x=2,故方程组的解为,故答案为:.10.【答案】2, -1;【解析】由同类项的定义得方程组,解之便得答案.11.【答案】3, 1;【解析】由题意得:35471x y x y -=⎧⎨-=⎩,解得21x y =⎧⎨=⎩,代入 2435ax y x by -=⎧⎨-=⎩,得关于a 、b 的方程组22465a b -=⎧⎨-=⎩,解得31a b =⎧⎨=⎩12. 【答案】12-2或; 【解析】解:解关于x,y 的方程组得21x y m =⎧⎨=--⎩,当x m =时,2m =;当y m =时,12m =-. 三、解答题13.【解析】解:(1)0.50.2 1.2,0.30.60.2;y x y x -=⎧⎨-=-⎩①②将②代入①得,0.50.30.6 1.2y y +-=,得94y =, 将94y =代入①得,38x =-, 所以原方程组的解是3894x y ⎧=-⎪⎪⎨⎪=⎪⎩ .(2)3252,2(32)117.x y x x y x +=+⎧⎨+=+⎩①② 把3x+2y 看作整体,直接将①代入②得,2(52)117x x +=+,解得3x =-, 将3x =-代入①得,2y =-所以原方程组的解是32x y =-⎧⎨=-⎩. 14.【解析】解:(1)无解;(2)唯一一组解;(3)无数组解.规律:当两个一次方程对应项系数不成比例时,方程组有唯一一组解,如(2);当两个一次方程对应项系数成比例时,方程组有无数组解,如(3);当两个一次方程对应项系数成比例,但比值不等于两个常数项对应的比时,方程组无解,如(1).15.【答案】解:将代入得,解得:.∵(a+b)2﹣(a+b)(a﹣b)=2b(a+b),∴当a=,b=时,原式=2b(a+b)=2×=6.16.【解析】解:把代入到原方程组中,得可求得c=﹣5,乙仅因抄错了c而求得,但它仍是方程ax+by=2的解,所以把代入到ax+by=2中得2a﹣6b=2,即a﹣3b=1.把a﹣3b=1与a﹣b=2组成一个二元一次方程组,解得.故a=,b=,c=﹣5.。
《代入消元法——解二元一次方程组》教学设计一、设计思想代入消元法解二元一次方程组是在学生理解二元一次方程组的概念及会解一元一次方程的基础上进行的,求二元一次方程组的解关键是化二元方程为一元方程,因而在教学中首先复习二元一次方程组的相关概念及解一元一次方程,再随势引入新课。
教学中通过观察、比较、分析给学生的材料,逐步引入,层层推进,符合学生的认知规律,培养了学生的观察、概括等能力。
同时整节课遵照“坚持启发式,反对注入式”的原则,让学生自觉动手动脑,积极参与学习活动,尊重学生的意见,让学生成为课堂的主体,在愉悦的氛围中发现和掌握消元的化归思想。
三、教学目标知识与能力:通过探索,领会并总结解二元一次方程组的方法。
根据方程组的情况,能恰当地运用“代入消元法”解方程组。
过程与方法:通过观察,分析和归纳给出的感性材料,发现并掌握消元的化归思想,培养学生的观察、分析、概括等能力;培养用二元一次方程组解决实际生活中的问题的能力和口头表达能力。
情感态度与价值观:培养学生合作意识和勇于探索的精神,让学生在探索的过程中,发现并掌握化归思想,获得成功的喜悦,感受化归思想的广泛应用,增强学生学习数学的信心。
四、教学重点根据二元一次方程组的情况,能恰当地运用“代入消元法”解方程组。
五、教学难点用代入的方法实现对消元思想的理解,用恰当的方法将二元方程组转化成一元方程。
六、教学方法引导发现法、谈话讨论法、练习法、尝试指导法。
七、教学具准备电脑、投影仪。
八、教学过程(一)复习教师展示:温故而知新1、什么叫二元一次方程、二元一次方程组、二元一次方程组的解?2、下列方程中是二元一次方程的有()A.xy-7=1B.2x-1=3y+1C.4x-5y=3x-5yD.2x+3z+4y=63、二元一次方程3X-5Y=9中,当X=0时,Y的值为_______。
4、已知二元一次方程2X+3Y+5=0(1)用X表示Y (2)用Y表示X学生练习,思考并回答。
七年级下册数学二元一次方程组解法
解二元一次方程组的方法主要有消元法和代入法。
以下是七年级下册数学中解二元一次方程组的步骤:
假设有如下二元一次方程组:
1. 方程一:ax + by = c
2. 方程二:dx + ey = f
消元法解法步骤:
Step 1: 确定一个未知数的系数,使得两个方程中该未知数的系数在绝对值上相等。
Step 2: 将两个方程相加或相减,使得其中一个未知数的系数相消,从而得到一个只包含一个未知数的方程。
Step 3: 解得这个未知数的值。
Step 4: 将得到的未知数的值代入任意一个方程中,解得另一个未知数的值。
Step 5: 得到两个未知数的值,从而得到方程组的解。
代入法解法步骤:
Step 1: 将其中一个方程中的一个未知数表示为另一个未知数的函数,然后将其代入另一个方程中。
Step 2: 解得一个未知数的值。
Step 3: 将得到的未知数的值代入任意一个方程中,解得另一个未知数的值。
Step 4: 得到两个未知数的值,从而得到方程组的解。
无论是消元法还是代入法,最后都需要验证求得的未知数的值是否符合原方程组,以确保解的正确性。
1/ 1。
二元一次方程组和它的解教学设计及学生主体地位二元一次方程组和它的解
教学目的
1.使学生了解二元一次方程,二元一次方程组的概念。
2.使学生了解二元一次方程;二元一次方程组的解的含义,会检验一对数是不是它们的解。
3.通过引例的教学,使学生进一步使用代数中的方程去反映现实世界中的等量关系,体会代数方法的优越性。
重点、难点
1.重点:了解二元一次方程。
二元一次方程组以及二元一次方程
组的解的含义,会检验一对数是否是某个二元一次方程组的解。
2.难点;了解二元一次方程组的解的含义。
教学过程
一、复习提问
1.什么叫一元一次方程?什么叫一元一次方程的解?怎样检验一
个数是否是这个方程的解?
2.列方程解应用题的步骤。
二、新授
问题1:工厂里,工人用34小时的时间加工出了18件产品。
根据工厂现有技术,加工一件A产品耗时3小时,加工一件B产品耗时1小时,那该工人一共加工了产品A、B各多少件呢?
针对以上的问题,同学们可以应用以前学习过的算术方法来解,也可以列一元一次方程来解,请同学们选一种方法试一试。
解后反思:请同学们思考一下,既然是求两个未知量,那么能不能同时设两个未知数?
引导同学们尝试设加工了x件A、y件B。
叫同学在一下表格中填空:
A
B
合计
产品数
X
Y
耗时
那么根据填表结果可知
X+y=18 ①
3x+y=34 ②
请同学们思考一下:这两个方程有什么共同的特点?(抽学生回答,并同学生们一起探讨,引导学生们一起概括:都含有两个未知数,且含未知数的项的次数都是1)
这里的x、y要同时满足两个条件:一个是加工的产品总数是18;另一个是总耗时数是34,也就是说,两个未知数x、y
必须同时满足方程①、②。
因此,把两个方程合在一起,并写成
x+y=18 ①
3x+y=34 ②
上面,列出的两个方程与一元一次方程不同,每个方程都有两个未知数,并且未知数的次数都是1,像这样的方程,叫做二元一次方程。
把这两个二元一次方程①、②合在一起,就组成了一个二元一次方程组。
结合一元一次方程,二元一次方程对“元”和“次”作进一步的解释;“元”与“未知数”相通,几个元是指几个未知数,“次”指未知数的最高次数。
用算术方法或通过列一元一次方程都可以求得加工了A产品8件,B产品10件,
即x=8,y=10
这里的x=8,与y=10既满足方程①即8十10=18
又满足方程②,即3×8十10=34
我们就说x=8与y=10是二元一次方程组的解。
解后反思:请同学们比较一下,用算术、一元一次方程和二元一次方程组三种方法来解答本题的个子的特点,并加以总结和归纳。
一般地,使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解。
二元一次方程组的解的检验范例。
三、巩固练习
1.教科书第25页问题2。
2.补充练习。
四、小结
1.什么是二元一次方程,什么是二元一次方程组?
2.什么是二元一次方程组的解?如何检验一对数是不是某个方程组的解?
五、作业
教科书第26页习题7.1全部。
学生主体地位的体现:
1、学生作为课堂教学工作的受体,要是教学工作中没有体现他们的主体地位,要是没有他们的主动配合和相应,我们的教学工作是不会成功的;因此,唯有调动学生的积极性,在教学工作中体现学生的主体地位,我们的教学才能成功。
2、在本堂课堂教学中,主要是通过提出一个现实生活中的产品加工的问题,激发学生们的好奇心和求知欲,从而引导和推动学生们积极地应用自己以前自己学过的方法来解答问题;在学生们解答了问题之后,通过他们自己的求解,引导他们思考:能否尝试应用新的方法即
设两个未知数来解答这个问题呢?通过设置两个未知数来解答,激发他们对于新方法、新知识的好奇心,这样就为我们讲解二元一次方程组找到了一个比较好的切入点,让学生们不在感到唐突;然后再总结二元一次方程组的特点,让同学们对于二元一次方程组有一个比较好的认识。
3、本堂课由于有比较良好的师生互动,老师提出问题鼓励和引导学生们一起思考和探索,充分地调动了学生们的好奇心和求知欲,从而为他们跟着老师思路进行学习和思考创造了条件,在学习过程中正是由于良好的师生互动和学生教学主体地位的体现,使得本次教学取得了比较好的效果。