湘教版函数和它的表示方法(一)
- 格式:ppt
- 大小:1.11 MB
- 文档页数:14
湘教版函数知识点总结一、函数的定义函数是一段封装好的代码块,可以反复调用。
在程序设计中,函数可以提高代码的复用性和可维护性。
在湘教版中,函数的定义方式如下:def 函数名(参数列表):函数体其中,def是函数的关键字,后面是函数名和参数列表。
函数名用于标识函数的名称,参数列表用于表示函数的参数。
在定义函数时,需要注意以下几点:1. 函数名要符合命名规范,一般以字母或下划线开头,可以包含字母、数字和下划线。
2. 参数列表是可选的,如果函数不需要参数,可以省略参数列表。
3. 函数体是函数的实际操作内容,是以冒号和缩进的方式来表示的。
例如,在湘教版中可以定义一个简单的函数,如下所示:def say_hello():print("Hello, world!")二、函数的调用函数定义好之后,可以通过函数名来调用函数。
在程序中调用函数时,需要注意以下几点:1. 函数名后面要加括号,表示函数的调用。
2. 如果函数有参数,需要在括号中传入相应的参数值。
3. 函数调用后,程序会执行函数体中的代码,并根据函数的返回值进行相应的操作。
例如,在湘教版中可以调用say_hello()函数,如下所示:say_hello()三、函数的参数传递在湘教版中,函数可以接受零个或多个参数。
参数用于在函数内部进行操作,可以是变量、常量或者表达式。
在进行函数参数传递时,需要注意以下几点:1. 函数的参数可以有默认值,也可以没有默认值。
2. 函数的参数可以是位置参数,也可以是关键字参数。
3. 在函数调用时,需要按照参数列表的顺序传入相应的参数值。
例如,在湘教版中可以定义一个带有参数的函数,并进行参数传递,如下所示:def add(a, b):return a + bresult = add(3, 4)print(result)四、函数的返回值在湘教版中,函数可以有返回值。
返回值是函数执行后返回给调用者的结果,可以是任意类型的值。
变量与函数教学目标知识与技能:借助简单实例,学生初步感知用常量与变量来刻画一些简单的数学问题,能指出具体问题中的常量、变量.初步理解存在一类变量可以用函数方式来刻画,能举出涉及两个变量的实例,并指出由哪一个变量确定另一个变量,这两个变量是否具有函数关系。
初步理解对应的思想,体会函数概念的核心是两个变量之间的特殊对应关系,能判断两个变量间是否具有函数关系。
过程与方法:借助简单实例,引领学生参与变量的发现和函数概念的形成过程,体会从生活实例抽象出数学知识的方法,感知现实世界中变量之间联系的复杂性,数学研究从最简单的情形入手,化繁为简。
情感态度与价值观:从学生熟悉、感兴趣的实例引入课题,引领学生参与变量的发现和函数概念的形成过程,体验“发现、创造”数学知识的乐趣。
学生初步感知实际生活蕴藏着丰富的数学知识,感知数学是有用、有趣的学科。
教学重难点重点:借助简单实例,从两个变量间的特殊对应关系抽象出函数的概念难点:怎样理解“唯一对应”教学过程一、创设情境、导入新课我们生活在一个运动的世界中,周围的事物都是运动的,例如:地球在宇宙中的运动这一问题,此时地球在宇宙中的位置随着时间的变化而变化,这是生活中的常识,学生都很容易理解。
再例如,气温随着高度的升高而降低,年龄随着时间的增长而增长。
这几个问题中都涉及两个量的关系,地球的位置与时间,温度与高度,年龄与时间。
二、合作交流、解读探究1、气温问题:上图是北京春季某一天的气温T随时间t变化的图象,看图回答:(1)这天的8时的气温是℃,14时的气温是℃,最高气温是℃,最低气温是℃;(2)这一天中,在4时~12时,气温(),在16时~24时,气温()。
A.持续升高B.持续降低C.持续不变思考:(1)天气温度随的变化而变化,即T随的变化而变化;(2)当时间t取定一个确定的值时,对应的温度T的取值是否唯一确定?2、当正方形的边长x分别取1、2、3、4、5、6、7……时,正方形的面积S分别是多少?3、某城市居民用的天然气,1m3收费2.88元,使用x(m3)天然气应缴纳费用y=2.88x ,当x=10时,缴纳的费用为多少?思考:上述三个问题中,分别涉及哪些量的关系?那些量是变化的?那些量是不变的?哪个量的变化导致另一个量的变化而变化?在一个问题中,当一个量取了确定的值之后,另一个量对应的能取几个值?在上面的三个问题中,其中一个量的变化引起另一个量的变化(按照某种规律变化),变化的量叫做变量;有些量的值始终不变(例如正方形的面积……).并且当其中一个变量取定一个值时,另一个变量就随之确定,且它的对应值只有一个。
湘教版八下数学4.1.2《函数的表示法(一)》教学设计一. 教材分析湘教版八下数学4.1.2《函数的表示法(一)》这一节主要介绍了函数的表示方法,包括列表法、图象法和解析式法。
教材通过具体的例子让学生了解和掌握这三种表示方法,并能够根据实际情况选择合适的表示方法。
本节内容是学生学习函数知识的基础,对于学生理解函数的概念和性质具有重要意义。
二. 学情分析学生在学习本节内容前,已经学习了代数、几何等基础知识,对于数学概念和逻辑推理有一定的理解。
但函数作为一个新的数学概念,其表示方法与以往的数学知识有很大的不同,需要学生进行一定的适应和理解。
同时,学生对于函数的实际应用还不够了解,需要通过实例来加深理解。
三. 教学目标1.了解函数的表示方法,包括列表法、图象法和解析式法。
2.能够根据实际情况选择合适的表示方法。
3.理解函数的概念和性质,培养学生的逻辑思维能力。
四. 教学重难点1.函数的表示方法,特别是图象法和解析式法的理解。
2.函数的概念和性质的理解。
五. 教学方法1.采用实例教学法,通过具体的例子让学生了解和掌握函数的表示方法。
2.采用问题驱动法,引导学生思考和探索函数的性质。
3.采用分组讨论法,让学生在小组内进行讨论和交流,培养学生的合作能力。
六. 教学准备1.准备具体的例子,用于讲解和展示函数的表示方法。
2.准备相关的问题,用于引导学生思考和探索函数的性质。
3.准备分组讨论的题目,用于培养学生的合作能力。
七. 教学过程1.导入(5分钟)通过一个实际问题引入函数的概念,例如“一辆汽车以每小时60公里的速度行驶,求行驶100公里需要的时间”。
让学生思考和讨论如何表示这个问题中的函数关系。
2.呈现(10分钟)呈现三种函数的表示方法:列表法、图象法和解析式法。
通过具体的例子进行讲解和展示,让学生了解和掌握这三种表示方法。
3.操练(10分钟)让学生分组讨论,每组选择一个例子,用三种不同的表示方法进行表示。
湘教版八下数学4.1.2《函数的表示法(一)》说课稿一. 教材分析湘教版八下数学4.1.2《函数的表示法(一)》这一节主要介绍了函数的表示方法。
在初中阶段,学生已经学习了函数的概念和简单的函数性质,本节课是进一步引导学生学习函数表示方法的重要环节。
通过本节课的学习,学生将掌握函数的图像表示法、表示法和解析式表示法,为后续学习函数的性质和图像变换打下基础。
二. 学情分析八年级的学生已经具备了一定的逻辑思维能力和空间想象力,他们对函数概念和性质有一定的了解。
但在表示方法上可能还存在一定的困难,因此,在教学过程中,需要关注学生的认知水平,引导他们通过直观的图形和实际的例子来理解和掌握函数的表示方法。
三. 说教学目标1.知识与技能:使学生掌握函数的图像表示法、表示法和解析式表示法,能根据实际问题选择合适的表示方法。
2.过程与方法:通过观察、分析、归纳等方法,引导学生自主探索函数的表示方法,培养学生的抽象思维能力和创新意识。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生团结协作、勇于探究的精神。
四. 说教学重难点1.重点:函数的图像表示法、表示法和解析式表示法的理解与应用。
2.难点:如何引导学生从实际问题中抽象出函数的表示方法,以及如何灵活运用各种表示方法解决实际问题。
五. 说教学方法与手段1.教学方法:采用问题驱动、案例教学、合作学习等方法,引导学生主动参与、积极思考。
2.教学手段:利用多媒体课件、实物模型、几何画板等工具,为学生提供丰富的学习资源,增强直观感受。
六. 说教学过程1.导入新课:通过一个实际问题,引发学生对函数表示方法的思考,激发学生的学习兴趣。
2.自主探究:让学生通过观察、分析、归纳等方法,自主探索函数的表示方法。
3.小组讨论:学生分小组讨论,分享自己的探究成果,互相学习,培养学生的合作精神。
4.教师讲解:教师针对学生的探究成果进行点评和讲解,引导学生正确理解函数的表示方法。
5.实践应用:让学生通过解决实际问题,运用所学知识,巩固对函数表示方法的理解。