青岛版初一数学上册第一章知识点
- 格式:doc
- 大小:15.00 KB
- 文档页数:1
Fpg
Fpg 初一上數學知識點匯總第一章基本の幾何圖形
現實生活中の物體我們只管它の形狀、大小、位置而得到の圖形,叫做幾何圖形。
長方體、正方體、球、圓柱、圓錐等都是立體圖形,此外棱柱、棱錐也是常見の立體圖形。
許多立體圖形是由一些平面圖形圍成の,將它們適當の剪開,就可以展開成平面圖形。
幾何體也簡稱體。
長方體、正方體、圓柱、圓錐、球、棱柱、棱錐等都是幾何體。
包圍著體の是面。
面有平の面和曲の面兩種。
面和面相交の地方形成線。
線和線相交の地方是點。
幾何圖形都是由點、線、面、體組成の,點是構成圖形の基本元素。
“點動成線”、“線動成面”、“面動成體”,注意要會舉實例。
線段有兩個端點。
將線段向一個方向無限延伸就得到射線,射線有一個端點。
將線段向兩個方向無限延伸就得到線段,線段有兩個端點。
注意:線段、射線、直線の表示方法,要會畫圖形。
點與直線の位置關系有兩種:
1. 點A在直線AB上(直線AB經過點A)
2. 點P在直線AB外(直線AB不經過點P)
直線公理:經過兩點有一條直線,並且只有一條直線。
兩點確定一條直線。
線段公理:兩點の所有連線中,線段最短。
簡單說成:兩點之間,線段最短。
兩點之間線段の長度,叫做這兩點之間の距離。
線段AB分成相等の兩條線段AM與MB,點M叫做線段ABの中點。
類似の還有線段の三等分點、四等分點等。
青岛版七年级数学上册重要概念提纲
本文档总结了青岛版七年级数学上册的重要概念,帮助学生更好地掌握该学期的数学知识。
第一章:整数和小数
- 整数的概念及性质
- 整数的加法和减法
- 小数的概念及性质
- 小数的加法和减法
第二章:有理数
- 有理数的概念及性质
- 有理数的大小比较
- 有理数的加法和减法
- 有理数的乘法和除法
第三章:代数式与运算
- 代数式的概念及性质
- 代数式的加法和减法
- 代数式的乘法和除法
- 代数式的应用
第四章:图形与直角坐标系
- 图形的分类及性质
- 直角坐标系的概念和用法
- 点的坐标表示和计算
- 图形的对称性和变换
第五章:平面直角坐标系
- 平面直角坐标系的导入
- 直角坐标系中的距离和中点
- 二维平面图形的表示和性质
- 直线的方程和斜率
第六章:方程与不等式
- 方程的概念及解法
- 一元一次方程的应用
- 一元一次不等式的概念及解法- 一元一次不等式的应用
第七章:数据的收集与处理
- 调查数据的搜集和整理
- 数据的图表表示和分析
- 平均数的计算和应用
- 统计数据的解读和应用
第八章:图形的性质与变换
- 二维图形的角和边
- 图形的相似和全等
- 图形的旋转和平移
- 图形的投影和视图
第九章:比的概念与计算
- 比的概念及性质
- 比的计算和比例
- 倍数和百分数
- 比例的应用和解题方法
这份文档提供了青岛版七年级数学上册的重要概念提纲,希望对学生们学习数学有所帮助。
《线段、射线和直线》知识点解读知识点一:直线及其表示方法1、直线的概念一根拉得很紧的线,给我们以直线的形象。
也就是说,直线是直的,并且向两方无限延伸的。
代数中的数轴就是直线。
说明:直线是一个没有定义的原始概念,这里是结合实物,描述了直线的意义。
在几何中研究直线时,要注意它有“笔直”和“向两方无限延伸”两个特征,所以直线既无起点,又无终点,也无所谓长短粗细,即直线有延伸性,所以它不可度量。
2、直线的表示方法(1)可用小写字母表示,如图1的直线可记作“直线a";(2)也可用在这条直线上的两个点来表示,如图2的直线可记作“直线AB"或“直线BA”。
说明:(1)表示直线的两个字母没有顺序性;(2)表示直线时,在字母的前面一定要写上“直线”两字。
3、直线的基本性质经过两点有一条直线,并且只有一条直线(或者说两点确定一条直线)。
4、点与直线的位置关系(1)点在直线上,或者说直线经过这个点,如图3中,点A在直线l上,也可说成是直线l经过点A.(2)点在直线外,或者说直线不经过这个点,如图3中,点P在直线l外,也可以说成是直线l不经过点P.例1、判断题(1)直线a比直线b长。
()(2)延长直线CD,使它经过点P。
()()(3)直线a与直线b有两个不同的公共点A、B,那么直线a与直线b重合。
(4)因为两点确定一条直线,所以任何四点都不可能在一条直线上。
()思路点拨:根据直线的意义与性质来判断。
解:(1)错,因为直线本来就是向两方无限延伸的,故不可以比较谁长谁短。
(2)错,直线本来就是向两方无限延伸的。
(3)对,由两点确定一条直线,可知直线a与直线b是同一条直线。
(4)错,当这四点共线时,过这四点可以画一条直线。
剖析:若对直线的性质理解得不深不透,并没有分类讨论的思想,就不能得出正确的结果。
知识点二:射线及其表示方法1、射线的概念直线上的一点和它一旁的部分叫做射线,这点叫做射线的端点。
说明:射线是直线的一部分,它只有一个端点,可向一个方向无限延伸。
青岛版初一数学上册第1章基本的几何图形知识点1.1 我们身边的图形世界几何图形:从实物中抽象出来的各种图形,包括立体图形和平面图形。
立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。
详细知识点请点击gt;gt;gt;gt;gt;青岛版七年级数学我们身边的图形世界知识点1.2 几何图形第一类:柱体;包括:圆柱和棱柱,棱柱又可分为直棱柱和斜棱柱,棱柱体按底面边数的多少又可分为三棱柱、四棱柱、N棱柱;棱柱体积统一等于底面面积乘以高,即V=SH,第二类:锥体;包括:圆锥体和棱锥体,棱锥分为三棱锥、四棱锥以及N棱锥;棱锥体积统一为V=SH/3,详细知识点请点击gt;gt;gt;gt;gt;青岛版七年级数学上册几何图形知识点1.3 线段、射线和直线1.直线:一根拉得很紧的线,就给我们以直线的形象,直线是直的,并且是向两方无限延伸的。
一条直线可以用一个小写字母表示,如直线l;2.射线:直线上一点和它一旁的部分叫做射线。
这个点叫做射线的端点。
一条射线可以用端点和射线上另一点来表示,如射线l或射线OA;详细知识点请点击gt;gt;gt;gt;gt;青岛版七年级数学上册线段射线和直线知识点1.4 线段的比较与作法射线:1、射线的定义:直线上一点和它们的一旁的部分叫做射线。
2、射线的特征:“向一方无限延伸,它有一个端点。
”详细知识点请点击gt;gt;gt;gt;gt;青岛版七年级数学上册线段的比较与作法知识点基本的几何图形知识点的全部内容就是这些,更多的精彩内容请点击初一数学知识点栏目了解详情,预祝大家在新学期可以更好的学习。
第一章基本的几何图形1.1我们身边的图形世界1.体的概念如果对于我们看到的物体,只研究它们的形状、大小和位置关系,而不考虑颜色、质量、原料等其他性质时,就得到各种几何体,几何体简称体。
平面与曲面平面:平的面,(1)没有厚薄,(2)没有边界,(3)向四周无限延展。
曲面:曲的面2.几何体的分类常见的几何体通常分为三类:柱体,锥体和球体。
柱体包括圆柱和棱柱,结构特征是上下底面是两个平行且形状相同,大小相等的面,圆柱的底面是圆,棱柱的底面是多边形。
锥体包括圆锥和棱锥,圆锥的底面是圆,底面是多边形。
3.体与面的关系体是由面围成的。
包括只含有平面的几何体(如长方体,正方体等棱柱,棱锥)与只含有曲面的几何体(如球),既含有平面又含有曲面的几何体,(如圆柱,圆锥)习题:1.说出下列几何体的名称:(1)2.下列实物形状类似于哪种几何体?茶叶桶——(),蛋糕帽——(),足球——(),漏斗——()3.圆柱由几个面组成?有几个曲面?有几个平面?4.圆锥由几个面组成?有几个曲面?有几个平面?1.2几何图形1.几何图形:点、线、面、体以及它们的组合都是几何图形。
2.点:线与线的交接处是点,点是组成几何图形的基本元素。
在长方体或正方体中,棱与棱的公共点叫做长方体或正方体的顶点。
3.线:一般地,两个面的交接处是一条线,线可以是直的,也可以是曲的。
(1)长方体和正方体中,相邻两个面的交接处是一段直的线,叫做棱。
(2)圆柱和圆锥中,侧面与底面的交接处都是圆,圆是一条封闭的曲线。
4.在数学上,点无大小,线无粗细,面无厚薄。
5.点、线、面、体之间的关系:点动成线,线动成面,面动成体。
6.几何图形的分类:平面图形与立体图形(1)立体图形:如果一个几何图形上的点不都在同一平面内,那么这样的几何图形叫做立体图形(2)平面图形:如果一个几何图形上所有的点都在同一个正方体的表面展开图:11种(1)一四一型:中间四连方,两侧各一个共6种(2)二三一型:中间三连方,二一两侧放共3种(3)二二二型:中间二连方,台阶逐级上共1种(4)三三型:两排三连方,一日放光芒共1种8.正方体表面展开图折成正方体时,相对的面有以下规律:“隔一相对法”(1)若正方体中相对的两个面在展开图的同行或同列中,则它们中间一定隔着一个正方形;(2)若展开图中正方形A在同行或同列中隔正方形C 的位置是空白的,则与该空白位置相邻的正方形B与正方形A是相对面习题:1.正方体有几个面?几个顶点?几条棱?2.五棱柱有几个面?几个顶点?几条棱?3.流星划过夜空留下的痕迹可用什么定理解释?风扇旋转的过程运用什么定理解释?硬币在桌面快速旋转,形成一个球的印象,运用了什么定理?4.正方体的平面展开图都分几种类型?5.找出下列正方体平面展开图的对立面?1.3线段、射线和直线1.线段(1)特征:①有两个端点;②有长短(即可度量);③无方向(2)表示方法:①用表示线段端点的两个大写字母表示,如线段AB或线段BA(字母无序)②用一个小写字母表示,如线段a2.射线:将线段向一个方向无限延伸就得到射线(1)特征:①有一个端点;②无长短(即可度量);③有方向(只向一个方向无限延伸)(2)表示方法:①用两个大写字母表示,第一个字母表示射线的端点,第二个字母是射线上任意一点,与字母排序有关②用一个小写字母表示,如射线a3.直线:将线段向两个方向无限延伸就得到直线(1)特征:①无端点;②无长短(即可度量);③无方向(2)表示方法:①用直线上任意两个点的大写字母表示,与字母排序无关②用一个小写字母表示,如直线a4.直线、射线、与线段的关系:射线、线段都是直线的一部分,线段向一个方向无限延伸就得到射线,向两个方向无限延伸就得到直线5.点与直线的位置关系:(1)点在直线上(或直线经过点);(2)点在直线外(或直线不经过点)6.直线的确定:两点确定一条直线7.两条直线的关系:平面上的两条直线有相交(有一个交点)与不相交(无交点)两种位置关系如果两条直线经过同一个点,就称这两条直线相交。
第一章基本的几何图形1.2 几何图形一、几何图形现实生活中的物体我们只管它的形态、大小、位置而得到的图形,叫做几何图形。
1.基本元素:点、线、面、体。
⑪点动成线,线动成面,面动成体。
(体是由面围成的,很多立体图形是由一些平面图形围成的,将它们适当地剪开,就可以绽开成平面图形。
面有平面和曲面)(举例)笔写字、汽车在雨中行驶,雨刷器来回摇摆成面、硬币旋转会产生一个圆球。
⑫线与线相交(点)面与面相交(线)棱顶点(长方体,正方体)2. 分类长方体、正方体、球、圆柱、圆锥等都是立体图形。
此外棱柱、棱锥也是常见的立体图形。
长方形、正方形、三角形、圆等都是平面图形。
几何图形有平面图形和立体图形(两者之间的转化)几何体:①柱体(圆柱和棱柱)②锥体(圆锥和棱锥)③球④台体3.正方体的平面绽开图有“11种”(至少剪7条棱正方体展成平面图形)考点:1.识别常见的几何体1.在六角螺母、乒乓球、圆形烟囱、书本、热水瓶胆等物体中,形态类似于棱州钦丽美 爱我柱的有___1__个,球体有____1_个。
2.圆锥由__2__个面围成,其中__1____个平面,__1___个曲面.3.写出你所熟识的、由三个面围成的几何体的名称是 圆柱4.六棱柱由几个面围成( C )A.6个B.7个C.8个D.9个5.下列平面绽开图是由5个大小相同的正方形组成,其中沿正方形的边不能折成无盖小方盒的是(B )6.一个正方体的每个面都有一个汉字,其平面绽开图如图所示,则该正方体中与“美”字相对的面上的字是7.如图,各图中的阴影图形围着直线旋转360度,各能形成怎样的立体图形。
8.图甲能围成 圆锥 ;图乙能围成 三棱锥 ;图丙能围成 长方体 。
A B C D 丙甲乙1.3 线段、射线、直线线段有两个端点。
将线段向一个方向无限延长就得到射线,射线有一个端点。
将线段向两个方向无限延长就得到线段,线段有两个端点。
1.线段、射线、直线的区分和联系.留意:线段、射线、直线的表示方法,要会画图形。
初一数学上册总复习第一章基本的几何图形一、几何图形1.基本元素:点、线、面、体。
⑴点动成线,线动成面,面动成体。
(体是由面围成的;面有平面和曲面)⑵线与线相交(点)面与面相交(线)棱顶点2.分类几何图形有平面图形和立体图形(两者之间的转化)几何体:①柱体(圆柱和棱柱)②锥体(圆锥和棱锥)③球④台体……3.正方体的平面展开图有“11种”(至少剪7条棱正方体展成平面图形)“一四一型”(有6种)“二三一型”(有3种)“二二二型”“三三型”(有1种)(有1种)不能出现“田”字、“凹”字和“7”字考点:1.识别常见的几何体①在六角螺母、乒乓球、圆形烟囱、书本、热水瓶胆等物体中,形状类似于棱柱的有个,球体有个。
②圆锥由个面围成,其中个平面,个曲面. 2.平面图形旋转得到立体图形③将如图所示的直角梯形绕直线l 旋转一周,得到的立体图形是( ).3.正方体的展开与折叠④下列图形中为正方体的平面展开图的是()A.B.C.D.⑤如图,是一个正方体的表面展开图,则原正方体中“梦”字所在的面相对的面上标的字是( )二、线段、射线、直线延伸性端点长度图形表示作图描述线段射线直线2.递推①五个人若其中每两个人都握一次手,他们总共握多少次手?②往返于甲、乙两地的火车中途要停靠三个站,则有( )种不同的票价(来回票价一样),需准备()种车票.③以图中的点A、B、C、D、E为端点的线段条数为3.延长线与反向延长线4.点与直线的位置关系:①点在直线上②点在直线外点P在直线a上(直线a经过点P) 点P在直线a外(直线a不经过点P)5.直线的性质:经过两点有且只有一条直线。
即画图:6.平面上两条直线的位置关系:和7.线段的大小比较方法有:①测量法②叠合法③截取法(圆规)8.线段的性质:两点的所有连线中,线段最短。
即:两点之间线段的长度,叫做这两点间的距离。
9.线段及线段和差的画法:(尺规作图)10.线段的中点:线段分成相等的两条线段与,点M叫做线段的中点。
基本的几何图形知识点回顾:知识点一:几何体的认识1.我们常见的几何体有:正方体、长方体、圆锥、圆柱、棱柱、棱台、棱锥、球,其中____________属于柱体, _________属于锥体。
2. 像棱台、棱锥的面都是______的,这样的几何体称多面体.同步测试:1.下列判断正确的有()①长方体是棱柱,正方体不是长方体②正方体是棱柱,长方体也是棱柱③正方体是柱体,圆柱也是柱体④正方体不是柱体,圆柱是柱体A.1个B.2个C.3个D.4个2.下列几何体不属于柱体的有()A.正方体B.长方体C.圆锥D.圆柱知识点二:几何体的展开与平面图形的折叠:1.数学上所说的平面没有边界,可以向四面八方无限_________.2.三角形、正方形、长方形、平行四边形、梯形、圆等都是__________. 同步测试:1.下列图形折叠后的几何体是五棱柱的是()2.下列图形不是四棱柱的展开图的是()知识点三:几何体的基本要素:点、线、面、体1. 天上一颗颗闪烁的星星给我们以“______”的形象;划过夜空的流星给我们以“_________”的形象;打开的折扇给我们以“__________”的形象;宾馆里旋转的大门给我们以“___________”的形象.几何图形是由_____、______、______、______组成的.2.一个正方体共有______个面,______条棱,______个顶点.同步测试:1.将三角形绕直线l旋转一周,可以得到图1所示的立体图形的是().A.B.C.2.五棱柱的棱数和侧面数分别是()A.5,5 B.15,5 C.10,7 D.5,7知识点四:线段、直线、射线1. “拔河时,拉直的绳子给我们以________的形象.”把线段向两方无限延伸,就得到________;将线段向一个方向无限延伸就形成了__________;射线有____个端点,线段有____个端点,而直线________端点.2. 线段、直线、射线都可以用两个大写的字母或一个小写的字母表示,而表示射线时表示端点的大写字母必须写在________.同步测试:1.下列说法中,错误的是().A.经过一点的直线可以有无数条 B.经过两点的直线只有一条C.一条直线只能用一个字母表示 D.线段CD和线段DC是同一条线段2.下列图形中,能够相交的是( ).知识点五:线段的基本性质,线段的度量与比较1.经过一点可以画______条直线,经过两点能且只能画_______条直线,也就是说_______确定一条直线.如果两条直线经过同一个点,那么这两条直线________,这个点叫做这两条直线的________.2.两点之间的所有连线中,_______最短;两点之间的线段的长度叫做这两点之间的________.3.如图2,如果点M把线段AB分成相等的两条线段AM与BM,那么点M叫做这条线段AB的________,记作AM = BM =21AB.同步测试:1. 线段AB的长为8cm,点C为线段AB上任意一点,若M为线段AC的中点,N为线段CB的中点,则线段MN的长是_________.2.已知点A、B、C都是直线l上的点,且AB=5cm,BC=3cm,那么点A与点C之间的距离是().A.8cm B.2cm C.8cm或2cm D.4cmA.B.C.D.图1。
初一上数学知识点汇总
第一章基本的几何图形
现实生活中的物体我们只管它的形状、大小、位置而得到的图形,叫做几何图形。
长方体、正方体、球、圆柱、圆锥等都是立体图形,此外棱柱、棱锥也是常见的立体图形。
许多立体图形是由一些平面图形围成的,将它们适当的剪开,就可以展开成平面图形。
几何体也简称体。
长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体。
包围着体的是面。
面有平的面和曲的面两种。
面和面相交的地方形成线。
线和线相交的地方是点。
几何图形都是由点、线、面、体组成的,点是构成图形的基本元素。
“点动成线”、“线动成面”、“面动成体”,注意要会举实例。
线段有两个端点。
将线段向一个方向无限延伸就得到射线,射线有一个端点。
将线段向两个方向无限延伸就得到线段,线段有两个端点。
注意:线段、射线、直线的表示方法,要会画图形。
点与直线的位置关系有两种:
1. 点A在直线AB上(直线AB经过点A)
2. 点P在直线AB外(直线AB不经过点P)
直线公理:经过两点有一条直线,并且只有一条直线。
两点确定一条直线。
线段公理:两点的所有连线中,线段最短。
简单说成:两点之间,线段最短。
两点之间线段的长度,叫做这两点之间的距离。
线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点。
类似的还有线段的三等分点、四等分点等。