平行四边形的定义,性质
- 格式:doc
- 大小:51.00 KB
- 文档页数:4
【知识要点】1.平行四边形的定义:两组对边分别平行的四边形叫做平行四边形. 表示方法:“□ABCD ”注:平行四边形的表示一般按顺时针或逆时针的方向依次表示各项点. 2.平行四边形的性质:①平行四边形对边平行且相等;数学形式:∵∴AB DC ,AD BC ②平行四边形的对角相等: 数学形式:∵∴D B C A ∠=∠∠=∠,③平形四边形的对角线互相平分:数学形式:∵∴OA=OC=21AC ,OB=OD=21BD .3.平行线之间的距离:若两条直线互相平行,则其中一条直线上任意两点到另一条直线的距离相等,则这个距离称为平行线之间的距离.4.平行线之间垂直线段的性质:平行线之间的垂线段处处相等.【经典例题】例1.如图:□ABCD 中,对角线AC ,BD 相交于点O ,AC ⊥CD ,AO=3cm ,BO=5cm ,求 DC 和AD 的长.例2.如图:已知在□ABCD 中,BE=6cm ,EC=3cm ,DC=5cm ,DE ⊥EC ,求: (1)DE 的长;(2)□ABCD 的面积.ABCD∥ = ∥ = ABCDABCDE例3.□ABCD 的周长为90,对角线AC 、BD 交于O ,且△AOB 与△AOD 的周长差为5,求□ABCD 的各边长。
例4.如图:已知中,E 是AD 的中点,CE 的延长线交BA 的延长线于点F ,求证: (1)CD=FA ,(2)若使BCFF ∠=∠,□ABCD 的边长之间还需再添加一个什么条件?请 你补上这个条件,并进行证明.(不需要添加辅助线).例5.如图,在□ABCD 中,E ,F 分别是AC ,CA 延长线的点,且CE=AF ,则BF 与DE 具有怎样的位置关系,试说明理由.例6.如图,△ABC 中,AB=AC ,P 是BC 上一点,PE ∥AC 交AB 于E ,PF ∥AB 交AC 于 点F 。
求证:PE+PF=AC 。
F1 32 4 A BECDF例7.如图所示,在□ABCD 中,BE ⊥CD ,BF ⊥AD ,∠EBF=60°,CE=2,AF=3,求□ABCD 各边长及面积。
平行四边形的性质平行四边形的性质与判断方法平行四边形是一种特殊的四边形,它具有一些独特的性质和判断方法。
在本文中,我们将深入探讨平行四边形的性质,并介绍如何通过这些性质来判断一个四边形是否为平行四边形。
一、平行四边形的定义平行四边形是指四边形的对边两两平行的四边形。
四边形的对边是指相对的两条边,而平行的定义是指两条直线或线段在同一平面内永不相交。
二、平行四边形的性质1. 对角线互相平分平行四边形的两条对角线互相平分。
也就是说,连接平行四边形相对顶点的线段,其交点即为对角线的中点。
2. 对边等长平行四边形的对边长度相等。
即平行四边形的相对边长相等。
3. 内角和为180度平行四边形的内角和等于180度。
也就是说,平行四边形的内角之和是一个定值,无论其角度大小如何变化,内角之和始终等于180度。
4. 任意一组相邻内角补角为180度对于平行四边形来说,任意一组相邻内角的补角等于180度。
两条平行线被一条横切线所交,形成的内角和为180度。
5. 对角线等长平行四边形的对角线长度相等。
也就是说,连接平行四边形相对顶点的对角线长度相等。
三、判断平行四边形的方法1. 观察边长关系判断一个四边形是否为平行四边形,可以通过观察其边长关系。
如果四边形的对边长度相等,则可以判断为平行四边形。
2. 观察角度关系通过观察四边形的角度关系,也可以判断是否为平行四边形。
如果四边形的内角之和为180度,并且任意一组相邻内角的补角为180度,那么可以确定该四边形是平行四边形。
3. 观察对角线若一个四边形的对角线相等,则可证明该四边形为平行四边形。
这是因为平行四边形的对角线互相平分,所以如果四边形的对角线相等,那么可以得出结论它是平行四边形。
4. 使用截线定理截线定理是一种判断平行四边形的方法。
当一条直线与两条平行线相交时,它所切分的线段比例相等。
如果在一个四边形中,两组相邻边分别满足这个比例关系,那么可以得出结论该四边形是平行四边形。
平行四边形的性质与判定平行四边形是几何学中常见的一个概念,具有一些特殊的性质和判定条件。
本文将介绍平行四边形的性质,并通过实例展示如何判定一组线段或角度是否构成平行四边形。
一、平行四边形的定义平行四边形是指具有两对对边分别平行的四边形。
根据定义,我们可以得出平行四边形的性质和判定条件。
二、平行四边形的性质1. 相对边相等:平行四边形的对边长度相等。
即AB=CD,AD=BC。
2. 相对角相等:平行四边形的对角角度相等。
即∠A=∠C,∠B=∠D。
3. 对角线互相平分:平行四边形的对角线互相平分。
即AC平分BD,BD平分AC。
4. 对角线相等:平行四边形的对角线相等。
即AC=BD。
5. 内角和为360度:平行四边形的内角和等于360度。
三、判定平行四边形的条件要判定一组线段或角度构成平行四边形,需要满足以下条件之一。
1. 对边相等:如果四边形的对边长度相等,即AB=CD,AD=BC,则这个四边形是平行四边形。
2. 对角线互相平分:如果四边形的对角线互相平分,即AC平分BD,BD平分AC,则这个四边形是平行四边形。
3. 相对角相等:如果四边形的相对角度相等,即∠A=∠C,∠B=∠D,则这个四边形是平行四边形。
在实际问题中,我们可以通过测量边长、角度或线段平分关系来判定是否为平行四边形。
下面举例说明。
例题一:已知线段AB与线段CD互相平分,且∠A=∠C,∠B=∠D,判断ABCD是否为平行四边形。
解析:根据给定条件得知,线段AB与线段CD互相平分,且相对角度相等。
根据判定平行四边形的条件,我们可以得出这个四边形是平行四边形。
例题二:在平面直角坐标系中,顶点坐标分别为A(2, 3),B(7, 3),C(9, -2),D(4, -2)的四边形ABCD,判断是否为平行四边形。
解析:根据给定坐标可以计算出AB的斜率为0,CD的斜率也为0。
根据斜率的性质,我们可以得出AB与CD是平行的。
另外,根据对边长度可以计算出AB=CD,AD=BC。
一【2 】.平行四边形常识构造及要点小结平行四边形界说:有两组对边分离平行的四边开形是平行四边形. 性质:1.平行四边形的两组对边分离平行.2.平行四边形的两组对边分离相等3.平行四边形的两组对角分离相等4.平行四边形的两条对角线互相等分.剖断办法:1.两组对边分离平行的四边形是平行四边形.2.两组对边分离相等的四边形是平行四边形.3.一组对边平行且相等的四边形是平行四边形.4.两条对角线互相等分的四边形是平行四边形.5.两组对角分离相等的四边形是平行四边形.三角形中位线界说:衔接三角形双方中点的线段叫三角形的中位线. 定理;三角形的中位线平行于三角形的第三边,且等于第三边的一半.二.解题办法及技能小结:证实线段相等或角相等的问题用曩昔所学的全等常识也可完成,但相比较而言,运用平行四边形的性质求证较为简略.别的平行四边形对角线是很主要的根本图形,运用它的性质解题可开拓新的门路.特别的平行四边形常识构造及要点小结矩形:界说:有一个角是直角的平行四边形叫做矩形.性质:1.具有平行四边形的所有性质.2.矩形有四个角都是直角.3.矩形有对角线相等.4.矩形是轴对称图形,有两条对称轴.剖断办法:1.界说2.对角线相等的平行四边形是矩形.3.有三个角是直角的四边形是矩形.菱形:界说:有一组邻边相等的平行四边形叫菱形.性质;1.具有平行四边形所有性质.2.菱形有四条边都相等.3.菱形的两条对角线互相垂直,并且每一条对角线等分一组对角4.菱形是轴对称图形.剖断办法:1.界说2.对角线互相垂直的平行四边形3.四边相等的四边形正方形:界说;一组邻边相等的矩形性质:具有平行四边形.矩形.菱形的所有性质剖断:1.界说2.有一个内角是直角的菱形3.对角线相等的菱形4.对角线互相垂直的矩形解题办法及技能小结菱形.矩形.正方形都是特别的平行四边形.它们的性质既有差别又有接洽,它们的剖断办法固然不同,但有很多类似之处,是以要用类比的思惟,将学到的常识总结出相干纪律.。
平行四边形的性质与应用平行四边形是一种具有特定性质和广泛应用的几何图形。
在本文中,我们将探讨平行四边形的性质以及它在现实中的应用。
一、平行四边形的定义与性质平行四边形是指具有两组对边平行的四边形。
它具有以下几个重要性质:1. 对边性质:平行四边形的对边相等。
即相对的两条边长度相等。
2. 对角线性质:平行四边形的对角线互相平分,并且互相垂直。
这意味着平行四边形的两条对角线长度相等且互相垂直。
3. 内角性质:平行四边形的内角之和为360度。
换句话说,平行四边形的任意两个相邻内角之和为180度。
4. 对顶角性质:平行四边形的对顶角相等。
即相对的两个内角大小相等。
二、平行四边形的应用平行四边形在几何学和实际生活中都有广泛的应用。
以下是一些常见的应用场景:1. 建筑设计:平行四边形的性质被广泛应用于建筑设计中,用于绘制平行四边形的模型,计算建筑物的面积和体积,以及确定建筑物内部布局的合理性。
2. 航空航天工程:在航空航天工程中,平行四边形的性质被用于计算飞机的机翼面积,帮助设计师设计出更加稳定和高效的飞行器结构。
3. 地理测量:在地理测量中,平行四边形的性质被应用于测量地表的形状、面积以及地表变动的研究。
同时,平行四边形也是测量工具中常用的标志物,用于校准和校正测量仪器。
4. 平行四边形的证明与运用:在数学课堂上,我们经常需要证明平行四边形的性质,通过证明和推理,培养学生的逻辑思维和问题解决能力。
此外,平行四边形的性质也应用于解决三角函数和向量等数学问题。
5. 平行四边形的网格结构:平行四边形的性质使其成为一种理想的结构形式,例如篮球场地板、瓷砖地板、蜂窝状网格等。
这些结构具有稳定性、坚固性和美观性。
结论平行四边形作为一种常见的几何图形,在我们的日常生活和学习中有着广泛的应用。
通过了解平行四边形的性质和运用,我们能够更好地理解和应用几何学知识,同时也能培养我们的逻辑思维和问题解决能力。
平行四边形不仅仅是数学课堂上的概念,它在各行各业中都发挥着重要的作用,为我们的生活和工作带来了便利和创造力。
平行四边形的性质和判定平行四边形是中学数学中的一种基本图形,它具有独特的性质和判定方法。
本文将探讨平行四边形的性质和判定,以帮助读者更好地理解和应用这一概念。
一、平行四边形的定义平行四边形是指具有两对对边分别平行的四边形。
对边是指共享一个顶点的两条边。
二、平行四边形的性质1. 对角线的性质:平行四边形的对角线相互平分,并且彼此重合,即对角线相交于各自的中点。
2. 边的性质:平行四边形的对边长度相等。
3. 内角的性质:平行四边形的内角和为360度。
即两组相对的内角互为补角,且每组内角和为180度。
4. 链接关系:平行四边形的一对对边及其夹角共线。
5. 周长和面积:平行四边形的周长等于四条边的长度之和,面积等于底边长度乘以高。
三、平行四边形的判定方法1. 利用边的平行性:若一四边形的对边分别平行,则该四边形为平行四边形。
2. 利用对角线的重合性:若一四边形的对角线相互重合,则该四边形为平行四边形。
3. 利用角的补角关系:若一四边形的内角和为180度,则该四边形为平行四边形。
4. 利用边长和角度的关系:已知四边形的各边长度和对边夹角的情况下,可以通过计算判断它是否为平行四边形。
四、平行四边形的应用场景1. 建筑设计:在建筑设计中,平行四边形的性质经常用于确定房屋的平面布局,以及各部分的相对位置关系。
2. 装饰设计:在装饰设计中,平行四边形的性质可用于确定墙壁或地板的铺设方式,以增加空间的美感和活力。
3. 地理测量:在地理测量中,通过平行四边形的判定可以帮助测绘人员绘制平面地图和标示道路等要素。
4. 工程施工:在工程施工中,平行四边形的性质可用于确定建筑场地的边界线,以及建筑物的定位和布局。
综上所述,平行四边形具有特殊的性质和判定方法,可以应用于各个领域。
掌握平行四边形的定义、性质和判定方法,对于理解和解决相关问题具有重要意义。
期望本文的内容能够帮助读者更好地理解和运用平行四边形的概念。
平行四边形的性质和定义
一、定义:两组对边分别平行的四边形叫做平行四边形。
二、性质:
1、平行四边形属于平面图形。
2、平行四边形属于四边形。
3、平行四边形属于中心对称图形。
三、其他性质:
1、平行四边形的对边是平行的(根据定义),因此永远不会相交。
2、平行四边形的面积是由其对角线之一创建的三角形的面积的两倍。
3、平行四边形的面积也等于两个相邻边的矢量交叉乘积的大小。
4、任何通过平行四边形中点的线将该区域平分。
5、任何非简并仿射变换都采用平行四边形的平行四边形。
平行四边形的特征平行四边形是一种特殊的四边形,它具有独特的性质和特征。
下面将详细介绍平行四边形的定义、性质和相关定理。
一、定义平行四边形是指四边形的对边两两平行的四边形。
它的对边分别是平行边,对角线分别相等且互相平分。
二、性质1. 对边性质:平行四边形的对边相等,并且两两平行。
2. 对角线性质:平行四边形的对角线相等,且互相平分。
3. 内角性质:平行四边形的内角相邻补角,即两个相邻内角和为180°。
4. 外角性质:平行四边形的外角相等,且和为360°。
5. 对角线的交点:平行四边形的对角线交点是对角线的中点,即对角线互相平分。
三、相关定理1. 对边定理:平行四边形的对边相等。
证明:根据平行四边形的定义,对边两两平行,可以得出对边相等。
2. 对角线定理:平行四边形的对角线相等且互相平分。
证明:根据平行四边形的定义,对边两两平行,再结合平行线的性质可证明对角线相等且互相平分。
3. 内角和定理:平行四边形的相邻内角和为180°。
证明:根据平行四边形的定义,对边两两平行,可以证明平行四边形的相邻内角互为补角,即和为180°。
4. 外角和定理:平行四边形的外角和为360°。
证明:根据平行四边形的定义,对边两两平行,可以证明平行四边形的外角相等,由于平行四边形的四个外角构成一周,所以和为360°。
综上所述,平行四边形是一种具有特殊性质的四边形。
它的对边相等且平行,对角线相等且互相平分,内角和为180°,外角和为360°。
这些性质和定理在几何学中有着重要的应用,可以帮助解决与平行四边形相关的问题和证明。
通过研究和理解平行四边形的特征,能够更好地理解几何学中的基本概念和原理,提升解题能力和几何思维。
平行四边形的定义及特殊四边形的性质及判定平行四边形是指四边形的对边两两平行,且对边相等的四边形。
其特殊性质有以下几点:1. 对边平行:平行四边形的定义中已经提到,其对边两两平行。
这意味着它有两对平行的边,且它的对边相等。
2. 对角线平分:平行四边形的两条对角线互相平分。
这意味着从顶点到顶点的线段长相等。
且对角线长度之和等于两倍的中线长度。
3. 内角和为360度:平行四边形的内部角度之和为360度。
这是由于它可以看作是一个由两个相反的等腰三角形组成的四边形。
4. 相邻角互补:平行四边形相邻两个角互补。
即相邻的两个内角之和为180度。
5. 对角线重心:平行四边形的对角线的交点是平行四边形的重心。
这意味着,从平行四边形的任意一个顶点出发,连接对角线交点的线段长度均相等。
如何判定是否是平行四边形?为了判定一个四边形是否为平行四边形,我们需要注意以下几点:1. 同位角是否相等:如果四边形的对边相等,且同位角相等,则它是一个平行四边形。
2. 对角线是否互相平分:如果四边形的对角线互相平分,则它是一个平行四边形。
3. 内角是否和为360度:如果四边形的内角和为360度,则它是一个平行四边形。
4. 相邻角是否补角:如果四边形的相邻两个角互补,则它是一个平行四边形。
总之,平行四边形不仅有着独特的特性,而且在日常生活中随处可见。
我们可以通过了解它的性质和判定方法,来更好地理解和应用它在实际问题中的作用。
平行四边形在几何中的重要性不言而喻。
它具有许多基本的性质,在解决几何问题时能够发挥重要的作用。
因此,对于学习者来说,理解和掌握平行四边形及其相关性质是非常重要的。
首先,平行四边形经常用于测量和设计。
例如,平面中的平行线和平行四边形常常被用来构建建筑和道路。
在测量中,以平行四边形为基础可以利用三角函数法求其面积。
当然,求解时需要知道两个相邻的边长和它们之间夹角的大小。
这也是平行四边形的另一个重要性质,它的相邻角互补。
其次,平行四边形经常用于计算图形的重心及其他几何量。
平行四边形的概念平行四边形是一种特殊的四边形,具有一些独特的性质和特点。
在几何学中,平行四边形是指具有两对对边平行的四边形。
本文将介绍平行四边形的定义、性质以及一些相关的应用。
一、定义平行四边形是指同时具有以下两个条件的四边形:1. 两对对边分别平行,即相对的两条边的延长线不会相交。
2. 相邻的两个角互补,即相邻的两个内角之和为180度。
二、性质1. 相对的两条边长度相等。
根据平行线的性质,平行四边形的相对边必须平行,因此长度也必须相等。
2. 相对的两个内角相等。
由于相邻的两个内角互补,因此相对的两个内角必须相等。
3. 对角线互相平分。
平行四边形的对角线共同平分对角线上的点,即将对角线分成两等分。
4. 对角线长度相等。
平行四边形的对角线长度相等,可以通过使用向量的方法证明。
5. 对边平行且等于对边。
平行四边形的对边必须平行,且相等。
6. 内角和等于360度。
由于平行四边形的内角互补,四个内角的和等于360度。
三、应用平行四边形在现实生活和工程中有着广泛的应用。
以下是一些常见应用的例子:1. 工程建筑:平行四边形的概念可以应用于建筑物的设计和结构,例如平行四边形的墙体和屋顶结构。
2. 地理测量:地理测量中的地图和地块常常涉及到平行四边形的性质,并且可以通过测量边长和角度来计算面积和周长。
3. 几何画图:平行四边形可以作为基本的几何图形之一,用于绘制其他复杂图形。
4. 数学证明:平行四边形的性质是许多数学证明的基础,例如证明四边形是平行四边形的充要条件等。
总结:平行四边形是一种具有两对平行边和相等对角线的四边形。
它具有一些独特的性质和应用。
了解平行四边形的概念可以帮助我们更好地理解几何学中其他相关的概念和定理,同时也有助于我们在实际生活和工程中应用几何学知识。
通过研究和应用平行四边形,我们可以更好地理解和掌握几何学的基本原理和应用技巧。
平行四边形的性质及应用一、平行四边形的定义平行四边形是四边形的一种,具有以下性质:1.两组对边分别平行且相等;2.对角相等;3.对边相等;4.对角线互相平分;5.相邻角互补,即和为180度;6.对边角相等,即对边上的角相等。
二、平行四边形的判定1.如果一个四边形的两组对边分别平行,则这个四边形是平行四边形;2.如果一个四边形的对角相等,则这个四边形是平行四边形;3.如果一个四边形的对边相等,则这个四边形是平行四边形;4.如果一个四边形的对角线互相平分,则这个四边形是平行四边形;5.如果一个四边形的相邻角互补,则这个四边形是平行四边形;6.如果一个四边形的对边角相等,则这个四边形是平行四边形。
7.性质应用:求解平行四边形的边长、角度等;8.性质应用:证明四边形是平行四边形;9.性质应用:计算平行四边形的面积;10.性质应用:证明平行四边形的对角线互相平分;11.性质应用:证明平行四边形的对角相等;12.性质应用:证明平行四边形的对边角相等。
四、平行四边形的实际应用1.建筑设计:在建筑设计中,平行四边形的性质可以用于计算建筑物的面积、确定建筑物的结构稳定性等;2.交通工程:在交通工程中,平行四边形的性质可以用于设计道路标志、信号灯等;3.几何作图:平行四边形的性质可以用于进行几何作图,如绘制平行线、计算角度等。
平行四边形是中学数学中的重要知识点,掌握其性质和应用对于中学生来说非常重要。
通过学习平行四边形的定义、判定和性质,学生可以更好地理解和解决与平行四边形相关的问题。
同时,平行四边形的实际应用也使得这个知识点更具实用价值。
习题及方法:1.习题:已知平行四边形ABCD中,AB || CD,AD || BC,AB = CD,AD= BC,求证ABCD是平行四边形。
根据平行四边形的定义,我们需要证明ABCD的两组对边分别平行且相等。
已知AB || CD,AD || BC,且AB = CD,AD = BC,因此两组对边分别平行且相等,所以ABCD是平行四边形。
平行四边形的定义及性质教案。
一、平行四边形的定义平行四边形是四边形的一种,它的四边分别两两平行。
一个平行四边形有两对对边,而对边具有相等的长度,两对对边之间的夹角相等。
如下图所示,AB || CD,AD || BC,AB = CD,AD = BC。
二、平行四边形的性质1.对角线互相平分对于任何一个平行四边形,其两条对角线长度相等,且互相平分。
换句话说,平行四边形的两条对角线长相等。
2.属于平行四边形的四个角的和为360度对于任何一个平行四边形,其四个角的和等于360度。
也就是说,平行四边形的每个角是平行四边形对角的补角。
3.面积计算对于任何一个平行四边形,它的面积等于底边长乘以高。
即S=ah,其中a为底边长,h为高。
三、平行四边形的应用平行四边形在我们的生活中也有很多应用,比如:1.电视壁挂在家里装修的时候,很多人都选择将电视挂在墙上,这时就需要使用到平行四边形的应用。
因为墙面是一个平面,所以一般把电视外框的四个角固定在墙上的时候,会以四个角固定点为顶点,构成一个平行四边形,从而保证电视安装的平衡、稳定。
2.计算草坪的面积当我们需要规划草坪面积的时候,可以利用平行四边形的面积计算公式进行计算,这样可以更方便地得到草坪的实际面积,从而进行科学合理的规划和种植。
3.斜面的计算在工程建设中,有可能会遇到一些斜面的计算问题。
这时我们可以利用平行四边形相邻边的关系,将斜面转换成平行四边形进行计算,从而得到更精确的计算结果。
四、例题讲解例1:已知平行四边形ABCD中,AB=10cm,AD=8cm,AC=6cm,求BC的长度。
解:首先根据性质1,对角线互相平分,我们可以得到BD的长度为10cm。
然后根据勾股定理,可得BD^2=AD^2+(AB-BC)^210^2=8^2+(10-BC)^210^2-8^2=100-20BC+BC^256=BC^2-20BC+100BC^2-20BC+44=0根据一元二次方程的求根公式,可得到BC=2或22。
平面几何中的平行四边形的性质在平面几何中,平行四边形是一种特殊的四边形,具有独特的性质和特征。
本文将介绍平行四边形的定义、性质以及应用。
一、定义平行四边形是指具有对边平行的四边形。
具体而言,对边AB和CD平行,对边AD和BC平行。
二、性质1. 对边性质:平行四边形的对边相等。
即AB = CD,AD = BC。
2. 对角线性质:平行四边形的对角线相互平分,并且彼此相等。
即AC = BD。
3. 内角性质:平行四边形的内角相互补角,并且相等。
即∠DAB +∠CBA = 180°,∠CDA + ∠BDC = 180°。
4. 外角性质:平行四边形的外角相互补角,并且补角也相等。
即∠CAB = ∠BDC,∠BCA = ∠CDB。
5. 相邻角性质:平行四边形的相邻内角互补,并且补角也相等。
即∠DAB + ∠CAB = 180°,∠CBA + ∠BCA = 180°。
6. 对边夹角性质:平行四边形的对边夹角相等。
即∠DAB = ∠CBA,∠CDA = ∠BDC。
7. 联立角性质:平行四边形的联立角互补。
即∠DAB + ∠CDA = 180°,∠CBA + ∠BDC = 180°。
8. 对边比例性质:平行四边形的对边比例相等。
即AB/CD =AD/BC。
三、应用平行四边形的性质和定理在几何学中有广泛的应用。
1. 平行四边形定理:如果一个四边形的对边相等,则该四边形是平行四边形。
根据平行四边形的性质,可以通过对边的相等关系来判断一个四边形是否为平行四边形。
这在解题或证明中起到重要的作用。
2. 平行四边形的周长计算:平行四边形的周长可以通过对边长度的加和来计算。
例如,已知平行四边形ABCD中,AB = 5cm,BC = 8cm,需要计算周长。
根据性质1,对边相等,所以ABCD是一个平行四边形。
则周长为AB+BC+CD+DA = 5+8+5+8 = 26cm。
五年级数学认识简单的平行四边形及其性质在数学学科中,平行四边形是一个重要的概念。
在本文中,我们将简要介绍五年级学生需要了解的平行四边形及其性质。
一、平行四边形的定义平行四边形是指有四条边,且两两相对的边是平行的四边形。
简单来说,如果四边形的相对边是平行的,那么它就是平行四边形。
二、平行四边形的性质1. 相邻角性质:平行四边形的相邻内角互补,也就是说,相邻内角的度数之和等于180度。
例如,如果一个相邻内角的度数是50度,那么它的相邻内角就是130度。
2. 对角线性质:平行四边形的对角线互相等长,且相交于中点。
也就是说,如果我们连接平行四边形的两个相对顶点,那么这条线段就是对角线,而且两条对角线的长度相等。
此外,两条对角线的交点是对角线的中点。
3. 同底角性质:平行四边形的同底角相等,也就是说,如果两个平行四边形的底边相等,那么它们的同底角也相等。
例如,如果两个平行四边形的底边长度都是5厘米,那么它们的同底角就相等。
4. 对边性质:平行四边形的对边相等,也就是说,如果两个平行四边形的相对边相等,那么它们的对边也相等。
例如,如果一个平行四边形的上边长度是8厘米,下边长度是8厘米,那么它的左边和右边也分别是8厘米。
三、平行四边形的应用1. 全等判定:当一个四边形的对边相等,且对角线相等时,可以判断它是一个平行四边形。
2. 面积计算:平行四边形的面积可以通过底边和高的乘积得到。
即面积等于底边乘以高。
3. 解题实践:平行四边形经常运用于解决几何问题和计算题。
通过运用平行四边形的性质,可以更轻松地解决各种题目。
四、总结在五年级数学中,学习平行四边形是非常重要的。
通过了解平行四边形的定义和性质,我们可以更好地应用它们解决问题。
平行四边形不仅是理论知识,还是实践解题的基础。
希望同学们能够通过实际练习和思考,更好地掌握平行四边形的概念和运用。
通过对五年级数学认识简单的平行四边形及其性质的介绍,我们希望能够帮助同学们对平行四边形有更清晰的理解。
平行四边形的性质和判定定理二、知识点回顾:1:平行四边形定义:两组对边分别平行的四边形是平行四边形.2:平行四边形的性质:1)平行四边形对边平行;2)平行四边形对边相等;3)平行四边形对角相等;4)平行四边形对角线互相平分.3:平行四边形判定定理:1)定义:两组对边分别平行的四边形是平行四边形;四边形ABCD是平行四边形2)两组对边分别相等的四边形是平行四边形;AD=BC,AB=CD四边形ABCD是平行四边形3)一组对边平行且相等的四边形是平行四边形;AD∥BC,AD=BC四边形ABCD是平行四边形4)对角线互相平分的四边形是平行四边形;OA=OC,OB=OD四边形ABCD是平行四边形5)两组对角分别相等的四边形是平行四边形.∠ABC=∠CDA,∠BAD=∠BCD四边形ABCD是平行四边形4:三角形中位线定义及定理:1)定义:连接三角形两边中点的线段叫三角形的中位线;2)定理:三角形中位线平行且等于第三边的一半.【典型例题】例1. 已知,如图1,四边形ABCD为平行四边形,∠A+∠C=80°,平行四边形ABCD 的周长为46 cm,且AB-BC=3 cm,求平行四边形ABCD的各边长和各内角的度数.例2. 如图2,在平行四边形ABCD中,E、F是直线BD上的两点,且DE=BF,你认为AE=CF吗?试说明理由.例3. 如图3所示,在平行四边形ABCD中,EF∥AB,HG∥AD,EF与GH相交于点O,则该图中平行四边形的个数共有()图3A. 7个B. 8个C. 9个D. 11个例4. 如图4,△ABC中,AB=6,AC=4.AD是BC边上的中线,则AD的取值范围是_________例5. 现有一个四边形的木框,若想知道它是否为平行四边形,只给你一把刻度尺,你能有几种方法来测量?例6. 如图5,已知六边形ABCDEF的每一个内角都是120°且AB=l,DE=2,BC+CD =8,求这个六边形的周长.图5例7. 如图6,在平行四边形ABCD中,对角线AC、BD相交于点O,E、F是对角线AC 上的两点,当E、F满足下列哪个条件时,四边形DEBF不一定是平行四边形()A. AE=CFB. DE=BFC. ∠ADE=∠CBFD. ∠AED=∠CFB图6例8. 如图7,AB∥CD,AC、BD交于点O,且OB=OD.已知S△OBC=1,求四边形ABCD 的面积.图7【模拟试题】(答题时间:30分钟)1. 在下列图形的性质中,平行四边形不一定具有的性质是()A. 对角相等B. 对边平行且相等C. 对角线相等D. 对角线互相平分2. 如图1,在平行四边形ABCD中,AC、BD相交于点O,作OE上BD于O,交CD于E,连接BE,若△BCE的周长为6,则平行四边形ABCD的周长为()图1A. 6B. 12C. 18D. 不确定3. 下列条件中,能判别一个四边形是平行四边形的是()A. 一组对边相等B. 一组对边平行C. 两条对角线相等D. 两组对角分别相等4. 已知四边形ABCD,以下四个条件:(1)∠A=∠B,∠C=∠D;(2)AB=CD,AD =BC;(3)AB=CD,AB∥CD;(4)AB∥CD,AD∥BC.其中能判定四边形ABCD为平行四边形的有()A. 1个B. 2个C. 3个D. 4个5. 已知四边形ABCD的对角线相交于点O,下列条件不能判定四边形ABCD是平行四边形的是()A. OA=OC,OB=ODB. ∠ABD=∠BDC,∠CBD=∠ADBC. AB=CD,OB=OD,∠ABD=∠BDCD. OA=OB.OC=OD6. 如图2,在△ABC中,∠B=90°,D、E分别是AB、AC的中点,DE=2,AC=5,则AB的长为()A. 2B. 3C. 4D. 5图27. 在四边形ABCD中,已知AB=CD,再添一个条件________,就可以判定四边形ABCD 是平行四边形.8. 如图3,在平行四边形ABCD中,AC、BD相交于点O,请写出图中相等的线段_______,图中全等三角形有__________对.图39. 在平行四边形ABCD中,已知对角线AC、BD相交于点O,且AC+BD=20,△AOB 的周长为15,则CD=______.10. 如图4,在平行四边形ABCD中,O是AC上一点,过点O的任一直线交AB于E,交CD于F,要想保证OE=OF,需满足条件:_________________(填出一个你认为正确的一个条件即可).图411. 用长为80cm的铁丝围成一个平行四边形,使平行四边形的两邻边之比为3:2,这个平行四边形最长边为___________.12. 已知四个角都是直角的四边形叫做矩形.如图5是小张剪出的一个四边形ABCD硬纸片,现他沿垂直于BC的线段AE剪下△ABE,然后放到△DCF处,使AB与CD重合,此时测得四边形AEFD是矩形.那么小张剪出的原四边形ABCD是_________形.判定的依据是_____________.13. 在四边形ABCD中,∠A=60,要使四边形ABCD成为平行四边形,则∠B=_________,∠C_____________.14. 如图6是小明剪成的一个等腰三角形纸片ABC,其中AB=AC,他把∠B沿EM折叠使点B落在点D上,把∠C沿FN折叠使点C也落在点D上,则小明就说四边形AEDF 是平行四边形,请你帮他说明理由;小明又量出AB=9 cm,则四边形AEDF的周长是多少?图615. 如图7,把两把相同的角尺(两边互相垂直)的一边紧靠在木板同一侧的边缘上,再看板另一边缘(也为直线)在两把角尺上的刻度是否相等,木工师傅就可以判断木板的两个边缘是否平行,你能说出其中的道理吗?图7【试题答案】1、C2、B3、D4、C5、D6、B7、AB//CD(条件不唯一)8、AD=BC AB=CD OA=OC OB=OD 49、5 10、OA=OC 11、24cm12、平行四边形,AB//CD、AB=CD13、120°60°14、解:(1)由题意可得:(2)周长为18cm.15、答:由测量过程可知:测量的直线间距不仅相等,而且平行,所以对边是平行关系.。
平行四边形的性质
1、定义:两组对边分别平行的四边形叫做平行四边形。
平行四边形中,相对的边、称为对边;相对的角、称为对角;不相邻的两个顶点连成的线段叫做对角线。
表示平行四边形,按“顺时针”或者“逆时针”,不能有跳跃。
2、平行四边形绕对角线的交点旋转180°后与原图形重合,说明是中心对称图形,对角线的交点就是它的对称中心。
3、四边形ABCD是平行四边形,四条边中哪些线段可以通过平移而相互得到?
平行四边形的性质:对边平行且相等,对角相等,角平分线互相平分,邻角互补
平行四边形的图形性质应用
对边平行且相等证明平行、证明线段相等
对角相等证明角相等
对角线互相平分证明线段相等
邻角互补证明角的关系、计算
4、平行四边形两邻边和的2倍等于周长
例1.在平行四边形ABCD中,周长为24cm,AD-AB=4cm且∠A:∠B=3:1 ,1)求AB的长度;2)求∠C 的度数。
A D
C
B
解:1)∵AD+AB=12
AD-AB=4
∴ AB=4cm
2)∵AD∥BC
∴∠A+ ∠B = 180°
∵∠A:∠B=3:1
∴∠A= 135° (∠B = 45°)
∴∠C= ∠A=135°。