放射免疫分析资料讲解
- 格式:ppt
- 大小:62.00 KB
- 文档页数:15
放射免疫分析摘要:放射免疫技术(radio immunoassay ,RIA)类型主要包括经典的放射免疫分析(radioimmunoassay, RIA)和免疫放射分析或免疫放射度量分析( immunoradiometric assay,IRMA)。
由于受接触放射性物质,损害操作人员的身体,测定完成后放射性材料的处置等问题的存在,再加上80年代初出现的非同位素标记技术得到了极大的发展和广泛应用,放射免疫技术的应用有下降的趋势。
0引言:放射性核素依衰变方式分α、β、γ三种,用于放射性标记的有β和γ两类;分别用液体闪烁计数器及γ计数器测定。
目前常用的是γ型放射性核素,如125I、131I、51Cr和60Co,以125I最常用;β型放射性核素有3H、14C和32P,以3H最常用。
关键词:结构,原理,临床应用1检测的基本结构原理、结构及其探测原理核射线探测仪器由射线探测器和后续电子学单元两大部分组成。
核射线探测器是个能量转化器,其检测原理是当射线作用于闪烁体,闪烁体吸收了射线的能量而引起闪烁体中的原子或分子激发,当受激的原子或分子退激时,则发出光子进入光电倍增管光阴极,转换为光电子,光电子在光电倍增管电场作用下到达阳极,形成电脉冲。
转换模式是放射能→光能→电能→脉冲。
液体闪烁测量是在闪烁杯内进行的,放射性样品主要被溶剂和闪烁剂分子包围,射线能量先被溶剂分子吸收,受激溶剂分子退激时释放出能量激发闪烁剂,当激发态回到基态时释放出光子到达光阴极,光阴极产生光电子,在光电倍增管的电场作用下,在阳极获得大量电子,形成脉冲信号,输入后读分析电路形成数据信号,最后由计算机数据处理,求出待测抗原含量。
放射性活度测定方法放射免疫分析中经抗原抗体反应和B、F分离后通过检测放射性量来反映待测物的含量。
放射性量的检测需特殊的仪器,放射免疫分析仪实际上就是进行放射性量测定的仪器。
测量仪器有两类,即晶体闪烁计数仪(主要用于检测γ射线,如125I、131I、57Cr等)和液体闪烁计数仪(主要用于检测β射线,如3H、32P、14C等)。
放射免疫分析名词解释放射免疫分析(Radioimmunoassay,RIA)是一种用于检测和定量分析生物样品中特定抗原或抗体浓度的方法。
它是将放射性同位素标记于抗原或抗体上,在放射性同位素发出的放射线与样品中的抗原或抗体发生特异性结合后进行测定,从而得出相应物质的浓度。
放射免疫分析的基本原理是免疫反应,即抗原与抗体之间的特异性结合。
在RIA中,通常选择具有放射性的同位素标记物作为追踪试剂。
标记物可以是同位素标记的抗原或抗体,其中最常用的是放射性同位素碘-125(^125I)或碘-131(^131I)。
这些放射性同位素会发出特定能量的射线,可以通过辐射探测器测量。
RIA的步骤包括样品预处理、标记物制备、抗体反应和分离、洗涤、放射测定等。
首先,需要将待测物标记为放射性同位素,常见的方法是用碘-125标记。
然后,将标记物与样品中的抗原或抗体进行相互反应,形成抗原-抗体复合物。
接着,通过分离和洗涤步骤,去除未结合的放射性同位素。
最后,使用辐射探测器测量放射性同位素发出的射线,由此可以得到样品中特定抗原或抗体的浓度。
放射免疫分析的优势在于其高灵敏度和高特异性,可以检测到极低浓度的物质。
它广泛应用于医学、生物学、生物化学等领域,用于检测和量化各种生物分子,如荷尔蒙、抗体、蛋白质、癌标志物等。
RIA还可以用于研究免疫反应、疾病诊断、药物筛选和治疗监测等方面。
然而,放射免疫分析也存在一些问题。
首先,使用放射性同位素会造成辐射危害,对实验操作人员和环境有一定风险。
其次,放射性同位素的半衰期较短,需要定期更换,增加了实验的复杂性和成本。
此外,由于放射性同位素的使用受到严格的监管和限制,一些实验室可能无法获得所需的放射性同位素。
总体而言,放射免疫分析是一种广泛应用的生物分析技术,具有高灵敏度和高特异性。
随着科技的进步,更多无放射同位素的免疫分析方法被开发出来,如酶免疫分析、荧光免疫分析等,逐渐取代了放射免疫分析的应用。
放射免疫分析的原理放射免疫分析(Radioimmunoassay,RIA)是一种利用放射性同位素标记抗原或抗体来检测物质浓度的技术。
该技术广泛应用于临床诊断、生物化学研究以及药物筛选等领域,具有高灵敏度和高特异性的特点。
放射免疫分析的原理是基于抗原与抗体之间的特异性结合。
抗原是一种能够诱导免疫系统产生抗体的物质,而抗体是一种能够特异性结合抗原的免疫蛋白。
在放射免疫分析中,通常选择特异性结合抗原的抗体,并利用放射性同位素标记抗原或抗体,以便测定样品中抗原或抗体的浓度。
放射免疫分析的步骤一般包括抗原标记、抗体固定、分离和计数等几个关键步骤。
首先,将抗原标记上放射性同位素,通常使用的同位素有碘-125(125I)、碘-131(131I)、氘-3(3H)等。
标记后的放射性抗原具有相对稳定的放射性,可用于测定抗原的浓度。
然后,将已标记的抗原与待测样品中的抗原进行特异性结合,并通过添加抗体来固定放射标记的抗原。
接着,利用分离技术(如沉淀法、凝胶层析法等)将游离的抗体或抗原分离出来。
最后,通过放射计数器测定标记抗原或抗体的放射性强度,从而计算出待测样品中抗原或抗体的浓度。
放射免疫分析的原理基于放射性同位素的高灵敏度和稳定性,使得其具有极高的检测灵敏度和特异性。
相对于传统的免疫分析方法,如酶联免疫吸附法(enzyme-linked immunosorbent assay,ELISA)等,放射免疫分析能够在极低的抗原浓度下进行检测,且能够检测复杂样品中的微量物质。
因此,放射免疫分析广泛用于检测激素、生物分子、药物和疾病标志物等各种生物样品中的微量物质。
然而,放射免疫分析也存在一些局限性,主要是由于放射性同位素的使用带来的放射性污染和辐射风险。
为了克服这一局限性,人们提出了许多新的代替技术,如免疫荧光分析(immunofluorescence assay,IFA)、化学发光免疫分析(chemiluminescence immunoassay,CLIA)等。
放射免疫分析名词解释
放射免疫分析(RIA)是一种检测技术,可以用来测定多种体内物质,包括激素、细胞因子、蛋白质和抗原。
它可以应用于动物和人体,并且具有灵敏度高、可操作性好的优点,被广泛应用于临床和科研领域。
放射免疫分析由以下几个步骤构成:首先,将样本中待测物质结合到放射抗体中。
放射抗体是一种特异性抗体,能够特异性结合待测物质,避免其他物质干扰检测结果。
放射抗体可以是膜抗原抗体、非膜抗原抗体或者多肽抗体。
其次,将样本和放射抗体制成滴定曲线,测定放射抗体结合待测物质的含量。
最后,通过计算放射抗体浓度滴定曲线的相关系数来计算样本中的待测物质的含量。
放射免疫分析为临床和科研提供了许多方便,特别是在生理学方面,其应用极为广泛。
它可以用来检测各种激素、蛋白质和细胞因子的表达水平,对疾病的研究有重要意义。
放射免疫分析也可以检测各种抗原,为临床诊断疾病提供有力的支持。
放射免疫分析由于具有高灵敏度和特异性,可以很好地检测微量物质,在临床和科研领域具有重要的应用价值。
近年来,放射免疫分析在药物研发和食品质量检测方面也越来越受到重视,为科学研究和技术创新提供重要的技术支持。
综上所述,放射免疫分析是一种重要的检测技术,它不仅在临床检测中具有重要的应用价值,而且也受到越来越多科学研究和技术创新的重视。
它也可以帮助我们更准确、更早期地诊断疾病,为患者身
体健康提供有力的支撑。
放射免疫分析放射免疫分析放射免疫分析是利用放射性核素可探测的灵敏性、精确性和抗原抗体反应特异性相结合的一种免疫技术。
放射免疫技术放射免疫分析免疫放射分析放射免疫分析技术的应用放射免疫技术具有灵敏度高、特异性强、重复性好、样品及试剂用量少、操作简便且易于标准化等优点,广泛应用于生物医学研究和临床诊断领域中各种微量蛋白质、激素、小分子药物和肿瘤标志物的定量分析,对相关学科的发展起到了极大的推动作用。
基本类型及原理1.放射免疫分析(RIA)2.免疫放射分析(IRMA)常用的放射性核素放射免疫技术常用的放射性核素有125Ⅰ、131Ⅰ、3H、14C等。
使用最广泛的是125Ⅰ,可采用探测γ射线的晶体闪烁计数器测量。
标志物制备及鉴定125Ⅰ以放射性碘原子通过置换被标志物分子中酪氨酸或酪胺残基以及组胺残基上的氢原子。
(1)氯胺T(ch-T)法。
(2)乳过氧化物酶标记法。
(3)间接标记法。
放射性标志物的纯化(1)凝胶过滤法:分子筛。
(2)离子交换层析法:极性差异。
(3)聚丙烯酰胺凝胶电泳法(PAGE):电荷和直径。
(4)高效液相色谱法。
放射性标志物的鉴定1.放射化学纯度:大于95%。
2.免疫活性:标志物与抗体结合的能力。
3.比放射性:标志物中所含的放射性强度。
方法学评价除常规的灵敏度、精密度、准确性、特异性和稳定性等指标外,还应注意以下指标:(1)可靠性。
(2)剂量-反应曲线。
(3)高剂量钩状效应。
放射免疫分析放射免疫分析(radioimmunoassay,RIA)是以放射性核素标记的抗原与反应系统中未标记抗原竞争结合有限的特异性抗体为基本原理来测定待检样品中抗原量的一种分析法。
Ag*+Ag+Ab Ag*-Ab+Ag-Ab+Ag*+Ag分离结合与游离标志物1.第二抗体沉淀法。
2.聚乙二醇(PEG)沉淀法。
3.PR试剂法:先将二抗与PEG按一定比例混合成悬液后进行试验。
4.活性炭吸附法。
放射性测量及数据处理可对标记抗原抗体复合物(B)或游离标记抗原(F)进行放射性测量,绘制标准曲线,查出相应的待检抗原浓度。
第七章放射免疫分析第一节放射免疫技术一、基本类型及原理(一)放射免疫分析(RIA)以放射性核素标记抗原与未标记抗原竞争结合特异性抗体,测定样品中抗原量的一种分析法。
(二)免疫放射分析(IRMA)用放射性核素标记的过量抗体与待测抗原直接结合,固相免疫吸附载体分离结合与游离标记抗体的非竞争放射免疫分析法。
二、常用的放射性核素125I、131I、3H、14C等,使用最广泛的是125I。
三、放射性标记物制备及鉴定(一)原理:以放射性碘原子置换被标记物分子中酪氨酸或酪胺残基以及组胺残基上的氢原子。
蛋白质、肽类等含有上述基团,可用125Ⅰ直接标记,不含上述基团的甾体激素或药物分子,须连接相应基团才能用于放射性碘标记。
(二)标记及类型1.直接标记法:肽类、蛋白质和酶的碘化标记。
常用的方法为:①氯胺 T(ch-T)法;②乳过氧化物酶标记法。
2.间接标记法:也称连接标记法,是最常用的间接碘标记方法。
该法主用于甾体类化合物、环核苷酸、前列腺素等缺乏碘标记基团的小分子化合物的标记。
(三)放射标记物的纯化1.凝胶过滤法:分子筛机制。
2.离子交换层析法:游离125Ⅰ与标记物分子极性差异进行吸附解离。
3.聚丙烯酰胺凝胶电泳法(PAGE):按分子所带电荷和直径不同在电场作用下分子迁移速率不同。
4.高效液相色谱法。
(四)放射标记的鉴定1.放射化学纯度:单位标记物中结合于被标记物上的放射性占总放射性的百分率,要求>95%。
该参数还是观察在贮存期内标记物脱碘程度的重要指标。
2.免疫活性:制备的标记物与抗体结合的能力。
3.比放射活性:单位化学量标记物中所含的放射性强度,即每分子被标记物平均所结合放射性原子数目。
四、方法学评价除常规的灵敏度、精密度、准确性、特异性和稳定性等指标外,还应注意以下指标:(一)可靠性:又称健全性,是评价被测物与标准品的免疫活性是否相同。
借助标准曲线与样品稀释曲线的平行性分析来判断。
平行性好者可靠。
(二)剂量-反应曲线:通过已知浓度的标准品和相应的反应参数绘制成剂量-反应曲线,待测物定量是通过计算其反应参数在剂量-反应曲线上对应的标准品浓度值而确定。