解1函y数 2x32可以看y作 u3和 函数
u2x3的复合 .由复函 合函数求数 导法则有
y'x yu' u'x u2'2x3' 4 u8 x1.2
2函y数 e0.0x5 1可以看 ye 作 u和 u函 数
0.0x5 1 的复.由合 复合函数函 求导法数 则有
y'x yu' u'x e u' 0 .0x 5 1 '
5. 若 fx ax,则 f ' x ax ln a;
6. 若 fx ex,则 f ' x ex ;
7.
若 fx loga x,则 f ' x
1 ;
x ln a
8.
若 fx ln x,则 f ' x
1 .
x
例1 假设某国家在20 年期间的年通货膨胀 率为
5%,物价p单位 : 元与时间t单位 : 年有如下函数
1.2.2 基本初等函数的导数式公 及导数的运算法则
为了方便, 今后我们 可以直接 使用下面 的基本初 等函数的 导数公式 表.
基 本 初 等 函 数 的 导 数 公式
1. 若 fx c,则f 'x 0;
2. 若 fx xn n N ,则 f ' x nx n1 ;
3. 若 fx sinx,则 f 'x cos x; 4. 若 fx cos x,则f 'x sinx;
用 单位 : 元 为
c x 5284 80 x 100 .求净化到下纯度
100 x 时 , 所需净化费用的瞬时变 化率 :
1 90 % ; 2 98 % .
解 净化费用的瞬时变 就化 是率 净化费