高中数学导数的计算
- 格式:ppt
- 大小:542.50 KB
- 文档页数:24
高中求导公式运算法则
在高中求导过程中,常用的公式和运算法则包括:
1. 基本导数公式:
-常数导数:常数的导数为零。
-幂函数导数:对于函数y = x^n,其中n是实数常数,其导数为dy/dx = nx^(n-1)。
-指数函数导数:对于函数y = e^x,其导数为dy/dx = e^x。
-对数函数导数:对于函数y = ln(x),其中x > 0,其导数为dy/dx = 1/x。
2. 基本运算法则:
-和差法则:对于函数y = u(x) ± v(x),其导数为dy/dx = u'(x) ± v'(x),其中u'(x)和v'(x)分别表示u(x)和v(x)的导数。
-常数倍法则:对于函数y = ku(x),其中k为常数,其导数为dy/dx = k * u'(x)。
-乘积法则:对于函数y = u(x) * v(x),其导数为dy/dx = u'(x) * v(x) + u(x) * v'(x)。
-商法则:对于函数y = u(x) / v(x),其导数为dy/dx = (u'(x) * v(x) - u(x) * v'(x)) / v(x)^2,其中v(x) ≠ 0。
3. 链式法则:对于复合函数y = f(g(x)),其导数为dy/dx = f'(g(x)) * g'(x)。
这些是高中求导过程中常用的公式和运算法则。
当然,导数的计算还涉及到其他公式和技巧,具体问题具体分析。
对于更高级的求导
技巧和运算法则,可能需要在大学或高等数学课程中学习。
高中数学导数的计算导数是微积分中的一项重要概念,用于描述函数在其中一点的变化率。
在高中数学中,我们主要学习了常见函数的导数计算方法,包括多项式函数、指数函数、对数函数、三角函数等。
下面我们将通过一些例子详细介绍这些函数的导数计算方法。
一、多项式函数的导数计算多项式函数的一般形式为f(x)=aₙxⁿ+aₙ₋₁xⁿ⁻¹+...+a₁x+a₀,其中aₙ、aₙ₋₁、..、a₁、a₀为常数,n为正整数。
多项式函数的导数计算可通过幂次降低的方法来进行。
具体来说,对于f(x)=aₙxⁿ+aₙ₋₁xⁿ⁻¹+...+a₁x+a₀,如果n≥1,则有f’(x)=naₙxⁿ⁻¹+(n-1)aₙ₋₁xⁿ⁻²+...+a₁。
如果n=0,则f’(x)=0。
例题1:求函数f(x)=4x⁴+2x³-3x²+5的导数。
解:f’(x)=4*4x³+3*2x²-2*3x¹+0=16x³+6x²-6x二、指数函数的导数计算指数函数的一般形式为f(x)=aᵏx,其中a为常数,k为指数。
指数函数的导数计算可以通过应用导数的基本性质和指数函数的特点来求解。
具体来说,对于函数f(x)=aᵏx,根据导数的基本性质,有f’(x)=k*aᵏ⁻¹x。
同样地,对于指数函数f(x)=a,它的导数为f’(x)=0。
例题2:求函数f(x)=3e²ˣ的导数。
解:f’(x)=3*2e²ˣ=6e²ˣ三、对数函数的导数计算对数函数的一般形式为f(x)=logₐx,其中a为底数。
对数函数的导数计算同样可以通过应用导数的基本性质和对数函数的特点来求解。
具体来说,对于函数f(x)=logₐx,根据导数的基本性质,有f’(x)=1/(xlna)。
例题3:求函数f(x)=ln(4x)的导数。
解:f’(x)=1/(4x)四、三角函数的导数计算三角函数是高中数学中常见的函数,包括正弦函数、余弦函数和正切函数等。
高中数学公式大全导数与函数的凹凸性的计算公式高中数学公式大全:导数与函数的凹凸性的计算公式在高中数学学习中,导数与函数的凹凸性是一个重要的概念。
通过计算公式,我们可以确定函数的变化趋势以及函数的凹凸性。
下面是一些常用的计算公式,帮助我们更好地理解导数与函数的凹凸性。
一、导数的计算公式1. 基本导数公式:- 常数函数的导数为零:d/dx(c) = 0,其中c为常数。
- 幂函数的导数:d/dx(x^n) = n * x^(n-1),其中n为实数。
- 指数函数的导数:d/dx(e^x) = e^x。
- 对数函数的导数:d/dx(ln(x)) = 1/x,其中x大于零。
2. 三角函数的导数:- 正弦函数的导数:d/dx(sin(x)) = cos(x)。
- 余弦函数的导数:d/dx(cos(x)) = -sin(x)。
- 正切函数的导数:d/dx(tan(x)) = sec^2(x)。
- 余切函数的导数:d/dx(cot(x)) = -csc^2(x)。
- 反正弦函数的导数:d/dx(arcsin(x)) = 1/√(1 - x^2),其中|x|小于等于1。
- 反余弦函数的导数:d/dx(arccos(x)) = -1/√(1 - x^2),其中|x|小于等于1。
- 反正切函数的导数:d/dx(arctan(x)) = 1/(1 + x^2)。
3. 对数函数的导数:- 常用对数函数的导数:d/dx(logx) = 1/x,其中x大于零。
- 自然对数函数的导数:d/dx(ln(x)) = 1/x,其中x大于零。
二、函数的凹凸性的计算公式1. 函数凹凸性与导数的关系:- 如果函数f'(x)在区间I上单调递增,那么函数f(x)在区间I上是凹的。
- 如果函数f'(x)在区间I上单调递减,那么函数f(x)在区间I上是凸的。
2. 凹凸点的计算方法:- 凹点:对于函数f(x),如果x=a是定义域内的一点,在x=a的左侧,f''(x)从正变为负,则点(x=a, f(a))是函数f(x)的一个凹点。
高中导数公式表当涉及微积分时,高中导数公式表是一项极其重要的计算工具。
高中导数公式表可以帮助学生记忆和处理复杂微积分问题。
下表是一个常用的高中导数公式表:数t导数y = x^ntdy/dx = nx^(n-1)y = a^xtdy/dx = a^xln ay = ln xtdy/dx = 1/xy = sin xtdy/dx = cos xy = cos xtdy/dx = -sin xy = tan xtdy/dx = sec^2 x高中导数公式表的由来高中导数公式表可以追溯到17世纪,由英国物理学家邱吉尔首先提出。
他是微积分的研究的最早的科学家之一,他提出了一种工具,可以用来计算函数的极限和导数。
他的极限定理和微积分研究对现代数学有深远的影响,极大地促进了这一领域的发展。
在20世纪,更多的数学家和科学家致力于研究极限和微积分,提出了更多的公式和定理,增强了微积分的适用性,并且改进了公式表的内容。
目前的高中导数公式表已经发展成熟,并被广泛应用于数学和物理课程。
高中导数公式表的用途高中导数公式表主要用于求解和计算极限和导数。
它可以用来计算函数的极限和导数,帮助学生完成曲线上弯曲处和拐点处函数极限和导数的计算。
它还可以用来确定极值,找到局部极大值和局部极小值,并应用到曲线分析和积分中去。
此外,高中导数公式表还可以帮助学生突破极限和微积分的学习困境。
它可以帮助学生联系一些繁琐的公式,从而节省许多时间和精力,解决一些非常复杂的微积分问题。
高中导数公式表的应用高中导数公式表在高中数学和物理课程中应用极为广泛。
首先,在数学课程中,学生可以用高中导数公式表来计算函数的极限和导数,从而理解函数极限和函数的求导方法。
此外,学生也可以使用高中导数公式表计算函数极值,以及确定函数曲线上的拐点、弯曲处和波峰波谷处。
此外,高中导数公式表也可以用于物理课程中的曲线分析。
在物理实验中,学生可以使用高中导数公式表求出曲线上的拐点,以及曲线弯曲处的极值,这可以帮助学生更好地理解曲线上的变化。
高中数学导数公式、定义证明、运算法则,实用干货,收藏好!导数,也叫导函数值。
那么,高中数学导数公式及运算法则有哪些呢?高中数学导数公式有哪些1.y=c(c为常数) y'=02.y=x^n y'=nx^(n-1)3.y=a^x y'=a^xlnay=e^x y'=e^x4.y=logax y'=logae/xy=lnx y'=1/x5.y=sinx y'=cosx6.y=cosx y'=-sinx7.y=tanx y'=1/cos^2x8.y=cotx y'=-1/sin^2x加(减)法则:[f(x)+g(x)]'=f(x)'+g(x)'乘法法则:[f(x)*g(x)]'=f(x)'*g(x)+g(x)'*f(x)除法法则:[f(x)/g(x)]'=[f(x)'*g(x)-g(x)'*f(x)]/g(x)^2根据导数定义证明数学导数运算法则由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。
基本的求导法则如下:1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合(即①式)。
2、两个函数的乘积的导函数:一导乘二+一乘二导(即②式)。
3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方(即③式)。
4、如果有复合函数,则用链式法则求导。
导数的计算方法函数y=f(x)在x0点的导数f'(x0)的几何意义:表示函数曲线在点P0(x0,f(x0))处的切线的斜率(导数的几何意义是该函数曲线在这一点上的切线斜率)。
计算已知函数的导函数可以按照导数的定义运用变化比值的极限来计算。
在实际计算中,大部分常见的解析函数都可以看作是一些简单的函数的和、差、积、商或相互复合的结果。
只要知道了这些简单函数的导函数,那么根据导数的求导法则,就可以推算出较为复杂的函数的导函数。
高中导数计算
在高中数学中,导数是用来描述函数变化率的概念。
下面是一些常见的导数计算方法:
1. 基本导数法则:
- 常数规则:对于常数c,它的导数为0。
- 幂规则:对于函数f(x) = x^n,其导数为f'(x) = nx^(n-1),其中n为任意实数。
- 和差规则:对于两个函数f(x)和g(x),它们的和(差)的导数等于各自的导数之和(差)。
- 乘法规则:对于两个函数f(x)和g(x),它们的乘积的导数等于前者的导数乘以后者加上后者的导数乘以前者。
- 商规则:对于两个函数f(x)和g(x),它们的商的导数等于分子的导数乘以分母减去分母的导数乘以分子,再除以分母的平方。
2. 链式法则:
如果函数y = f(g(x))是复合函数,其中g(x)是一个函数,f(t)是一个关于t 的函数,则复合函数的导数可以通过链式法则计算。
链式法则的公式为:y' =
f'(g(x)) * g'(x),即外函数的导数与内函数的导数的乘积。
3. 反函数法则:
如果函数y = f(x)有反函数x = g(y),则反函数的导数可以通过反函数法则计算。
反函数法则的公式为:(g(y))' = 1 / (f'(x)),即反函数的导数等于原函数的导数的倒数。
这些是常见的导数计算方法,但实际应用中还可能涉及到其他规则和特殊函数的导数计算。
在具体问题中,根据不同函数形式和条件,可以选择合适的导数计算方法进行求解。
高中数学导数的计算精选题目(附答案)(1)基本初等函数的导数公式(2)导数运算法则①[f (x )±g (x )]′=f ′(x )±g ′(x );②[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); 当g (x )=c 时,[cf (x )]′=cf ′(x ).③⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).(3)复合导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.1.求下列函数的导数: (1)y =10x ; (2)y =lg x ; (3)y =log 12x ;(4)y =4x 3;(5)y =⎝ ⎛⎭⎪⎫sin x2+cos x 22-1.2.求下列函数的导数: (1)y =⎝ ⎛⎭⎪⎫1e x ;(2)y =⎝ ⎛⎭⎪⎫110x ;(3)y =lg 5; (4)y =3lg 3x ; (5)y =2co S 2x2-1. 3.(1)y =x 3·e x ; (2)y =x -S i n x 2co S x2; (3)y =x 2+log 3x; (4)y =e x +1e x -1.4.求下列函数的导数: (1)y =cos x x ; (2)y =xS i n x +x ; (3)y =1+x 1-x +1-x1+x; (4)y =lg x -1x 2.5.点P 是曲线y =e x 上任意一点,求点P 到直线y =x 的最小距离. 6.求过曲线y =co S x 上点P ⎝ ⎛⎭⎪⎫π3,12且与曲线在这点处的切线垂直的直线方程.7.求下列函数的导数. (1)y =1-2x 2; (2)y =e S i n x ;(3)y =S i n ⎝ ⎛⎭⎪⎫2x +π3;(4)y =5log 2(2x +1) 8.求下列函数的导数. (1)f (x )=(-2x +1)2; (2)f (x )=l n (4x -1); (3)f (x )=23x +2; (4)f (x )=5x +4; (5)f (x )=S i n ⎝ ⎛⎭⎪⎫3x +π6;(6)f (x )=co S 2x .9.求下列函数的导数. (1)y =x 1+x 2;(2)y =x co S ⎝ ⎛⎭⎪⎫2x +π2S i n ⎝ ⎛⎭⎪⎫2x +π2.10.求下列函数的导数. (1)y =S i n 2x3; (2)y =S i n 3x +S i n x 3; (3)y =11-x 2; (4)y =x l n (1+x ).11. 设f (x )=l n (x +1)+x +1+ax +b (a ,b ∈R ,a ,b 为常数),曲线y =f (x )与直线y =32x 在(0,0)点相切.求a ,b 的值.12.曲线y =e -2x +1在点(0,2)处的切线与直线y =0和y =x 围成的三角形的面积为( )A.13B.12C.23 D .1参考答案:1.解: (1)y ′=(10x )′=10x l n 10. (2)y ′=(lg x )′=1x ln 10.(3)y ′=(log 12x )′=1x ln 12=-1x ln 2.(4)y ′=(4x 3)′=(x 34)′=34x -14=344x.(5)∵y =⎝ ⎛⎭⎪⎫sin x2+cos x 22-1=S i n 2x2+2S i n x 2co S x 2+co S 2x 2-1 =S i n x ,∴y ′=(S i n x )′=co S x .2.解:(1)y ′=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1e x ′=⎝ ⎛⎭⎪⎫1e x l n 1e =-1e x =-e -x .(2)y ′=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫110x ′=⎝ ⎛⎭⎪⎫110x l n 110=-ln 1010x=-10-x l n 10.(3)∵y =lg 5是常数函数,∴y ′=(lg 5)′=0. (4)∵y =3 lg 3x =lg x ,∴y ′=(lg x )′=1x ln 10.(5)∵y =2co S 2x2-1=co S x ,∴y ′=(co S x )′=-S i n x . 3.解: (1)y ′=(x 3)′e x +x 3(e x )′=3x 2e x +x 3e x =x 2(3+x )e x . (2)∵y =x -12S i n x ,∴y ′=x ′-12(S i n x )′=1-12co S x . (3)y ′=(x 2+log 3x )′=(x 2)′+(log 3x )′=2x +1x ln 3. (4)y ′=(e x +1)′(e x -1)-(e x +1)(e x -1)′(e x -1)2=e x (e x -1)-(e x +1)e x (e x -1)2=-2e x (e x -1)2.4.解:(1)y ′=⎝ ⎛⎭⎪⎫cos x x ′=(cos x )′·x -cos x ·(x )′x 2=-x ·sin x -cos x x 2=-x sin x +cos xx 2.(2)y ′=(xS i n x )′+(x )′=S i n x +x co S x +12x.(3)∵y =(1+x )21-x +(1-x )21-x =2+2x 1-x =41-x -2,∴y ′=⎝ ⎛⎭⎪⎫41-x -2′=-4(1-x )′(1-x )2=4(1-x )2.(4)y ′=⎝ ⎛⎭⎪⎫lg x -1x 2′=(lg x )′-⎝ ⎛⎭⎪⎫1x 2′=1x ln 10+2x 3. 5.解:如图,当曲线y =e x 在点P (x 0,y 0)处的切线与直线y =x 平行时,点P 到直线y =x 的距离最近.则曲线y =e x 在点P (x 0,y 0)处的切线斜率为1,又y ′=(e x )′=e x ,∴e x 0=1,得x 0=0,代入y =e x ,得y 0=1,即P (0,1).利用点到直线的距离公式得最小距离为22.6.解:∵y =co S x ,∴y ′=(co S x )′=-S i n x ,∴曲线在点P π3,12处的切线的斜率为k =y ′|x =π3=-S i n π3=-32,∴过点P 且与切线垂直的直线的斜率为233,∴满足题意的直线方程为y -12=233⎝ ⎛⎭⎪⎫x -π3,即233x -y +12-239π=0. 7.解: (1)设y =u 12,u =1-2x 2, 则y ′=⎝ ⎛⎭⎪⎫u 12′(1-2x 2)′=⎝ ⎛⎭⎪⎫12u -12·(-4x ) =12(1-2x 2)-12(-4x )=-2x 1-2x 2 .(2)设y =e u ,u =S i n x ,则y x ′=y u ′·u x ′=e u ·co S x =e S i n x co S x . (3)设y =S i n u ,u =2x +π3,则y x ′=y u ′·u x ′=co S u ·2=2co S ⎝ ⎛⎭⎪⎫2x +π3.(4)设y =5log 2u ,u =2x +1, 则y ′=5(log 2u )′(2x +1)′=10u ln 2=10(2x +1)ln 2.8.解:(1)设y =u 2,u =-2x +1,则y ′=y u ′·u x ′=2u ·(-2)=-4(-2x +1)=8x -4. (2)设y =l n u ,u =4x -1, 则y ′=y u ′·u x ′=1u ·4=44x -1.(3)设y =2u ,u =3x +2,则y ′=y u ′·u x ′=2u l n 2·3=3l n 2·23x +2. (4)设y =u ,u =5x +4, 则y ′=y u ′·u x ′=12u·5=525x +4.(5)设y =S i n u ,u =3x +π6,则y ′=y u ′·u x ′=co S u ·3=3co S ⎝ ⎛⎭⎪⎫3x +π6.(6)法一:设y =u 2,u =co S x , 则y ′=y u ′·u x ′=2u ·(-S i n x ) =-2co S x ·S i n x =-S i n 2x ; 法二:∵f (x )=co S 2x =1+cos 2x 2=12+12co S 2x , 所以f ′(x )=⎝ ⎛⎭⎪⎫12+12cos 2x ′=0+12·(-S i n 2x )·2=-S i n 2x . 9.解: (1)y ′=(x 1+x 2)′ =x ′1+x 2+x (1+x 2)′ =1+x 2+x 21+x 2=(1+2x 2)1+x 21+x 2.(2)∵y =x co S ⎝ ⎛⎭⎪⎫2x +π2S i n ⎝ ⎛⎭⎪⎫2x +π2=x (-S i n 2x )co S 2x =-12xS i n 4x ,∴y ′=⎝ ⎛⎭⎪⎫-12x sin 4x ′=-12S i n 4x -x2co S 4x ·4 =-12S i n 4x -2x co S 4x .10.解:(1)y ′=⎝ ⎛⎭⎪⎫sin 2x 3′=2S i n x 3·⎝ ⎛⎭⎪⎫sin x 3′ =2S i n x 3·co S x 3·⎝ ⎛⎭⎪⎫x 3′=13S i n 2x3.(2)y ′=(S i n 3x +S i n x 3)′=(S i n 3x )′+(S i n x 3)′ =3S i n 2x co Sx +co S x 3·3x 2=3S i n 2x co S x +3x 2co S x 3. (3)y ′=0-(1-x 2)′1-x 2=-12(1-x 2)-12(1-x 2)′1-x 2=x (1-x 2)-121-x 2=x(1-x 2) 1-x 2.(4)y ′=x ′l n (1+x )+x []ln (1+x )′ =l n (1+x )+x 1+x. 11.解: 由曲线y =f (x )过(0,0)点,可得l n 1+1+b =0,故b =-1.由f (x )=l n (x +1)+x +1+ax +b ,得f ′(x )=1x +1+12x +1+a ,则f ′(0)=1+12+a =32+a ,此即为曲线y =f (x )在点(0,0)处的切线的斜率.由题意,得32+a =32,故a =0.12.解析:选A 依题意得y ′=e -2x ·(-2)=-2e -2x ,y ′|x =0=-2e-2×0=-2.曲线y =e-2x+1在点(0,2)处的切线方程是y -2=-2x ,即y =-2x +2.在坐标系中作出直线y =-2x +2、y =0与y =x 的图象,因为直线y =-2x +2与y =x的交点坐标是⎝ ⎛⎭⎪⎫23,23,直线y =-2x +2与x 轴的交点坐标是(1,0),结合图象可得,这三条直线所围成的三角形的面积等于12×1×23=13.。
§1.2.2基本初等函数的导数公式及导数的运算法则教学目标:1.熟练掌握基本初等函数的导数公式; 2.掌握导数的四则运算法则;3.能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数。
教学重点:基本初等函数的导数公式、导数的四则运算法则教学难点: 基本初等函数的导数公式和导数的四则运算法则的应用 教学过程: 一.创设情景四种常见函数y c =、y x =、2y x =、1y x=的导数公式及应用二.新课讲授(一)基本初等函数的导数公式表)(2)推论:[]''()()cf x cf x =(常数与函数的积的导数,等于常数乘函数的导数)三.典例分析例1.假设某国家在20年期间的年均通货膨胀率为5%,物价p (单位:元)与时间t (单位:年)有如下函数关系0()(15%)t p t p =+,其中0p 为0t =时的物价.假定某种商品的01p =,那么在第10个年头,这种商品的价格上涨的速度大约是多少(精确到0.01)?解:根据基本初等函数导数公式表,有'() 1.05ln1.05t p t =所以'10(10) 1.05ln1.050.08p =≈(元/年)因此,在第10个年头,这种商品的价格约为0.08元/年的速度上涨. 例2.根据基本初等函数的导数公式和导数运算法则,求下列函数的导数. (1)323y x x =-+ (2)y =xx --+1111; (3)y =x · sin x · ln x ;(4)y =xx 4; (5)y =xxln 1ln 1+-.(6)y =(2 x 2-5 x +1)e x(7) y =xx x xx x sin cos cos sin +-【点评】① 求导数是在定义域内实行的.② 求较复杂的函数积、商的导数,必须细心、耐心. 例3日常生活中的饮水通常是经过净化的.随着水纯净度的提高,所需净化费用不断增加.已知将1吨水净化到纯净度为%x 时所需费用(单位:元)为5284()(80100)100c x x x=<<-求净化到下列纯净度时,所需净化费用的瞬时变化率:(1)90% (2)98% 解:净化费用的瞬时变化率就是净化费用函数的导数.''''252845284(100)5284(100)()()100(100)x x c x x x ⨯--⨯-==-- 20(100)5284(1)(100)x x ⨯--⨯-=-25284(100)x =-(1)因为'25284(90)52.84(10090)c ==-,所以,纯净度为90%时,费用的瞬时变化率是52.84元/吨.(2)因为'25284(98)1321(10090)c ==-,所以,纯净度为98%时,费用的瞬时变化率是1321元/吨.函数()f x 在某点处导数的大小表示函数在此点附近变化的快慢.由上述计算可知,''(98)25(90)c c =.它表示纯净度为98%左右时净化费用的瞬时变化率,大约是纯净度为90%左右时净化费用的瞬时变化率的25倍.这说明,水的纯净度越高,需要的净化费用就越多,而且净化费用增加的速度也越快.四.课堂练习 1.课本P 92练习2.已知曲线C :y =3 x 4-2 x 3-9 x 2+4,求曲线C 上横坐标为1的点的切线方程;(y =-12 x +8)五.回顾总结(1)基本初等函数的导数公式表 (2)导数的运算法则六.布置作业§1.1.2 导数的概念学习目标1.掌握用极限给瞬时速度下的精确的定义;2.会运用瞬时速度的定义,求物体在某一时刻的瞬时速度. 一、预习与反馈(预习教材P 4~ P 6,找出疑惑之处)探究任务一:瞬时速度问题1:在高台跳水运动中,运动员有不同时刻的速度是 新知:1. 瞬时速度定义:物体在某一时刻(某一位置)的速度,叫做瞬时速度.探究任务二:导数问题2: 瞬时速度是平均速度ts∆∆当t ∆趋近于0时的 导数的定义:函数()y f x =在0x x =处的瞬时变化率是0000()()limlimx x f x x f x fx x∆→∆→+∆-∆=∆∆,我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或 即000()()()limx f x x f x f x x∆→+∆-'=∆注意:(1)。
高中数学公式大全导数的计算与应用公式高中数学公式大全:导数的计算与应用公式1. 导数的定义与计算在微积分中,导数是用来描述函数变化率的重要工具。
对于函数f(x),导数可以用极限来定义,并可以使用以下公式进行计算:(1) 一阶导数:f'(x) = lim (h→0) [f(x+h) - f(x)] / h(2) 高阶导数:f''(x) = (d/dx) [f'(x)](3) 链式法则:若函数f(x)和g(x)都可导,则复合函数 (f(g(x))) 的导数可以计算为:(f(g(x)))' = f'(g(x)) * g'(x)2. 常用导数公式(1) 常数函数导数:如果f(x)是一个常数c,则f'(x) = 0(2) 幂函数导数:对于函数f(x) = x^n,其中n是实数常数,则f'(x) = n * x^(n-1)(3) 指数函数导数:对于函数f(x) = a^x,其中a是常数且a>0且a≠1,则f'(x) = a^x * ln(a)(4) 对数函数导数:对于函数f(x) = log_a(x),其中a是常数且a>0且a≠1,则f'(x) = 1 / (x * ln(a))(5) 三角函数导数:sin'(x) = cos(x)cos'(x) = -sin(x)tan'(x) = sec^2(x)cot'(x) = -csc^2(x)sec'(x) = sec(x) * tan(x)csc'(x) = -csc(x) * cot(x)3. 导数的应用导数在数学中有广泛的应用,以下介绍几个常见的应用领域。
(1) 切线与法线:导数可以用来求解函数在某一点的切线和法线。
函数在某一点的导数即为该点切线的斜率,法线的斜率为切线斜率的负倒数。
(2) 极值点与拐点:通过求解函数的导数为零的点,可以判断函数的极大值和极小值。
第2节 导数的运算1.基本初等函数的导数公式表y =f (x )y ′=f ′(x ) y =c y ′=0y =x n (n ∈N +)y ′=nx n -1,n 为正整数y =x μ(x >0,μ≠0且μ∈Q) y ′=μx μ-1,μ为有理数 y =a x (a >0,a ≠1,x >0) y ′=a x ln a y =log a x (a >0,a ≠1,x >0)y ′=1x ln ay =sin x y ′=cos_x y =cos xy =-sin_x例1:求下列函数的导数:(1)y =x 12 (2)y =5x 3 (3)y =log 2x (4)y =2sin x 2cos x2 (5)y=2018sin60°[精解详析] (1)y ′=(x 12)′=12x 11;(2)y ′=(5x 3)′=(x 35)′=35x 25-=355x 2;(3)y ′=(log 2x )′=1x ln 2; (4)y ′=⎝ ⎛⎭⎪⎫2sin x 2cos x 2′=(sin x )′=cos x .(5)0练习:下列导数运算正确的是( ) A .(sinx )'=﹣cosx B .C .(3x )'=3xD .解:(sinx )′=cosx ;(log2x )′=;(3x )′=3x ln3;()′=﹣,故选:B . 例2:函数y=2x 在x=0处的导数是( )A.0 B.1 C.ln2 D.解:∵y′=2x ln2,∴y′|x=0=ln2,故选:C.练习:函数y=在x=1处的导数值为()A.﹣B.2 C.1 D.解:∵,∴f′(1)=.故选:D.例3:若函数f(x)=sinx,则=()A.B.C.1 D.0 解:根据题意,f(x)=sinx,则f′(x)=cosx,则f(x)+f′(x)=sinx+cosx,则=sin+cos=+=;故选:B.练习:已知函数f(x)=,则f′()=()A.﹣B.﹣C.﹣8 D.﹣16 解:函数的导数f′(x)=﹣2x﹣3=﹣,则f′()=﹣=﹣16,故选:D.例4:若f(x)=x5,f′(x0)=20,则x0的值为()A.B.±C.﹣2 D.±2 解:函数的导数f′(x)=5x4,∵f′(x0)=20,∴5x04=20,得x04=4,则x0=±,故选:B.练习:设f(x)=lnx,若f′(x0)=2,则x0=()A .2B .C .D .ln2解:f (x )=lnx ,则f′(x )=, f′(x 0)=2, 可得x 0=. 故选:B .2.导数的四则运算法则 (1)设f (x ),g (x )是可导的,则法则语言叙述[]f (x )±g (x )′=f ′(x )±g ′(x )两个函数的和(或差)的导数,等于这两个函数的导数和(或差)[f (x )g (x )]′=f ′(x )g (x )+f (x )g ′(x ) 两个函数的积的导数,等于第一个函数的导数乘上第二个函数,加上第一个函数乘上第二个函数的导数⎣⎢⎡⎦⎥⎤f (x )g (x )′=g (x )f ′(x )-f (x )g ′(x )g 2(x )(g (x )≠0)两个函数的商的导数,等于分子的导数乘以分母减去分母的导数乘以分子的差除以分母的平方(2)特别地,[cf (x )]′=cf ′(x ), ⎣⎢⎡⎦⎥⎤1g (x )′=-g ′(x )g 2(x )(g (x )≠0). 例5:已知函数,且f'(x 0)=4,则x 0= . 解:函数的导数f′(x )=2x ﹣8,∵f'(x 0)=4, ∴2x 0﹣8=4,即2x 0=12得x 0=3.故答案为:3.练习:已知函数y=ax 2+b 在点(1,3)处的导数为2,则= . 解:函数y=ax 2+b 的导数为y′=2ax ,由函数在点(1,3)处的切线斜率为2,可得f (1)=a +b=3,f′(1)=2a=2,解得a=1,b=2.则=2.故答案为2例6:已知函数f(x)的导数为f′(x),若有f(x)=3x2+2xf′(2),则f′(2)=()A.﹣12 B.12 C.6 D.﹣6解:根据题意,f(x)=3x2+2xf′(2),则导数f′(x)=6x+2f′(2),令x=2可得:f′(2)=12+2f′(2),解可得f′(2)=﹣12,故选:A.练习:(1)设f(x)=sinx+2xf'(),f'(x)是f(x)的导函数,则f'()=.解:∵f(x)=sinx+2xf'(),∴f'(x)=cosx+2f'(),令x=,可得:f'()=cos+2f'(),解得f'()=﹣,则f'()=+2×=﹣1.故答案为:﹣1.(2)已知函数f(x)=f′()sinx+cosx,则f()的值为()A.1 B.2 C.﹣2 D.﹣1解:∵f(x)=f′()sinx+cosx,∴f′(x)=f′()cosx﹣sinx,令x=,则f′()=f′()cos﹣sin=f′()﹣,则f′()==﹣(),则f(x)=﹣()sinx+cosx,则f()=﹣()sin+cos=﹣()×+=﹣1,故选:D.例7:设y=﹣2e x sinx,则y′等于()A.﹣2e x cosx B.﹣2e x sinxC.2e x sinx D.﹣2e x(sinx+cosx)解:∵y=﹣2e x sinx,∴y′=(﹣2e x)′sinx+(﹣2e x)•(sinx)′=﹣2e x sinx﹣2e x cosx=﹣2e x(sinx+cosx).故选:D.练习:已知函数f(x)=axlnx,x∈(0,+∞),其中a为实数,f′(x)为f(x)的导函数,若f′(1)=3,则a的值为.解:因为f(x)=axlnx,所以f′(x)=alnx+ax=alnx+a,又f′(1)=3,所以a=3;故答案为:3.例8:函数的导数是()A.B.﹣sinxC.D.解:根据导数的运算法则可得,y′====﹣故选:C.练习:设f′(x)是函数的导函数,则f'(0)的值为()A.1 B.0 C.﹣1 D.解:根据题意,,其导数f′(x)==﹣,则f'(0)=﹣1;故选:C.例9:已知函数f(x)=e x lnx,f′(x)为f(x)的导函数,则f′(1)的值为.解:函数f(x)=e x lnx,则f′(x )=e x lnx +•e x ; ∴f′(1)=e•ln1+1•e=e . 故答案为:e . 练习:已知函数f (θ)=,则 f′(0)= .解:函数f (θ)=,则 f′(θ)==所以f′(0)= 故答案为例10:设函数f (x )=ax -bx ,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.(1)求f (x )的解析式;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形面积为定值,并求此定值.[精解详析] (1)由7x -4y -12=0得y =74x -3.当x =2时,y =12,∴f (2)=2a -b 2=12.①又f ′(x )=a +b x 2,∴f ′(2)=a +b 4=74.②(2分)由①②得⎩⎨⎧ 4a -b =1,4a +b =7,解得⎩⎨⎧a =1,b =3.故f (x )=x -3x .(6分)(2)证明:设P (x 0,y 0)为曲线上任一点,由y ′=1+3x 2知,曲线在点P (x 0,y 0)处的切线方程为 y -y 0=⎝ ⎛⎭⎪⎫1+3x 20(x -x 0),即y -⎝ ⎛⎭⎪⎫x 0-3x 0=⎝ ⎛⎭⎪⎫1+3x 20(x -x 0).(8分)令x=0得y=-6x0,从而得切线与直线x=0的交点坐标为(0,-6x0).(9分)令y=x得y=x=2x0,从而得切线与直线y=x的交点坐标为(2x0,2x0).(10分)所以点P(x0,y0)处的切线与直线x=0,y=x所围成的三角形面积为12⎪⎪⎪⎪⎪⎪-6x0|2x0|=6.故曲线y=f(x)上任一点处的切线与直线x=0,y=x所围成的三角形的面积为定值,此定值为6.(12分)练习:设函数f(x)=ax+(a,b∈Z),曲线y=f(x)在点(2,f(2))处的切线方程为y=3(1)求f(x)的解析式(2)求f(x)在点(3,f(3))处的切线与两个坐标轴围成的三角形的面积.解:(1)函数f(x)=ax+(a,b∈Z),导数f′(x)=a﹣,曲线y=f(x)在点(2,f(2))处的切线方程为y=3,可得f(2)=2a+=3,f′(2)=a﹣=0,解方程可得a=1,b=﹣1,(分数舍去),则f(x)=x+;(2)由f(x)的导数为f′(x)=1﹣,可得在点(3,f(3))处的切线斜率为1﹣=,切点为(3,),则在点(3,f(3))处的切线方程为y﹣=(x﹣3),令x=0,可得y=﹣=;令y=0,可得x=3﹣=﹣,则切线与两个坐标轴围成的三角形的面积为××=.。
高中数学公式大全导数与函数的极值与最值的计算公式高中数学公式大全:导数与函数的极值与最值的计算公式在高中数学中,导数与函数的极值与最值是比较重要的概念和计算方法。
它们与函数的变化趋势和最高点或最低点的确定密切相关。
下面将介绍导数与函数极值与最值的计算公式。
一、导数的计算公式导数是函数在某一点的变化速率。
对于常见的函数类型,我们可以使用以下公式来计算导数。
1. 常函数的导数:对于函数f(x)=c(c为常数),其导数为f'(x)=0。
2. 幂函数的导数:对于函数f(x)=x^n(n为实数),其导数为f'(x)=nx^(n-1)。
3. 三角函数的导数:常见的三角函数有正弦函数sin(x)、余弦函数cos(x)和正切函数tan(x)等。
它们的导数分别为:sin'(x)=cos(x)cos'(x)=-sin(x)tan'(x)=sec^2(x)4. 对数函数的导数:常见的对数函数有自然对数函数ln(x)和以10为底的对数函数log(x)等。
它们的导数分别为:ln'(x)=1/xlog'(x)=1/(xln(10))以上是常见函数的导数计算公式,根据需要可以使用链式法则、乘法法则等来计算复杂函数的导数。
二、函数的极值与最值的计算公式函数的极值和最值是指函数图像上的最高点或最低点。
这些点在数学中具有重要的意义,可以用于解决各种实际问题。
下面是函数极值与最值计算的公式。
1. 极值的计算公式:函数在极值点处的导数为0。
因此,要计算函数的极值,需要先找出函数的导数,然后解方程f'(x)=0,求出满足条件的x值,再带回原函数中计算对应的y值。
这些(x, y)即为函数的极值点。
2. 最值的计算公式:函数的最值是在定义域内的取值最大或最小的点。
对于连续函数,可以采用以下方法来计算最值:a. 求出函数在定义域内的导数;b. 计算导数为0点的函数值,以及定义域的两个端点处的函数值;c. 比较上一步骤中的函数值,取最大或最小值的点即为函数的最值点。
高中数学导数公式及导数的运算法则一、导数的定义导数是函数变化速率的一种描述方式,用函数f(x)在点x处的变化率来近似表示。
导数的定义如下:设函数y=f(x)在点x处有定义,如果当自变量x自小于且无限接近于x时,函数值的变化量Δy始终与自变量的变化量Δx之比近似为一个定值,即lim(Δx→0) Δy/Δx = lim(Δx→0) [f(x + Δx) - f(x)]/Δx这个极限值称为函数f(x)在点x处的导数,记作f'(x),也可以写成dy/dx。
二、常见函数的导数公式1.幂函数的导数若y = xⁿ,n为常数,则y' = nxⁿ⁻¹。
2.反函数的导数若y=f⁻¹(x),则y'=1/f'(f⁻¹(x))。
3.指数函数的导数若y = aˣ,a > 0,a ≠ 1,则y' = (lna) * aˣ。
4.对数函数的导数(a) 若y = logₐ(x),a > 0,且a ≠ 1,则y' = 1/(xlna)。
(b) 若y = ln(x),则y' = 1/x。
5.指数对数函数的导数(a) 若y = aˣ(x > 0),则y' = aˣ(lna)。
(b) 若y = logₐx(a > 0,且a ≠ 1),则y' = 1/(xlna)。
(c) 若y = ln,x,则y' = 1/x。
6.三角函数的导数(1) 若y = sinx,则y' = cosx。
(2) 若y = cosx,则y' = -sinx。
(3) 若y = tanx,则y' = sec²x。
1.基本运算法则(a)常数乘积法则:k*f(x)的导数是k*f'(x)。
(b)和差法则:[f(x)±g(x)]的导数是f'(x)±g'(x)。
(c)常数倍数法则:k*f(x)的导数是k*f'(x)。
高中导数的运算法则导数是微积分中的重要概念,用于描述函数在某一点上的变化率。
在高中数学中,学生需要学习导数的基本运算法则,包括常数法则、幂函数法则、和差法则、乘积法则和商数法则。
本文将介绍并详细解释这些高中导数的运算法则。
一、常数法则常数法则指出,如果函数f(x)是一个常数,那么它的导数为0。
这是因为常数的导数表示函数在任何点上的变化率都为0。
二、幂函数法则幂函数法则适用于函数形如f(x) = x^n的情况,其中n是一个实数常数。
根据幂函数法则,导数可以通过以下公式计算:f'(x) = n * x^(n-1)。
例如,对于函数f(x) = x^2而言,根据幂函数法则,它的导数为f'(x) = 2 * x^(2-1) = 2x。
三、和差法则和差法则用于计算两个函数的和或差的导数。
根据和差法则,如果对于函数f(x)和g(x),它们的导数分别为f'(x)和g'(x),那么它们的和或差的导数可以通过以下公式计算:(f(x) ± g(x))' = f'(x) ± g'(x)。
举例来说,对于函数f(x) = 2x和g(x) = x^2,根据和差法则,它们的和的导数为(f(x) + g(x))' = f'(x) + g'(x) = 2 + 2x。
四、乘积法则乘积法则适用于计算两个函数的乘积的导数。
如果对于函数f(x)和g(x),它们的导数分别为f'(x)和g'(x),那么它们的乘积的导数可以通过以下公式计算:(f(x) * g(x))' = f'(x) * g(x) + f(x) * g'(x)。
举例来说,对于函数f(x) = 2x和g(x) = x^2,根据乘积法则,它们的乘积的导数为(f(x) * g(x))' = f'(x) * g(x) + f(x) * g'(x) = 2x * x^2 + 2 *x^2 = 2x^3 + 2x^2。