小学生等差数列的教案
- 格式:doc
- 大小:16.69 KB
- 文档页数:10
数学教学设计小学数学的等差数列数学教学设计:小学数学的等差数列引言:数学在小学阶段就是培养学生基础数学知识和逻辑思维的关键时期。
其中,等差数列作为一种基本的数学概念,对培养学生的数学思维和逻辑能力具有重要的意义。
本文将介绍一种针对小学数学的等差数列教学设计,以帮助学生更好地理解和应用等差数列。
一、教学目标经过本节课的学习,学生将能够:1.理解等差数列的定义和性质;2.判断给定数列是否为等差数列;3.求解等差数列中的未知数;4.应用等差数列解决实际问题。
二、教学准备1.教师准备:教师在备课过程中需要准备好相关教学资料,包括教学课件、等差数列的实际应用问题以及讲解重点。
2.学生准备:学生需要在课前预习相关知识,对等差数列有一定的了解,并做好相关练习题。
三、教学过程1.导入(5分钟)教师可以通过提问的方式,引导学生回顾一下等差数列的定义和例子,例如:“请举一个生活中等差数列的例子。
”或者“大家能说出一个等差数列的特点吗?”这样的问题能够激发学生的思考和积极参与。
2.知识讲解(10分钟)教师在此环节向学生讲解等差数列的定义和性质。
通过图示和实例演示,帮助学生清晰地理解等差数列的概念,并引导学生归纳出等差数列的特点。
3.例题讲解(15分钟)教师提供几个关于等差数列的例题,逐步讲解解题方法。
在每个例题后,教师要求学生自己思考并写出解题过程,然后对解题过程进行讲解和指导。
4.练习训练(10分钟)教师给学生提供一些练习题,并供学生在课堂上完成。
然后教师让学生互相交流答案,并解析正确解答的过程。
5.拓展应用(10分钟)教师设计一些具体的实际应用问题,让学生将等差数列的概念和解题方法应用于实际场景。
例如:“张三每天早上走到学校的路上,他发现每走一步距离增加了3米。
如果他第一天走了10步,那么第二天走了多少步?”通过这样的问题,学生能够将等差数列与实际问题联系起来,并培养解决问题的能力。
6.总结归纳(5分钟)教师和学生共同总结本节课学习的重点和要点,并强调等差数列的应用和意义。
小学奥数等差数列教案教案标题:小学奥数等差数列教案教案目标:1. 学生能够理解等差数列的概念和特点。
2. 学生能够找出等差数列中的公差和首项。
3. 学生能够根据已知条件计算等差数列中的任意项。
4. 学生能够应用等差数列解决实际问题。
教学准备:1. 教师准备一些小学生熟悉的数列题目,以及相关的教具如计算器、白板、彩色粉笔等。
2. 准备一些实际生活中的例子,以便学生更好地理解等差数列的应用。
教学过程:引入:1. 教师通过举例子引入等差数列的概念,如:1, 3, 5, 7, 9是一个等差数列,因为相邻的两项之间的差值都是2。
2. 教师引导学生观察数列的规律,让学生发现等差数列中的每一项都与前一项之间有相同的差值。
探究:1. 教师提供一些数列,让学生判断是否为等差数列,并找出其中的公差和首项。
2. 教师引导学生通过观察数列中的规律,找出计算公差和首项的方法。
练习:1. 教师提供一些练习题,让学生计算等差数列中的任意项。
2. 学生个别练习,教师巡回指导。
应用:1. 教师提供一些实际问题,让学生应用等差数列解决问题,如:小明每天增加2元的零花钱,他存了10天后一共有多少钱?2. 学生个别或小组完成应用题,教师巡回指导。
总结:1. 教师引导学生总结等差数列的概念和特点,以及计算公差和首项的方法。
2. 教师强调等差数列在实际生活中的应用,鼓励学生在日常生活中发现更多的等差数列。
拓展:1. 教师提供一些更复杂的等差数列问题,让学生挑战自己的思维能力。
2. 学生个别或小组完成拓展题,教师巡回指导。
评估:1. 教师布置一些练习题和应用题,以检查学生对等差数列的理解和应用能力。
2. 教师对学生的参与度、思考能力和解题方法进行评估。
教案扩展:1. 教师可以引入等差数列的求和公式,让学生进一步探究等差数列的性质。
2. 教师可以提供更多的实际问题,让学生应用等差数列解决更复杂的问题。
课时:1课时年级:五年级教学目标:1. 知识与技能:理解等差数列的概念,能够识别和写出等差数列。
2. 过程与方法:通过观察、比较、归纳等方法,引导学生发现等差数列的规律。
3. 情感态度与价值观:培养学生对数学的兴趣,提高学生的逻辑思维能力和观察力。
教学重点:1. 等差数列的概念。
2. 等差数列的识别和写出。
教学难点:1. 等差数列规律的发现。
2. 等差数列的应用。
教学准备:1. 教学课件或黑板。
2. 数列卡片。
3. 练习题。
教学过程:一、导入新课1. 利用多媒体展示一系列自然现象,如树叶的排列、楼梯的台阶等,引导学生观察并发现其中的规律。
2. 提问:你们能发现这些现象有什么共同点吗?3. 学生回答后,教师总结:这些现象都遵循着一定的规律,今天我们就来学习一种特殊的数列——等差数列。
二、新课讲授1. 教师讲解等差数列的概念,结合具体例子进行说明。
- 等差数列:在数列中,从第二项起,每一项与它前一项的差是一个常数,这个常数叫做公差。
- 例如:2,5,8,11,14…,这个数列的公差是3。
2. 引导学生观察数列卡片,找出其中的等差数列。
- 学生观察后,教师请学生举例说明,并引导学生说出等差数列的公差。
3. 教师讲解等差数列的写出方法。
- 根据首项和公差,写出等差数列的前几项。
- 例如:首项是3,公差是2,写出这个等差数列的前5项。
三、巩固练习1. 教师出示练习题,让学生独立完成。
2. 学生完成后,教师请学生展示答案,并进行点评。
四、课堂小结1. 教师总结本节课所学内容,强调等差数列的概念、识别和写出方法。
2. 学生回顾本节课所学,提出疑问,教师解答。
五、课后作业1. 完成课后练习题,巩固所学知识。
2. 观察生活中的等差数列现象,并尝试写出等差数列。
教学反思:本节课通过观察、比较、归纳等方法,让学生理解了等差数列的概念,掌握了等差数列的识别和写出方法。
在教学过程中,要注意以下几点:1. 注重学生对等差数列概念的理解,避免死记硬背。
年级:五年级学科:数学课时:2课时教学目标:1. 让学生理解等差数列的概念,掌握等差数列的性质。
2. 培养学生观察、分析、归纳等思维能力。
3. 通过实际问题,提高学生运用等差数列解决问题的能力。
教学重点:1. 等差数列的概念和性质。
2. 等差数列的通项公式。
教学难点:1. 等差数列的性质。
2. 等差数列的通项公式。
教学过程:第一课时一、导入1. 回顾已学过的数列知识,如等差数列的定义、通项公式等。
2. 提出问题:如果有一个数列,它的每一项与前一项的差都是相同的,那么这个数列叫什么?二、新课1. 引入等差数列的概念,举例说明。
2. 分析等差数列的性质,如首项、公差、项数、和等。
3. 介绍等差数列的通项公式,通过实例讲解如何求等差数列的第n项。
三、巩固练习1. 填空题:已知数列2,5,8,11,...,求第10项。
2. 选择题:下列数列中,不是等差数列的是()。
A. 1,4,7,10,...B. 3,6,9,12,...C. 2,5,8,11,...D. 1,2,4,8,...四、小结1. 总结本节课所学内容,强调等差数列的概念、性质和通项公式。
2. 布置课后作业,巩固所学知识。
第二课时一、复习1. 回顾等差数列的概念、性质和通项公式。
2. 提问:等差数列的通项公式是什么?如何求等差数列的第n项?二、新课1. 通过实际问题,让学生体会等差数列的应用。
2. 举例说明等差数列在实际生活中的应用,如计算阶梯电费、计算等差数列的和等。
三、巩固练习1. 实际应用题:某市从2010年开始,每年城市人口增加1万人,求2015年城市人口是多少?2. 判断题:等差数列的前n项和等于首项与末项之和乘以项数除以2。
四、小结1. 总结本节课所学内容,强调等差数列在实际生活中的应用。
2. 布置课后作业,巩固所学知识。
教学反思:本节课通过引入实际问题,让学生体会等差数列在实际生活中的应用,提高了学生的学习兴趣。
在讲解等差数列的性质和通项公式时,注重引导学生观察、分析、归纳,培养学生的思维能力。
一、教学目标1. 知识与技能:(1)理解等差数列的概念及其特点;(2)掌握等差数列的通项公式、求和公式;(3)能够运用等差数列解决实际问题。
2. 过程与方法:(1)通过观察、分析、归纳等差数列的性质;(2)培养学生的逻辑思维能力和运算能力。
3. 情感态度与价值观:(2)引导学生运用数学知识解决实际问题,感受数学的应用价值。
二、教学重点与难点1. 教学重点:(1)等差数列的概念及其特点;(2)等差数列的通项公式、求和公式。
2. 教学难点:(1)等差数列的通项公式的推导;(2)等差数列求和公式的应用。
三、教学过程1. 导入新课:(1)回顾等差数列的定义;(2)引导学生思考等差数列的特点。
2. 知识讲解:(1)讲解等差数列的通项公式;(2)讲解等差数列的求和公式。
3. 例题解析:(1)分析等差数列的例题,引导学生运用通项公式和求和公式;(2)讲解解题思路和方法。
4. 课堂练习:(1)布置练习题,让学生巩固所学知识;(2)引导学生互相讨论,共同解决问题。
四、课后作业1. 巩固等差数列的概念和性质;2. 练习运用通项公式和求和公式解决实际问题。
五、教学反思1. 总结本节课的收获:(1)学生掌握了等差数列的概念和性质;(2)学生能够运用通项公式和求和公式解决实际问题。
2. 反思教学过程:(1)是否充分讲解等差数列的性质和公式;(2)是否注重学生的参与和思考;(3)是否及时给予学生反馈和指导。
3. 改进措施:(1)针对学生的薄弱环节,加强讲解和练习;(2)鼓励学生积极参与,提高课堂氛围;(3)关注学生的学习进度,及时调整教学节奏。
六、教学评价1. 评价内容:(1)等差数列的概念及其特点;(2)等差数列的通项公式、求和公式;(3)运用等差数列解决实际问题的能力。
2. 评价方式:(1)课堂问答;(2)练习题;(3)课后作业;(4)小组讨论。
七、教学资源1. 教学课件:(1)展示等差数列的定义、性质;(2)呈现通项公式、求和公式的推导过程;(3)提供丰富的例题和练习题。
《等差数列》教案一、教学目标:1. 让学生理解等差数列的概念,掌握等差数列的定义及其性质。
2. 能够运用等差数列的通项公式和求和公式解决实际问题。
3. 培养学生的逻辑思维能力和运算能力。
二、教学内容:1. 等差数列的定义:介绍等差数列的定义,通过实例让学生理解等差数列的特点。
2. 等差数列的性质:探讨等差数列的性质,如相邻两项的差是常数,任意一项都可以用首项和公差表示等。
3. 等差数列的通项公式:引导学生推导等差数列的通项公式,并解释其意义。
4. 等差数列的前n项和公式:引导学生推导等差数列的前n项和公式,并解释其意义。
5. 等差数列的应用:通过实例让学生运用等差数列的知识解决实际问题,如计算等差数列的前n项和,求等差数列的某一项等。
三、教学重点与难点:1. 教学重点:等差数列的概念、性质、通项公式和前n项和公式的理解与运用。
2. 教学难点:等差数列通项公式和前n项和公式的推导过程。
四、教学方法:1. 采用问题驱动法,通过提问引导学生思考和探索等差数列的知识。
2. 使用多媒体辅助教学,展示等差数列的图形和实例,增强学生的直观理解。
3. 利用小组讨论法,让学生分组讨论等差数列的性质和公式,促进学生的合作学习。
五、教学准备:1. 准备PPT课件,包括等差数列的定义、性质、通项公式和前n项和公式的讲解。
2. 准备一些等差数列的实际问题,用于课堂练习和巩固知识。
3. 准备答案和解析,用于课堂讲解和解答学生的疑问。
六、教学过程:1. 导入:通过一个简单的等差数列实例,如自然数的序列,引导学生思考等差数列的特点。
2. 新课讲解:讲解等差数列的定义、性质、通项公式和前n项和公式,结合PPT 课件和实例进行解释。
3. 课堂练习:给出一些等差数列的实际问题,让学生运用所学知识进行计算和解答,教师进行指导和解析。
4. 小组讨论:让学生分组讨论等差数列的性质和公式,分享彼此的想法和理解,教师进行指导和点评。
5. 总结与复习:对本节课的主要内容和知识点进行总结回顾,强调重点和难点,解答学生的疑问。
等差数列教案幼儿园一、教学目标:1. 让幼儿了解等差数列的概念;2. 培养幼儿的观察能力和逻辑思维能力;3. 培养幼儿的数学思维和数学观念。
二、教学准备:1. 教师准备:- 等差数列的示例物品(如彩色积木、水晶球等);- 幻灯片或黑板;- 等差数列的相关练习题。
2. 幼儿准备:- 认识和掌握数字的顺序。
三、教学过程:1. 导入(5分钟)- 利用彩色积木或水晶球等示例物品,向幼儿展示一个色彩有序排列的物品,并与幼儿进行简单的互动,让幼儿观察和描述排列规律。
2. 引入(10分钟)- 讲解等差数列的概念:等差数列是指一个数列中的每个数都与它前面的数之差相等的数列。
例如,1、3、5、7、9 就是一个等差数列,因为每个数与前一个数之差都是2。
3. 实践操作(25分钟)- 将等差数列的概念带入实际操作中,通过示例物品和黑板上的图案,让幼儿观察并找出其中的规律。
引导幼儿用数字或物品来表示等差数列,然后引导幼儿完成一些有关等差数列的练习题。
4. 延伸拓展(10分钟)- 引导幼儿运用已学知识解决一些简单的问题,如给定一个数列的前两项和差值,让幼儿预测数列的后续数字。
- 给幼儿出示一些星星、水果等图片,让幼儿根据等差数列的规律,预测下一个数字或物品。
5. 总结(5分钟)- 简单总结一下今天学到的知识,强调等差数列的概念和规律。
四、教学反思:通过本堂等差数列教学,在幼儿园阶段,我主要注重培养幼儿的观察能力和逻辑思维能力。
通过引入物品,帮助幼儿观察和找到规律,进而运用已学的规律解决问题。
同时,我也引导幼儿在实际操作中使用数字、图案等来表示等差数列,并通过练习题来巩固已学的知识。
延伸拓展环节的活动则是为了提高幼儿的综合运用能力,让幼儿在实际生活中应用数学知识解决问题。
在今后的教学过程中,我将继续注重培养幼儿的观察能力和逻辑思维能力,通过更加多样化的教学方法来激发幼儿的学习兴趣和主动性。
等差数列教案小学教案标题:小学等差数列教案教案目标:1. 学生能够理解等差数列的概念和特点。
2. 学生能够找出等差数列中的公差和通项公式。
3. 学生能够计算等差数列中的任意项和前n项的和。
4. 学生能够应用等差数列解决实际问题。
教学准备:1. 教师准备白板、黑板、彩色粉笔或白板笔。
2. 准备小学生熟悉的具体例子和练习题,以帮助学生理解等差数列的概念。
3. 准备一些实际问题,以帮助学生应用等差数列解决问题。
教学步骤:引入(5分钟):1. 教师通过一个具体的例子,如“小明每天放学后都会买一包糖吃,第一天他买了1包,第二天他又买了1包,第三天他又买了1包,以此类推。
”来引导学生思考,这种数列有什么特点。
2. 教师引导学生讨论,这种数列中每一项和前一项之间有什么关系。
概念解释(10分钟):1. 教师向学生解释等差数列的概念,即每一项和前一项之间的差值是相等的。
2. 教师引导学生找出上述例子中的公差(差值为1)。
3. 教师解释通项公式的概念,即根据已知条件,求出等差数列中的任意一项的公式。
4. 教师给出例子,引导学生找出通项公式。
练习与巩固(15分钟):1. 教师出示一些等差数列,让学生找出公差和通项公式。
2. 学生个别或小组完成练习题,巩固所学概念。
3. 教师讲解练习题答案,纠正学生的错误。
应用与拓展(15分钟):1. 教师提供一些实际问题,如“小明每天跑步锻炼,第一天跑了1公里,第二天跑了2公里,第三天跑了3公里,以此类推。
请问第10天小明跑了多少公里?”2. 学生个别或小组完成应用题,应用等差数列解决问题。
3. 学生展示解题过程和答案,教师进行点评和指导。
总结与反思(5分钟):1. 教师向学生总结等差数列的概念和特点。
2. 教师鼓励学生思考,等差数列在实际生活中的应用。
3. 学生反思自己在本课程中的学习情况,提出问题和困惑。
拓展活动(可选):1. 学生自主设计一个等差数列的问题,并向同学提出挑战。
2. 学生扩展学习,了解等差数列在数学和其他学科中的应用。
小学数学等差数列教案【优秀8篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!小学数学等差数列教案【优秀8篇】作为一位无私奉献的人·民教师,常常要根据教学需要编写教案,教案是实施教学的主要依据,有着至关重要的作用。
一、教学目标1. 知识与技能:使学生理解等差数列的概念,掌握等差数列的通项公式和前n 项和公式,能够运用等差数列的性质解决实际问题。
2. 过程与方法:通过探究等差数列的性质,培养学生抽象概括能力、逻辑思维能力和创新能力。
3. 情感态度与价值观:激发学生对数学的兴趣,培养学生的团队协作精神,使学生感受到数学在生活中的广泛应用。
二、教学重点与难点1. 教学重点:等差数列的概念、通项公式、前n项和公式及性质。
2. 教学难点:等差数列通项公式的推导和前n项和公式的应用。
三、教学准备1. 教师准备:教材、教案、PPT、例题及练习题。
2. 学生准备:预习等差数列相关知识,准备好笔记本和文具。
四、教学过程1. 导入新课:通过生活中的实例引入等差数列的概念,激发学生的学习兴趣。
2. 知识讲解:讲解等差数列的定义、性质、通项公式和前n项和公式,引导学生理解并掌握相关概念。
3. 例题解析:分析并解答典型例题,让学生体会等差数列在实际问题中的应用。
4. 课堂练习:布置练习题,让学生巩固所学知识,教师及时解答疑问。
5. 总结提高:对本节课的内容进行总结,强调等差数列的重要性质和应用。
五、课后作业1. 完成课后练习题,巩固等差数列的相关知识。
2. 查找生活中运用等差数列的实例,下节课分享。
3. 预习下一节课内容,做好学习准备。
六、教学评估1. 课堂讲解:关注学生的听课情况,观察学生对等差数列概念和公式的理解程度。
2. 练习题解答:检查学生对练习题的完成情况,了解学生对知识的掌握情况。
3. 课后作业:审阅课后作业,评估学生对课堂所学知识的消化吸收程度。
七、教学拓展1. 等差数列在实际生活中的应用:举例说明等差数列在金融、统计等方面的应用,拓宽学生的知识视野。
2. 等差数列与其他数列的关系:介绍等差数列与等比数列等其他数列的联系和区别,提高学生的数学素养。
八、教学反思1. 课堂讲解:反思教学过程中是否存在讲解不清楚、学生理解困难的问题,针对性地调整教学方法。
小学生等差数列的教案
等差数列的教案1
1、通过本节课的学习使学生理解并掌握等差数列的概念,能用定义判断一个数列是否为等差数列。
2、引导学生了解等差数列的通项公式的推导过程及思想,会求等差数列的公差及通项公式,能在解题中灵活应用,初步引入“数学建模”的思想方法并能运用;并在此过程中培养学生观察、分析、归纳、推理的能力。
3、在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力;通过阶梯性练习,提高学生分析问题和解决问题的能力。
三、教学重难点
重点:
①等差数列的概念。
②等差数列的通项公式的推导过程及应用。
难点:
①理解等差数列“等差”的特点及通项公式的含义。
②理解等差数列是一种函数模型。
四、学习者分析
普通高中学生经过一年的高中的学习生活,已经慢慢习惯的高中的学习氛围,大部分学生知识经验已较为丰富,且对数列的知识有了初步的接触和认识,已经熟悉由观察到抽象的数学活动过程,对函数、方程思想体会逐渐深刻,应用数学公式的能力逐渐加强。
他们的智力发展已到了形式运演阶段,具备了较强的抽象思维能力和演绎推理能力。
但也有一部分学生的基础较弱,学习数学的兴趣还不是很浓,所以我在授课时注重从具体的生活实例出发,注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展。
五、教学策略选择与设计
结合本节课的特点,我设计了从教法、学法两种方法对等差数列的通项公式进行推导,让学生更好的理解。
通过引入实例来启发学生,挺高学生的学习兴趣,是学生更加形象、愉快的去学习这堂课。
下面是我教学设计:
1.教法
⑴诱导思维法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性。
⑵分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性。
⑶讲练结合法:可以及时巩固所学内容,抓住重点,突破难点。
2.学法
引导学生首先从四个现实问题(数数问题、女子举重奖项设置问题、水库水位问题、储蓄问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列概念的特点,推导出等差数列的通项公式;可以对各种能力的同学引导认识多元的推导思维方法。
六、教学资源与工具设计
(一)学习环境:多媒体教室
(二)用到的资源:
1 查找有关等差数列的实例
2 写出上课要提到的问题
3 制作相关PPT课件
七、教学过程
教学环境教学内容与
教师活动学生活动设计意图或依据情境导入
在南北朝时期《张邱建算经》中,有一道题“今有十等人,每等一人,宫赐金以等次差降之,上三人先入,得金四斤,持出,下四人后入得金三斤,持出,中间三人未到者,亦依等次更给,问各得金几何,及未到三人复应得金几何“。
这个问题该怎样解决呢?
由学生观察分析并得出答案:在现实生活中,我们经常这样数数,从0开始,每隔5数一次,可以得到数列:0,5,___,___,___,___,?
水库的管理人员为了保证优质鱼类有良好的生活环境,用定期放水清理水库的杂鱼。
如果一个水库的水位为18cm,自然放水每天水位降低2.5m,最低降至5m。
那么从开始放水算起,到可以进行清理工作的那天,水库每天的水位组成数列(单位:m):18,15.5,13,10.5,8,5.5
思考:同学们观察一下上面的这两个数列: 0,5,10,15,20,① 18,15.5,13,10.5,8,5.5 ②看这些数列有什么共同特点呢?
倾听和观察分析,发表各自的意见。
小学生等差数列的教案
等差数列的教案2
【教学目标】
1.知识目标:理解等差数列定义,掌握等差数列的通项公式.
2.能力目标:培养学生观察、归纳能力,在学习过程中,体会归纳思想和化归思想并加深认识;通过概念的引入与通项公式的推导,培养学生分析探索能力,增强运用公式解决实际问题的能力.
3.情感目标:通过对等差数列的研究,使学生明确等差数列与一般数列的内在联系,渗透特殊与一般的辩证唯物主义观点,加强理论联系实际,激发学生的学习兴趣.
【教学重点】
①等差数列的概念;②等差数列的通项公式的推导过程及应用.
【教学难点】
①理解等差数列“等差”的特点及通项公式的含义;②等差数列的通项公式的推导过程.
【学情分析】
我所教学的学生是我校高一(10)班的学生(平行班学生),经过快一年的高中数学学习,大部分学生知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了较强的抽象思维能力和演绎推理能力,但也有一部分学生的基础较弱,学习数学的兴趣还不是很浓,所以我在授课时注重从具体的生活实例出发,注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展.
【设计思路】
1.教法
①诱导思维法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性.
②分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性.
③讲练结合法:可以及时巩固所学内容,抓住重点,突破难点.
2.学法
引导学生首先从三个现实问题(数数问题、水库水位问题、储蓄问题)概括出数组特点并抽象出等差数列的概念;接着就等
差数列概念的特点,推导出等差数列的通项公式;可以对各种能力的同学引导认识多元的推导思维方法.
用多种方法对等差数列的通项公式进行推导.
在引导分析时,留出“空白”,让学生去联想、探索,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清.
等差数列的教案3
教学目标:1、使学生进一步地明确等差(比)数列、等差(比)中顷的概念;
2、使学生进一步地熟练地掌握等差(比)数列的通项公式及推导公式;
3、使学生较灵活地应用等差(比)数列的定义及性质解决一些相关问题。
教学重点:等差(比)数列的定义、通项公式、性质的理解与应用。
教学难点:灵活应用等差(比)数列的定义及性质解决一些相关的问题。
教学准备:利用自习将思考题(一)(二)发放给学生,让他们先思考,教师解答学生在思考过程中出现的问题。
课型:专题复习课。
时间安排:45’×2
教学过程:
第一课时
一、回顾等差数列的有关基础知识
教法:1、指名学生回答等差数列的概念,等差中顷,通项公式,前几项求和公式。
2、教师点评,师生达成共识。
二、领悟“思考题(一)”
教法:1、以拖火车的形式指名学生回答思考题(一)的4个问题。
2、教师点评,师生达成共识。
⑴由思考1还可以得到这样的结论,在等差数列{an}中,
m+n
若 =k,则am+an=2ak(m,n,k∈N_)与性质:
在等差数列{an}中m+n=p+q→am+an=ap+aq(m,n,p,q∈N_)是一致的)。
⑵由思考题2还可以得到这样的变式:①an=am+(n—m)d或am=an+(m—n)d
an—a1
②d=
n—1
⑶由思考题3、4可以得到这样的性质:若数列{an}为等差数列,其前几项和为Sn,则有如下性质:Sn,S2n—Sn,S3n—S2n……也成等差数列,公差为nd2。
三、学生操练
教法:1、指名学生板演,其余学生思考,教师巡回指导,着重关注学困生。
2、教师点评,师生达成共识:巧妙地应用等差数列的性质(或通项公式的变形式)求解,能简化解题过程。
四、布置作业:1、第6、7题。
2、思考题(二)
第二课时
一、回顾等比数列的.有关基础知识
教法:1、指名学生回答“等比数列的概念,等比中项,通项公式,前n项求和公式”。
2、教师点评,师生达成共识。