最新整式的乘除经典讲义(可直接用)资料
- 格式:doc
- 大小:88.00 KB
- 文档页数:5
整式的乘除(讲义)课前预习1. 整式的分类:___________________________________⎧⎧⎪⎪⎨⎪⎪⎪⎪⎩⎨⎧⎪⎪⎪⎨⎪⎪⎪⎩⎩定义:数字与字母的乘积组成的代数式单项式系数:单项式前面的次数:所有字母的整式定义:几个单项式的和项:组成多项式的每个单项式次数:项的次数2. ________________________________________________叫做同类项;把同类项合并成一项叫做合并同类项;合并同类项时,________________________________________________.3. 乘法分配律:()a b c +=_______________.4. 类比迁移:老师出了一道题,让学生计算52x y x ÷.小聪是这么做的:55232x y x x x x x y x y x x y x x x ⋅⋅⋅⋅⋅÷===⋅ 请你类比小聪的做法计算:22282m n m n ÷.知识点睛1. 单×单:_______乘以________,_________乘以________.2. 单×多:根据________________,转化为单×单.3. 多×多:握手原则.4. 单÷单:系数除以系数,字母除以字母.5. 多÷单:借用乘法分配律.精讲精练1. ①■342xy xy z ⋅=_______; ②2323(2)x y x y ⋅-=_______; ③231(4)2x y y ⎛⎫-⋅-= ⎪⎝⎭______;④322(3)(2)a a -⋅-; ⑤332(2)(2)x xy xy ⋅-⋅-.2. ①222(53)ab ab a b ⋅+______________________; ②221232ab c ab ab ⎛⎫-⋅= ⎪⎝⎭____________________; ③31(2)14a a ⎛⎫-⋅-= ⎪⎝⎭_________________;④222(2)()x y xy -⋅=_________________________; ⑤2222(3)x y z x x y -+-⋅=_________________________.3. 计算:①(34)(34)x y x y +⋅-; ②()(321)m n m n -⋅-+;③(2)(32)m n m n --⋅-; ④2(2)x y -;⑤()()a b c a b c +-⋅-+.4. 计算:①2 56(13)x x x x --+; ②210(23)(42)x x x --+.5. ①2212a b c ab ÷=_____;②3532(3)(0.5)m n m n -÷-=______; ③62(2)()xy xy -÷=______;④22(2)(_______)2a b a -÷=; ⑤4348()()3a b a b ⎡⎤-÷-=⎢⎥⎣⎦___________; ⑥23243(2)(7)14x y xy x y ⋅-÷.6. ①532(46)(2)x x x -÷-=_____________; ②2211322x y xy xy xy ⎛⎫⎛⎫-+÷-= ⎪ ⎪⎝⎭⎝⎭_______________; ③234432214633ab a b a b ab ⎛⎫⎛⎫-+÷-= ⎪ ⎪⎝⎭⎝⎭___________________; ④23222()(2)a b a b ab -÷=_____________; ⑤43522(2)()m n m n mn --÷=________________; ⑥23(____________________)3231a a a ÷=-+-.7. 计算:①423322223(3)(2)(2)4a b ab a b a b a b --⋅---÷;②322()(2)(48)(4)a b a b ab a b ab +-+-÷-;③2222(1)(1)(2)a a a --++;④433222113()(2)22a a a a a a a ⎛⎫⎛⎫-+÷--÷⋅+ ⎪ ⎪⎝⎭⎝⎭.【参考答案】课前预习1.数字因数,指数和,多项式,次数最高2.所含字母相同,并且相同字母的指数也相同的项,把同类项的系数相加,字母和字母的指数不变3.ab +ac4.4n知识点睛1.系数,系数;字母,字母2.乘法分配律精讲精练1. ①248x y z②536x y - ③242x y④818a - ⑤7432x y2. ①10a 2b 3+ 6a 3b 2 ②232213a b c a b - ③4122a a +-④44252x y x y - ⑤3234226x y x y z x y --+3. ①22916x y -②22352m mn m n n ++-- ③2262m mn n -++④2244x xy y -+ ⑤2222a b bc c -+-4. ①32618x x x -+-②2286x x ++ 5. ①2abc②36n ③44 64x y④322a b ⑤66a b -⑥324x y - 6. ①323x x -+②621x y -+- ③22312182a b a b -- ④11b 44- ⑤232m n m --⑥532693a a a +-- 7. ①424a b -②223a ab b +- ③251a --④4361a a ---。
第一章:整式的乘除1.1同底数幂的乘法复习回顾:复习七年级上册数学课本中介绍的有关乘方运算知识:探索新知1.利用乘方的意义,计算103×102. 解:103×102=(10×10×10)×(10×10)(幂的意义)=10×10×10×10×10 (乘法的结合律)=105. 2.建立幂的运算法则将上题中的底数改为a ,则有 a 3·a 2=(aaa)·(aa)=aaaaa =a 5, 即a 3·a 2=a 5=a 3+2. 用字母m ,n 表示正整数,则有即a m ·a n =a m+n .3.剖析法则思考以下问题:(1)等号左边是什么运算? (2)等号两边的底数有什么关系? (3)等号两边的指数有什么关系?(4)公式中的底数a 可以表示什么? (5)当三个以上同底数幂相乘时,上述法则是否成立? 请大家试着叙述这个法则:应用提高探讨pn m a a a ⋅⋅等于什么? 课堂训练(1)-a 2·a 6 (2)(-x)·(-x)3 (3)y m ·y m+1 (4)()3877⨯-(5)()3766⨯- (6)()()435555-⨯⨯- (7)()()b a b a -⋅-2(8)()()b a a b -⋅-2(9)x 5·x 6·x 3 (10)-b 3·b (11)-a·(-a)3 (12)(-a)2·(-a)3·(-a)1.2 幂的乘方与积的乘方(一) 复习回顾复习已学过的幂的意义及幂运算的运算法则 1、幂的意义 2、.nm nmaa a +=⋅(m 、n 为正整数)同底数幂相乘,底数不变,指数相加。
探索新知根据已经学习过的知识,回忆并探讨以下实际问题:1. 乙正方体的棱长是 2 cm, 则乙正方体的体积 V 乙 = cm 3 。
第11讲 多项式除以单项式学习目标:使学生掌握多项式除以单项式的法则,并能熟练地运用法则进行计算。
学习重点:运用多项式除以单项式的法则进行计算。
学习难点:多项式除以单项式的法则及其导出过程。
学习过程:1、多项式除以单项式的法则:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加。
本质:把多项式除以单项式转化成单项式除以单项式。
多项式除以单项式应注意以下几个问题。
(1)多项式除以单项式所得商的项数与这个多项式的项数相同,不要漏除;(2)要熟练地进行多项式除以单项式运算,必须掌握它的基本运算,幂的运算性质,是整式乘除法的基础,只有抓住关键的一步,才能准确地进行多项式除以单项式的运算。
(3)符号仍是运算中的重要问题,用多项式的每一项除以单项式时,注意每一项的符号和单项式的符号。
例1. 计算:(1) a a a 4)420(2÷-; (2) )6()81224(22xy xy xy y x -÷+-例2. 化简求值:已知20082=-y x ,求[]x y x y x y x y x 8)25)(2()23)(23(÷-+--+的值小结:1、首先根据多项式除以单项式法则,把多项式除以单项式“转化”为单项式除以单项式,再根据单项式除以单项式的法则进行计算。
当被除式或除式中含有乘方运算时,应先算乘方,再算除法。
2、(l)当除式的系数为负数时,商式的各项符号与被除多项式各项的符号相反,要特别注意;(2)多项式除以单项式是利用相应法则,转化为单项式除以单项式而求得结果的. 基础训练1.计算题:(1)b a abx x b a 22233)39(÷÷(2)352433553)1094354(ab b a b a b a ÷-+-(3)242322429]21)3(4)3[(b a b ab a a ab ÷⋅⋅-⋅-(4)342333(642)(2)x y z x y z xy xy -+÷(5)])(2[])()(3)(2[3345b a b a b a b a +÷--++-+(6)22()()()x y x y xy ⎡⎤+--÷⎣⎦(7))3()]()([2222b a b a b a ab a ab -÷---(8)4232222(36243)(6)x y x y x y x y -+÷-(9))7()91847728(m mv mr mt mn -÷----(10)32(28147)7a a a a -+÷2.计算题:(1))a 43(a)3a 2a 41(23-÷+- (2)2(2)(4)82x y y y x x x ⎡⎤+-+-÷⎣⎦(3)34232193()()5105a x a x ax --÷- (4)2()()()2x y x y x y x ⎡⎤-++-÷⎣⎦(5)()()426533x x x x -+-÷- (6))3()]()([2222b a b a b a ab a ab -÷---(7))31()369(33334354x a x a x a xa -÷--(8)5432(32168)(2)x x x x -+÷-(9)x x x y y y x 2]8)4()2[(2÷-+-+ (10)342322(72369)(9)x y x y xy xy -+÷-3.填空题: (1)小亮与小明在做游戏,两人各报一个整式,小明报的被除式是322x y xy -,商式必须是2xy ,则小亮报一个除式是 。
第151讲整式的乘除法专题一、知识框架二、本节重点1.幂的乘法运算:(1)同底数幂的乘法:同底数幂相乘底数不变指数相加.(注意当底数互为相反数时要化成同底数幂,再运用同底数幂乘法法则进行运算).表示:m n m na a a+⋅=(,m n都是整数)(2)幂的乘方:幂的乘方,底数不变指数相乘.表示:()n m mna a=(,m n都是整数);逆运算:()()n mmn m na a a==(3)积的乘方:积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.表示:()n n nab a b=(n是整数);逆运用:()nn na b ab=2.同底数幂的除法:同底数幂相除,底数不变,指数相减.表示:m n m na a a-÷=(0,,a m n≠都是整数).3.整式的乘法运算:(1)单项式乘法法则:单项式相乘,把它们的系数,相同字母分别相乘,对于只在一个单项式里含有字母,连同它的指数作为积的一个因式.(2)单项式与多项式相乘:单项式乘以多项式,是通过乘法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.(3)多项式与多项式相乘:多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加.4.整式的除法运算:(1)单项式除以单项式:单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;(2)多项式除以单项式:多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加,其特点是把多项式除以单项式转化成单项式除以单项式,所得商的项数.三、学生笔记四、经典题型题型一:幂的乘法运算1. 计算(1)()()()3225a a a a -⋅-⋅-⋅ (2)()()()24s t t s s t -⋅-⋅-(3)()()3224233a b ab ⋅- (4)()()()()32232228x y x x y +⨯-⨯-(5)()()2003200231515530.12522135⎛⎫⎛⎫⋅+⋅ ⎪ ⎪⎝⎭⎝⎭ (6)()()23m n x y y x ⎡⎤⎡⎤-⋅-⎣⎦⎣⎦2. (1)如果1128164n n ⋅⋅=,则_________n =.(2)已知()()535,7x y x y +=+=,则()812x y +的值为_____________. (3)已知333,2m n a b ==,求()()332242m n m n m n a b a b a b +-⋅⋅⋅的值_________________. 3. 若()22nab -与29m a b -互为相反数,求m n 的值.4. (1)已知31416181,27,9a b c ===,则,,a b c 的大小关系____________________.(2)比较5554443333,4,5的大小______________________.题型二:同底数幂的除法5. (1)()()()()33323423a a a a ⎡⎤⋅-÷÷⎢⎥⎣⎦(2)1381x =6. 用科学记数法表示下列各数:(1)0.0000512(2)-0.00000717. 计算:(用科学记数法表示结果)(1)()()479101810⨯÷-⨯ (2)()()347210210---⨯÷-⨯8. 若34,97x y ==,则23x y -的值____________.9. 已知()321x x +-=,整数x 的值为________________.10. 计算21103,105αβ--==,求6210αβ+的值.题型三:整式的乘法运算11. (1)()()3252345a a a a -+-⋅-(2)()()2221354a b ab a b a ab b ⎡⎤+--⎣⎦(3)()()()3121x x x x +---+ (4)()()()()221124x x x x -+---12. (1)已知56x y +=,求2530x xy y ++的值.(2)已知+5,6x y xy ==,求22x y xy +的值.13. ()()222762x xy y x y x y A x y B -----=-+++.求__________,___________A B ==.14. 若多项式28x px ++和多项式23x x q -+的乘积中不含3x 和2x 项,求p 和q 的值.15. 先化简,再求值:()()()()122322x y x y x y x y ----+,其中22,5x y =-=.题型四:整式的除法运算16. (1)()35223123a b c a b -÷- (2)232443232113248a b c ab c a b ⎡⎤⎛⎫⎛⎫⎛⎫--÷÷-⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦17. 化简求值:()()()2544545x y y x y x ⎡⎤+-+÷-⎣⎦,其中1,3x y =-=.18. 若x 取整数,则使分式6321x x +-的值为整数的x 值有___________个. 19. 若13x x+=,则2421x x x ++的值为_______________.。
整式的乘除讲义知识总结:1、知识框图单项式式多项式同底数幂的乘法幂的乘方积的乘方幂运算同底数幂的除法零指数幂负指数幂整式的加减单项式与单项式相乘单项式与多项式相乘整式的乘法多项式与多项式相乘整式运算平方差公式完全平方公式单项式除以单项式整式的除法多项式除以单项式一、同底数幂的乘法1、n个相同因式(或因数)a相乘,记作a n,读作a的n次方(幂),其中a为底数,n为指数,a n的结果叫做幂。
2、底数相同的幂叫做同底数幂。
3、同底数幂乘法的运算法则:同底数幂相乘,底数不变,指数相加。
即:a m﹒a n=a m+n。
4、此法则也可以逆用,即:a m+n = a m﹒a n。
5、开始底数不相同的幂的乘法,如果可以化成底数相同的幂的乘法,先化成同底数幂再运用法则。
二、幂的乘方1、幂的乘方是指几个相同的幂相乘。
(a m)n表示n个a m相乘。
2、幂的乘方运算法则:幂的乘方,底数不变,指数相乘。
(a m)n =a mn。
3、此法则也可以逆用,即:a mn =(a m)n=(a n)m。
三、积的乘方1、积的乘方是指底数是乘积形式的乘方。
2、积的乘方运算法则:积的乘方,等于把积中的每个因式分别乘方,然后把所得的幂相乘。
即(ab)n=a n b n。
3、此法则也可以逆用,即:a n b n =(ab)n。
四、三种“幂的运算法则”异同点1、共同点:(1)法则中的底数不变,只对指数做运算。
(2)法则中的底数(不为零)和指数具有普遍性,即可以是数,也可以是式(单项式或多项式)。
(3)对于含有3个或3个以上的运算,法则仍然成立。
2、不同点:(1)同底数幂相乘是指数相加。
(2)幂的乘方是指数相乘。
(3)积的乘方是每个因式分别乘方,再将结果相乘。
五、同底数幂的除法1、同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即:a m ÷a n =a m-n(a ≠0)。
2、此法则也可以逆用,即:a m-n = a m ÷a n(a ≠0)。
整式的乘除复习讲义复习整式的乘除复习讲义1. 知识结构总结:2. 公式总结:(1)幂的运算性质:① (、为正整数) ② (为正整数) ③ (、为正整数) ④(、为正整数,且)() (,为正整数)(2)整式的乘法公式: ①②③3. 科学记数法,其中4. 思想方法总结(1)化归方法 (2)整体代换的方法 (3)逆向变换的方法5. 需注意的问题(1)乘法公式作为多项式乘法的特殊形式,在今后学习中有着广泛应用,要注意这些公式的结构特点,以便正确使用公式。
(2)注意运算中的符号,区别与,,【典型例题】⒈幂的运算⑴ 23653p p ⋅= ; ⑵ ()()236a ab -⋅-= ;⑶224)2()6(a b a -⋅-=⑷ = ⑸()()73410105102⋅⨯⋅⨯=2.乘法公式计算:⑴(2x+3)(3x-1) ⑵t 2-(t+1)(t-5) ⑶ (3m-n)(n+3m)()325a a ÷⑷ (a+2b)2⑸(3x-2y)2 ⑹例, 计算:1、(a -2b)2-(a +2b)2 2、(a +b +c)(a -b -c)练习,1、 2、20082-2009×2007 3、 (2a-b)2(b+2a)23.整式的乘除 [例1] 已知,求的值。
[例2] 已知,,求的值。
[例3]已知,求的值。
[例4] 已知,,求的值。
例5练习1 若a m =10 b n =5求2m +b 3n3己知x+5y=6 , 求 x 2+5xy+30y 的值。
七,小结:本节重点符号语言, 运算法则, 公式, 转化,整体思想。
22,b a b +-已知a+b=5 ab=3 求a 的值22111a a a a-=+2 已知求的值32232242()55x y x y x y -+÷()2a b c ++3.4. (为偶数)5. 0.00010490用科学记数法表示为6.7.8.9.10. 若,那么二. 选择题:1. 若,,则()A. 4B. 5C. 8D. 162. 如果,那么=()A. B. C. D.3. 所得结果是()A. B. C. D. 24. 已知为正整数,若能被整除,那么整数的取值范围是()A. B. C. D.5. 要使成为一个完全平方式,则的值为()A. B. C. D.6. 下列各式能用平方差公式计算的是()A. B.C. D.7. 下列计算不正确的是()A. B.C. D.8. 为有理数,那么与的大小关系为()A. B.C. D. 前面三种答案都可能三. 解答题:1. 计算:(1)(2)(3)(为正整数)(4)2. 化简求值:已知,求的值。
七年级数学整式的乘法(学生讲义)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第2章:整式的乘除与因式分解一、基础知识1.同底数幂的乘法:m n m n=,(m,n都是正整数),即同底数幂相乘,底a a a+数不变,指数相加。
2.幂的乘方:()m n mn=,(m,n都是正整数),即幂的乘方,底数不变,指数a a相乘。
3.积的乘方:()n n n=,(n为正整数),即积的乘方,等于把积的每一个ab a b因式分别乘方,再把所得的幂相乘。
4.整式的乘法:(1)单项式的乘法法则:一般地,单项式相乘,把它们的系数、相同字母的幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.(2)单项式乘多项式法则:单项式与多项式相乘,就是根据乘法分配律,用单项式乘多项式的每一项,再把所得的积相加.可用下式表示:m(a+b+c)=ma+mb+mc(a、b、c都表示单项式)(3)多项式的乘法法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.5.乘法公式:(1)平方差公式:平方差公式可以用语言叙述为“两个数的和与这两个的差积等于这两个数的平方差”,即用字母表示为:(a+b)(a-b)=a2-b2;其结构特征是:公式的左边是两个一次二项式的乘积,并且这两个二项式中有一项是完全相同的,另一项则是互为相反数,右边是乘式中两项的平方差.(2)完全平方公式:完全平方公式可以用语言叙述为“两个数和(或差)的平方,等于第一数的平方加上(或减去)第一数与第二数乘积的2倍,加上第二数的平方”,即用字母表示为:(a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2;其结构特征是:左边是“两个数的和或差”的平方,右边是三项,首末两项是平方项,且符号相同,中间项是2ab,且符号由左边的“和”或“差”来确定. 在完全平方公式中,字母a、b都具有广泛意义,它们既可以分别取具体的数,也可以取一个单项式、一个多项式或代数式.如(3x+y-2)2=(3x+y)2-2×(3x+y)×2+22=9x2+6xy-12x+y2-4y+4,或者(3x+y-2)2=(3x)2+2×3x (y-2)+ (y-2)2=9x2+6xy-12x+y2-4y+4.前者是把3x+y看成是完全平方公式中的a,2看成是b;后者是把3x看成是完全平方公式中的a,y-2看成是b.(3)添括号时,如果括号前面是正号,括到括号里的各项都不变号;如果括号前面是负号,括到括号里的各项都变号。
第五讲整式乘除(补充讲义)Part1 整式乘法、除法【知识回顾】1.单项式乘单项式:(1)法则:单项式与单项式相乘,把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
(2)运算步骤:①系数相乘,结果作为积的系数;②同底数幂相乘,所得结果作为积的因式(3)温馨提示:①单项式乘单项式的结果仍是单项式②法则的实质是乘法的交换律和同底数幂的乘法法则③同底数幂相乘,是同底数幂的乘法,按照“底数不变,指数相加”来计算,不要与合并同类项混淆。
④注意运算顺序:先算乘方,再算乘法2.单项式乘多项式:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。
3.多项式乘多项式:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
温馨提示:①每一项都要分配,最开始不熟练,可用画弧线辅助计算的方法;②先确定符号③有同类项要合并4.单项式除以单项式:单项式与单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。
温馨提示:①运算中的单项式的系数包括它前面的符号②不要遗漏只在被除式中含有的字母5.多项式除以单项式:先把这个多项式的每一项除以单项式,再把所得的商相加。
温馨提示:①不要漏项,所得结果的项数应与被除式的项数相同。
②当被除式中有一项与除式相同时,相除后所得的商是1不是0 【涉及题型】1.计算。
2.未知数。
【精讲例题】例1.【计算】计算(1)(﹣2xy2)2•3x2y÷(﹣x3y4)(2)(2x+y)(2 x﹣3)﹣2 y(x﹣1)(3)3(m+1)2﹣5(m+1)(m﹣1)+2(m﹣1)2(4)例2.【未知数】(2x6﹣3x5+4x4﹣7x3+2x﹣5)(3x5﹣3x3+2x2+3x﹣8)展开式中x8的系数是.例3.【其他题型】1.若﹣2x2m﹣1与y n﹣4与7x1﹣n y m﹣1的积与x7y3是同类项,求m、n的值.2.若x2y3<0,化简:.Part2 整式乘法公式【知识回顾】1.平方差公式:两个数的和与这两个数的差的积,等于这两个数的平方差,即(a+b)(a-b)=a2-b2(a和b可以是单项式,也可以是多项式)2.完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,即(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2补充:立方和:(a+b)(a2-ab+b2)=a3+b3立方差:(a-b)(a2+ab+b2)=a3-b3(a+b)3=a3+3a2b+3ab2+b3(a-b)3=a3-3a2b+3ab2-b3【涉及题型】1.公式的运用。
整式的乘除讲义同底数幂的乘法同底数幂的乘法法则:n m n m a a a +=⋅(m,n 都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a 可以是一个具体的数字式字母,也可以是一个单项或多项式;②指数是1时,不要误以为没有指数;③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;④当三个或三个以上同底数幂相乘时,法则可推广为p n m p n m a a a a++=⋅⋅(其中m 、n 、p 均为正数); ⑤公式还可以逆用:n m n m a a a ⋅=+(m 、n 均为正整数)幂的乘方与积的乘方1. 幂的乘方法则:mn n m a a=)((m,n 都是正数)是幂的乘法法则为基础推导出来的,但两者不能混淆. 2. ),()()(都为正数n m a a a mn m n n m ==.3. 底数有负号时,运算时要注意,底数是a 与(-a)时不是同底,但可以利用乘方法则化成同底,如将(-a )3化成-a 3 ⎩⎨⎧-=-).(),()(,为奇数时当为偶数时当一般地n a n a a n n n4.底数有时形式不同,但可以化成相同。
5.要注意区别(ab )n 与(a+b )n 意义是不同的,不要误以为(a+b )n =a n +b n (a 、b 均不为零)。
6.积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即n n n b a ab =)((n为正整数)。
7.幂的乘方与积乘方法则均可逆向运用。
同底数幂的除法1. 同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即n m n m a a a-=÷ (a ≠0,m 、n 都是正数,且m>n).2. 在应用时需要注意以下几点:①法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a ≠0.②任何不等于0的数的0次幂等于1,即)0(10≠=a a ,如1100=,(-2.50=1),则00无意义.③任何不等于0的数的-p 次幂(p 是正整数),等于这个数的p 的次幂的倒数,即p p a a 1=-( a ≠0,p 是正整数), 而0-1,0-3都是无意义的;当a>0时,a -p 的值一定是正的; 当a<0时,a -p 的值可能是正也可能是负的,如41(-2)2-=,81)2(3-=-- ④运算要注意运算顺序.整式的乘法1. 单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。
单项式乘法法则在运用时要注意以下几点:①积的系数等于各因式系数积,先确定符号,再计算绝对值。
这时容易出现的错误的是,将系数相乘与指数相加混淆;②相同字母相乘,运用同底数的乘法法则;③只在一个单项式里含有的字母,要连同它的指数作为积的一个因式;④单项式乘法法则对于三个以上的单项式相乘同样适用;⑤单项式乘以单项式,结果仍是一个单项式。
2.单项式与多项式相乘单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。
单项式与多项式相乘时要注意以下几点:①单项式与多项式相乘,积是一个多项式,其项数与多项式的项数相同;②运算时要注意积的符号,多项式的每一项都包括它前面的符号;③在混合运算时,要注意运算顺序。
3.多项式与多项式相乘多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。
多项式与多项式相乘时要注意以下几点:①多项式与多项式相乘要防止漏项,检查的方法是:在没有合并同类项之前,积的项数应等于原两个多项式项数的积;②多项式相乘的结果应注意合并同类项;③对含有同一个字母的一次项系数是1的两个一次二项式相乘ab x b a x b x a x +++=++)())((2,其二次项系数为1,一次项系数等于两个因式中常数项的和,常数项是两个因式中常数项的积。
对于一次项系数不为1的两个一次二项式(mx+a )和(nx+b )相乘可以得到ab x ma mb mnx b nx a mx +++=++)())((2平方差公式1.平方差公式:两数和与这两数差的积,等于它们的平方差,即22))((b ab a b a -=-+。
其结构特征是:①公式左边是两个二项式相乘,两个二项式中第一项相同,第二项互为相反数;②公式右边是两项的平方差,即相同项的平方与相反项的平方之差。
完全平方公式1. 完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍, 即2222)(b ab a b a +±=±; 口决:首平方,尾平方,2倍乘积在中央;2.结构特征:①公式左边是二项式的完全平方;②公式右边共有三项,是二项式中二项的平方和,再加上或减去这两项乘积的2倍。
3.运用完全平方公式时,要注意公式右边中间项的符号,以及避免出现222)(b a b a ±=±这样的错误。
整式的除法1.单项式除法单项式单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;2.多项式除以单项式多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加,其特点是把多项式除以单项式转化成单项式除以单项式,所得商的项数与原多项式的项数相同,另外还要特别注意符号。
(一)填空题1.x 10=(-x 3)2·_________=x 12÷x ( )2.4(m -n )3÷(n -m )2=___________.3.-x 2·(-x )3·(-x )2=__________.4.(2a -b )()=b 2-4a 2.5.(a -b )2=(a +b )2+_____________.6.(31)-2+π0=_________;4101×0.2599=__________. 7.用科学记数法表示-0.0000308=___________.8.(x -2y +1)(x -2y -1)=( )2-( )2=_______________.9.若(x +5)(x -7)=x 2+mx +n ,则m =__________,n =________.(二)选择题11.下列计算中正确的是……………………………………………………………( )(A )a n ·a 2=a 2n (B )(a 3)2=a 5 (C )x 4·x 3·x =x 7 (D )a 2n -3÷a 3-n =a 3n -612.x 2m +1可写作…………………………………………………………………………( )(A )(x 2)m +1 (B )(x m )2+1 (C )x ·x 2m (D )(x m )m +113.下列运算正确的是………………………………………………………………( )(A )(-2ab )·(-3ab )3=-54a 4b 4 (B )5x 2·(3x 3)2=15x 12(C )(-0.16)·(-10b 2)3=-b7 (D )(2×10n )(21×10n )=102n 14.化简(a n b m )n ,结果正确的是………………………………………………………( )(A )a 2n b mn (B )n m n b a 2 (C )mn n b a 2 (D )n m n b a 215.若a ≠b ,下列各式中不能成立的是………………………………………………( )(A )(a +b )2=(-a -b )2 (B )(a +b )(a -b )=(b +a )(b -a )(C )(a -b )2n =(b -a )2n16.下列各组数中,互为相反数的是……………………………………………… ( )(A )(-2)-3与23 (B )(-2)-2与2-2 (C )-33与(-31)3 (D )(-3)-3与(31)317.下列各式中正确的是………………………………………………………………( )(A )(a +4)(a -4)=a 2-4 (B )(5x -1)(1-5x )=25x 2-1(C )(-3x +2)2=4-12x +9x 2 (D )(x -3)(x -9)=x 2-2718.如果x 2-kx -ab =(x -a )(x +b ),则k 应为…………………………………( )(A )a +b (B )a -b (C )b -a (D )-a -b(三)计算19.(1)(-3xy 2)3·(61x 3y )2; (2)4a 2x 2·(-52a 4x 3y 3)÷(-21a 5xy 2);(3)(2a -3b )2(2a +3b )2; (4)(2x +5y )(2x -5y )(-4x 2-25y 2);(5)(20a n -2b n -14a n -1b n +1+8a 2n b )÷(-2a n -3b );(6)(x -3)(2x +1)-3(2x -1)2.(四)解答题(每题6分,共24分)20.已知a 2+6a +b 2-10b +34=0,求代数式(2a +b )(3a -2b )+4ab 的值.21.已知a +b =5,ab =7,求222b a ,a 2-ab +b 2的值.22.已知(a +b )2=10,(a -b )2=2,求a 2+b 2,ab 的值.23.已知a 2+b 2+c 2=ab +bc +ac ,求证a =b =c .。