一元二次函数讲义(下)
- 格式:doc
- 大小:553.00 KB
- 文档页数:8
讲义内容知识概括知识点一:一元二次方程ax2+bx+c=0(a≠0)的解的情况等价于抛物线y=ax2+bx+c(c≠0)与直线y=0(即x 轴)的公共点的个数。
抛物线y=ax2+bx+c(a≠0)与x轴的公共点有三种情况:两个公共点(即有两个交点),一个公共点,没有公共点,因此有:(1)抛物线y=ax2+bx+c与x轴有两个公共点(x1,0)(x2,0)一元二次方程ax2+bx+c=0有两个不等实根△=b2-4ac>0。
(2)抛物线y=ax2+bx+c与x轴只有一个公共点时,此公共点即为顶点一元二次方程ax2+bx+c=0有两个相等实根,(3)抛物线y=ax2+bx+c与x轴没有公共点一元二次方程ax2+bx+c=0没有实数根△=b2-4ac<0.(4)事实上,抛物线y=ax2+bx+c与直线y=h的公共点情况方程ax2+bx+c=h的根的情况。
抛物线y=ax2+bx+c与直线y=mx+n的公共点情况方程ax2+bx+c=mx+n的根的情况。
方法总结:⑴求二次函数的图象与x轴的交点坐标,需转化为一元二次方程;⑵求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶根据图象的位置判断二次函数2y ax bx c=++中a,b,c的符号,或由二次函数中a,b,c的符号判断图象的位置,要数形结合;⑷二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x轴的一个交点坐标,可由对称性求出另一个交点坐标.⑸与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a++≠本身就是所含字母x的二次函数;下面以0a>时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:∆>抛物线与x轴有两个交点二次三项式的值可正、可零、可负一元二次方程有两个不相等实根∆=抛物线与x轴只有一个交点二次三项式的值为非负一元二次方程有两个相等的实数根0∆<抛物线与x轴无交点二次三项式的值恒为正一元二次方程无实数根.题型一 求字母系数的取值范围【例1】若二次函数)1(24)1(22-+--=k kx x k y 的图象与x 轴有两个交点,求k 的取值范围;练习1:已知:关于x 的函数772--=x kx y 的图象与x 轴总有交点,求k 的取值范围?练习2:已知抛物线2234y x kx k =+-(k 为常数,且k >0).证明:此抛物线与x 轴总有两个交点;练习3:已知关于x 的二次函数y =x 2-(2m -1)x +m 2+3m +4.探究m 满足什么条件时,二次函数y 的图象与x 轴的交点的个数.题型二 一次函数图象和二次函数图象的交点问题【例2】已知抛物线C 经过(-5,0),(0,25),(1,6)三点,直线l 的函数表达式为32-=x y ;(1)求抛物线的表达式;(2)证明抛物线C 与直线l 无交点;(3)若与l 平行的直线m x y +=2与抛物线C 只有一个公共点P ,求点P 的坐标;练习1:已知二次函数y=﹣x 2+bx+c 的图象如图所示,它与x 轴的一个交点坐标为(﹣1,0),与y 轴的交点坐标为(0,3).(1)求出b ,c 的值,并写出此二次函数的解析式;(2)根据图象,写出函数值y 为正数时,自变量x 的取值范围.题型三 关于二次函数图象交点的综合问题【例3】已知抛物线2234y x kx k =+-(k 为常数,且k >0).(1)证明:此抛物线与x 轴总有两个交点;(2)设抛物线与x 轴交于M 、N 两点,若这两点到原点的距离分别为OM 、ON ,且1123ONOM-=,求k 的值.练习1:抛物线2y x bx c =-++的部分图象如图所示,则方程02=++-c bx x 的两根为 .练习2:下列命题:①若0a b c ++=,则240b ac -≥;②若b a c >+,则一元二次方程20ax bx c ++=有两个不相等的实数根; ③若23b a c =+,则一元二次方程20ax bx c ++=有两个不相等的实数根; ④若240b ac ->,则二次函数的图像与坐标轴的公共点的个数是2或3. 其中正确的是( ).A.只有①②③B.只有①③④C.只有①④D.只有②【例4】已知二次函数y=x2+bx﹣c的图象与x轴两交点的坐标分别为(m,0),(﹣3m,0)(m≠0).(1)证明4c=3b2;(2)若该函数图象的对称轴为直线x=1,试求二次函数的最小值.练习:已知关于x的方程mx2﹣(3m﹣1)x+2m﹣2=0.(1)求证:无论m取任何实数时,方程恒有实数根;(2)若关于x的二次函数y=mx2﹣(3m﹣1)x+2m﹣2的图象与x轴两交点间的距离为2时,求抛物线的解析式;(3)在直角坐标系xoy中,画出(2)中的函数图象,结合图象回答问题:当直线y=x+b与(2)中的函数图象只有两个交点时,求b的取值范围.。
一元二次函数一、一元二次函数的定义形如y=ax 2+bx+c(其中a ≠0)的函数称之为一元二次函数。
一般情况下,我们会把一元二次函数改写成:224()24b ac b y a x a a-=++写成这样的目的主要是:〔1〕可以看出对称轴方程及顶点坐标;抛物线的对称轴的方程为:x= -2b a 顶点坐标为〔-2b a ,244ac b a-)〔2〕可以得到最大、小值:当a >0,y 取最小值,y= 244ac b a-当a<0,y 取最大值,y= 244ac b a-由一元二次函数的对称轴,从而我们可以知道一元二次函数的单调性:当a>0时,〔-∞,-2b a ]为单调减区间;[-2b a ,+∞〕为单调增区间。
当a<0时,[-2b a ,+∞〕为单调减区间;〔-∞,-2ba]为单调增区间〔3〕解答平移问题方便。
平移的法那么遵循两条:左加右减,上加下减。
题型一:平移图像,求新的解析式 【例题1】:y=x 2-2x+3向左移动一个单位,向上移动两个单位,移动后的解析式是什么? 解答:y=(x-1)2+2根据“左加右减〞的原那么,向左移动一个单位,那么有:y=(x-1+1)2+2 根据“上加下减〞的原那么,向上移动两个单位,那么有y=(x-1+1)2+2+2 所以,最终的结果是:y=x 2+4题型二:三点求函数的解析式——方法:待定系数法【例题2】一元二次方程y=ax 2+bx+c 经过点A(1,3),B(2,4),C(3,11),求函数的解析式。
解答:根据题意有:a b c 34a 2b c 49a 3b c 11++=⎧⎪++=⎨⎪++=⎩解上面的方程组,得:388a b c =⎧⎪=-⎨⎪=⎩所以:y=3x 2-8x+8【例题3】函数y=ax 2+bx+c 与x 轴的交点为A(-3,0),B(1,0),并且经过点〔4,21〕,求函数的解析式。
一般情况下,如果告诉你一元二次方程的两个解x 1,x 2;这个时候我们设:y=a(x-x 1)(x-x 2)最为方便。
一元二次方程讲义1.解方程2(2)9x -=. 2(3x ﹣1)2=8.例题3:配方法1.已知方程260xx q +=-可以配方成27x p =(-)的形式,那么262x x q +=-可以配方成下列的( ) A. 25x p =(-) B. 29x p =(-) C. 229x p +=(-) D. 225x p +=(-) 2.用配方法解方程:2420x x ++=练习:1. 用配方法解方程:x 2﹣7x+5=0. 2x 2﹣3x+1=0.x 2﹣6x ﹣7=0.例题4.公式法1.一元二次方程4x 2﹣2x+=0的根的情况是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 无法判断2.用公式法解方程:03822=+-x x.练习:1.用公式法解方程:3x 2+5(2x+1)=0.练习:1.“在线教育”指的是通过应用信息科技和互联网技术进行内容传播和快速学习的方法.”互联网+”时代,中国的在线教育得到迅猛发展.根据中国产业信息网数据统计分析,2015年中国在线教育市场产值约为1600亿元,2017年中国在线教育市场产值在2015年的基础上增加了900亿元.(1)求2015年到2017年中国在线教育市场产值的年平均增长率;(2)若增长率保持不变,预计2018年中国在线教育市场产值约为多少亿元?例题2:利润问题1.某商店准备进一批季节性小家电,单价40元.经市场预测,销售定价为52元时,可售出180个,定价每增加1元,销售量净减少10个;定价每减少1元,销售量净增加10个.因受库存的影响,每批次进货个数不得超过180个,商店若将准备获利2000元,则应进货多少个?定价为多少元?练习:1.今年本市蜜桔大丰收,某水果商销售一种蜜桔,成本价为10元/千克,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于18元/千克,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)之间的函数关系如图所示:(1)求y与x之间的函数关系式;(2)该经销商想要每天获得150元的销售利润,销售价应定为多少?(销售利润=销售价﹣成本价)例题3:面积问题1.某中学标准化建设规划在校园内的一块长36米,宽20米的矩形场地ABCD上修建三条同样宽的人行道,使其中两条与AB平行,另一条与AD平行,其余部分种草(如图所示),若使每一块草坪的面积都为96平方米.求人行道的宽。
⼆次函数辅导讲义(学⽣版)⼆次函数辅导讲义⼀、基础知识讲解+中考考点、例题分析考点1:⼆次函数的图象和性质⼀、考点讲解:1.⼆次函数的定义:形如(a≠0,a,b,c为常数)的函数为⼆次函数.2.⼆次函数的图象及性质:⑴⼆次函数y=ax2 (a≠0);当a>0时,抛物线开⼝向上,顶点是最低点;当a<0时,抛物线开⼝向下,顶点是最⾼点;a越⼩,抛物线开⼝越⼤.y=a(x-h)2+k的对称轴是x=h,顶点坐标是(h,k)。
⑵⼆次函数,顶点为(-,),对称轴x=-;当a>0时,抛物线开⼝向上,图象有最低点,且x>-,y随x的增⼤⽽增⼤,x<-,y随x的增⼤⽽减⼩;当a<0时,抛物线开⼝向下,图象有最⾼点,且x>-,y随x的增⼤⽽减⼩,x<-,y随x的增⼤⽽增⼤.解题⼩诀窍:⼆次函数上两点坐标为(),(),即两点纵坐标相等,则其对称轴为直线。
3.图象的平移:⼆次函数y=ax2 与y=-ax2 的图像关于x轴对称。
平移的简记⼝诀是“上加下减,左加右减”。
⼀、经典考题剖析:【考题1】在平⾯直⾓坐标系内,如果将抛物线向右平移2个单位,向下平移3个单位,平移后⼆次函数的关系式是()A.B.C.D.2.⼆次函数的图象上有两点(3,-8)和(-5,-8),则此拋物线的对称轴是()A. B. C. D.4.已知⼆次函数(a≠0)与⼀次函数y=kx+m(k≠0)的图象相交于点A(-2,4),B(8,2),如图1-2-7所⽰,能使y1>y2成⽴的x取值范围是_______5.已知直线y=x 与⼆次函数y=ax 2 -2x -1的图象的⼀个交点 M 的横标为1,则a 的值为()A 、2B 、1C 、3D 、 46.已知反⽐例函数y= x k 的图象在每个象限内y 随x 的增⼤⽽增⼤,则⼆次函数y=2kx 2 -x+k 2的图象⼤致为图1-2-3中的()7、读材料:当抛物线的解析式中含有字母系数时,随着系数中的字母取值的不同,抛物线的顶点坐标也将发⽣变化.例如:由抛物线①,有y=②,所以抛物线的顶点坐标为(m ,2m -1),即③④。
《一元二次方程根的判别式》讲义一、一元二次方程的一般形式我们先来看一元二次方程的一般形式:$ax^2 + bx + c = 0$(其中$a$、$b$、$c$是常数,且$a \neq 0$)。
在这个方程中,$a$被称为二次项系数,$b$是一次项系数,$c$是常数项。
二、根的判别式的定义接下来,我们要引入一个非常重要的概念——根的判别式,通常用符号“$\Delta$”表示,它的计算公式是$\Delta = b^2 4ac$。
那么,这个根的判别式到底有什么用呢?它可以用来判断一元二次方程根的情况。
三、根的判别式与方程根的关系当$\Delta > 0$时,方程有两个不相等的实数根。
比如说方程$x^2 5x + 6 = 0$,这里$a = 1$,$b =-5$,$c =6$,那么$\Delta =(-5)^2 4×1×6 = 25 24 = 1 > 0$,所以这个方程有两个不相等的实数根,通过求解可以得到$x_1 = 2$,$x_2 =3$。
当$\Delta = 0$时,方程有两个相等的实数根。
例如方程$x^2 4x + 4 = 0$,其中$a = 1$,$b =-4$,$c =4$,则$\Delta =(-4)^2 4×1×4 = 16 16 = 0$,所以这个方程有两个相等的实数根,即$x_1 = x_2 = 2$。
当$\Delta < 0$时,方程没有实数根。
像方程$x^2 + x + 2 = 0$,其中$a = 1$,$b = 1$,$c = 2$,此时$\Delta = 1^2 4×1×2 = 1 8 =-7 < 0$,所以这个方程没有实数根。
四、根的判别式的应用(一)不解方程判断根的情况在很多情况下,我们不需要求出方程的根,只需要判断根的情况。
比如给定一个方程$2x^2 + 3x 5 = 0$,我们可以通过计算$\Delta =3^2 4×2×(-5) = 9 + 40 = 49 > 0$,就能知道这个方程有两个不相等的实数根。
高考培优 数学“一元二次函数、二次方程及二次不等式的关系”讲义编号:本讲义从以下两方面展开:1. 一元二次方程与一元二次不等式的基本解法有关一元二次方程与一元二次不等式的求解,是高考与会考考察内容的基础之一。
该部分内容或许不会独立形成题目,却是求解其他问题的基本工具。
这一部分内容,相对来说比较简单,却是最基本与最基础的,需要熟练掌握。
2. 利用一元二次函数的性质求解有关一元二次方程与一元二次不等式的问题一元二次函数是在高考以及会考当中是十分常考的一种函数,原因在于其性质比较容易研究,也相对简单。
因此,这部分内容也是基础的内容。
其主要问题大多在于一些含参数不等式(等式)恒成立(有解)条件的研究。
1. (★★★☆)已知函数2()f x x bx c =++,,b c R ∈,对于任意的x R ∈,不等式2()x b f x +≤恒成立,证明当0x ≥时,2()()f x x c ≤+2. (★★☆☆)已知不等式()22454(1)30m m x m x +---+>恒成立,求实数m 的取值范围。
知识点一:一元二次方程与一元二次不等式的基本解法✧ 子知识点一:一元二次不等式的基本解法。
一般地,对于一元二次不等式20(0)ax bx c a ++>≠,其解集有如下形式:这个表格是求解一元二次不等式问题的基础,是需要学生牢牢掌握的。
✧ 子知识点二:注意有关含参数的一元二次方程与一元二次不等式求解时的讨论。
知识点二:利用一元二次函数的性质求解有关一元二次方程与一元二次不等式的问题✧ 子知识点一:要学会利用一元二次方程的解与相应的一元二次不等式的解集之间的内在联系。
具体可以参见知识点一中的表格。
✧ 子知识点二:一元二次方不等式(方程)的恒成立问题。
一元二次不等式恒大于0,那么可知对应的二次函数开口向上且无实数零点;类似地,一元二次不等式恒小于0,那么可知对应的二次函数开口向下且无实数零点。
不过这道题需要注意的是,该不等式虽然形如一元二次不等式,但是不一定就是一元二次不等式。
一、函数奇偶性的定义是什么?二、奇偶函数有什么图象特征?三、如何利用定义判断函数奇偶性?一、一次函数1. 一次函数的概念:形如(0)y kx b k =+≠的函数叫做一次函数.(一次函数又叫做线性函数)它的定义域为R ,值域为R .①斜率:一次函数(0)y kx b k =+≠的图象是直线,其中k 叫做该直线的斜率. ②截距:一次函数(0)y kx b k =+≠的图象是直线,其中b 叫做直线在y 轴上的截距.注:截距不是距离,截距可以是正的,可以是负的,也可以是0.2. 一次函数的性质:(1)函数值的改变量21y y y ∆=-与自变量的该变量21x x x ∆=-的比值等于常数k ,即2121y y y k x x x -∆==∆-,k 的大小表示直线与x 轴的倾斜程度. (2)当0k >时,一次函数是增函数;当0k <时,一次函数是减函数. (3)当0b =时,一次函数变为正比例函数,是奇函数;当0b ≠时,它既不是奇函数,也不是偶函数.(4)直线(0)y kx b k =+≠与x 轴的交点为(,0)bk-,与y 轴的交点为(0,)b . (5)直线111:l y k x b =+,直线222:l y k x b =+,①1l //2l 12k k ⇔=且12b b ≠.②1l 与2l 重合12k k ⇔=且12b b =.二、二次函数一次函数和二次函数知识讲解知识回顾1. 二次函数的概念:形如2(0)y ax bx c a =++≠叫做二次函数.它的定义域为R .当0a >时,值域为24|4ac b y y a ⎧⎫-≥⎨⎬⎩⎭;当0a <时,值域为24|4ac b y y a ⎧⎫-≤⎨⎬⎩⎭2. 二次函数的4种解析式:(1)一般式2(0)y ax bx c a =++≠,对称轴2b x a -=,顶点24(,)24b ac b a a--(2)顶点式2()(0)y a x h k a =-+≠,对称轴x h =,顶点(,)h k(3)交点式12()()(0)y a x x x x a =--≠,抛物线与x 轴交于1(,0)x ,2(,0)x (4)对称点式12()()y a x x x x b =--+,抛物线图象上有两对称点12(,),(,)x b x b注:①二次函数的一般式可通过配方得到顶点式.②在求二次函数的解析式时,应根据已知条件,合理设式.已知三点坐标,若有对称点(两点的纵坐标相同),则设对称点式;若没有,则设一般式. 已知对称轴或顶点坐标,应设顶点式.3. 二次函数的性质:(1)函数的图象是一条抛物线,抛物线的顶点坐标是24(,)24b ac b a a--,对称轴2b x a-=,与y 轴交于(0,)c ;(2)当0a >时,开口向上,当2b x a -=时,2min 4()24b ac b y f a a--==;单调递增区间是,2b a -⎡⎫+∞⎪⎢⎣⎭,单调递减区间为,2b a -⎛⎤-∞ ⎥⎝⎦ (3)当0a <时,开口向下,当2b x a -=时,2max 4()24b ac b y f a a--==;单调递增区间是,2b a -⎛⎤-∞ ⎥⎝⎦,单调递减区间为,2b a -⎡⎫+∞⎪⎢⎣⎭. (4)二次函数2(0)y ax bx c a =++≠是偶函数⇔0b = 4. 函数图象的平移:左加右减,上加下减(1)()y f x =(0)a a >−−−−−−−→向左平移个单位()y f x a =+; (2)()y f x =(0)a a >−−−−−−−→向右平移个单位()y f x a =-; (3)()y f x =(0)b >−−−−−−−→向上平移b 个单位()+y f x b =; (4)()y f x =(0)b >−−−−−−−→向下平移b 个单位()y f x b =-;注:左右平移只是针对单个x 而言. 5. 配方法:(1)提,提系数将平方项的系数化为1;(2)配,加上一次项系数的一半的平方,再减去一次项系数的一半的平方; (3)整理.注:“配方法”是研究二次函数的主要方法.熟练地掌握配方法是掌握二次函数性质的关键.6. 韦达定理:设一元二次方程20ax bx c ++=的两根为12,x x ,则1212,b c x x x x a a-+== 7. 中点坐标公式:设11(,)A x y ,22(,)B x y ,AB 中点00(,)M x y ,则0120122,2x x x y y y =+=+8. 交点距离公式:若二次函数2(0)y ax bx c a =++≠与x 轴交于12(,0),(,0)A x B x ,则12AB x x a∆=-=(其中24b ac ∆=-) 三、待定系数法1. 一般地,在求一个函数时,如果知道这个函数的一般形式,可先把所求函数写为一般形式,其中系数待定,然后再跟据题设条件求出这些待定系数.这种通过求待定系数来确定变量之间关系式的方法叫做待定系数法.2. 待定系数法解题的基本步骤是什么?第一步:设出含有待定系数的解析式;第二步:根据恒等的条件,列出含待定系数的方程或方程组; 第三步:解方程或方程组,从而使问题得到解决. 题型一、一次函数的平移【例1】 在平面直角坐标系中,把直线21y x =-向右平移一个单位长度后,其直线解析式为( )A .2y x =B .21y x =-C .22y x =+D .23y x =-【例2】 直线22y x =+向右平移3个单位,再向下平移2个单位,所得到的直线的解析式是 .题型二 用待定系数法求函数解析式【例3】 若直线y kx b =+与直线22y x =+关于x 轴对称,则k b ,的值分别是( ) A .﹣2,﹣2 B .﹣2,2 C .2,﹣2 D .2,2【例4】 已知二次函数图象经过点()13A ,、()02B ,、()53C ,三点,求此二次函数解析式.【例5】 已知一条抛物线的形状和2y x =相同且对称轴为12x =-,抛物线与y 轴交于一点()01-,,求函数解析式.题型三、一次函数与方程及不等式综合【例6】 已知15y x =-,221y x =+.当12y y >时,x 的取值范围是( )A .5x >B .12x <C .6x <-D .6x >-【例7】 一次函数y mx n =+(0m ≠),当25x -≤≤时,对应的y 值为07y ≤≤,求一次函数的解析式.【练一练】已知一次函数y kx b =+,当31x -≤≤时,对应的y 值为19y ≤≤,求kb 的值.【例8】 如图,直线y kx b =+经过()21A ,,()12B --,两点,则不等式122x kx b >+>-的解集为______.BAO yx【例9】 已知一次函数y 6kx b =++与一次函数2y kx b =-++的图象的交点坐标为A (2,0),求这两个一次函数的解析式及两直线与y 轴围成的三角形的面积.题型四、二次函数的图像与性质【例10】(1)已知2y ax bx =+的图象如下左图所示,则y ax b =-的图象一定过( )A .第一、二、三象限B.第一、二、四象限 C.第二、三、四象限D.第一、三、四象限(2)若二次函数222y ax bx a =++-(a b ,为常数)的图象如下中图,则a 的值为( )A. 2-B. 2C. 1D.2(3)已知二次函数2y ax bx c =++的图象如下右图所示,则点()P a bc ,在第 象限.yxOyxOyxO【练一练】(1)函数1y ax =+与()210y ax bx a =++≠的图象可能是( )1xyO 1xyO1Cxy O1xy O(2)在同一直角坐标系中,函数y mx m =+和函数222y mx x =-++(m 是常数,且0m ≠)的图象可能..是 DC B A xyO xyO xyO O yx题型五、二次函数在某区间上的值域与最值【例11】求函数()221f x x ax =+-在区间[]0,3上的最小值.【例12】设函数()22g x x =-()x ∈R ,()()()()()4,,,,g x x x g x f x g x x x g x ++<⎧⎪=⎨-≥⎪⎩则()f x 的值域是( ).A.()9,01,4⎡⎤-+∞⎢⎥⎣⎦U B.[)0,+∞, C.9,4⎡⎫+∞⎪⎢⎣⎭ D.()9,02,4⎡⎤-+∞⎢⎥⎣⎦U 题型六、二次函数与一元二次方程【例13】已知方程2210x px ++=的两个实根一个小于1,一个大于1,求p 的取值范围.【练一练】设二次方程()22120x a x a +-+-=有一根比1大,另一根比1-小,试确定实数a 的范围.【例14】已知方程20x ax b ++=的两根均大于2,求a b ,的关系式.【练一练】方程()2250x m x m +-+-=的两根都大于2,求实数m 的取值范围.题型七、二次函数与不等式恒成立问题 【例15】设23y x ax a =++-(1)当x 取任意实数时,y 恒为非负数,求a 的取值范围;(2)当22x -≤≤时,y 的值恒为非负数,求实数a 的取值范围.【练一练】函数()23f x x ax =++.(1)当x R ∈时,()f x a ≥恒成立,求a 得取值范围; (2)当[]2,2x ∈-时,()f x a ≥恒成立,求a 的取值范围.【练1】 一次函数经过沿y 轴向下平移3个单位,在向右平移2个单位,所得的直线的解析式为()23y x =-,则原来的一次函数解析式为 .【练2】 直线1l 是正比例函数的图象,将1l 沿y 轴向上平移2个单位得到的直线2l 经过点()11P ,,那么( )A .1l 过第一.三象限B .2l 过第二.三.四象限C .对于1l ,y 随x 的增大而减小D .对于2l ,y 随x 的增大而增大【练3】 一次函数y kx b =+的图象如图所示,当0y <时,x 的取值范围是( )A .0x >B .0x <C .2x >D .2x <【练4】 已知二次函数()()222143y x m x m m =-++-+-,m 为非负整数,它的图像与x 轴交于A B ,两点,其中点A 在原点左边,点B 在原点右边. (1)求函数的解析式;(2)若一次函数y kx b =+的图像经过A 与二次函数图像交于C 又10ABC =V S ,求一次函数的解析式.【练5】 若方程2(1)2(1)0m x m x m -++-=的根都为正数,求m 的取值范围.【练6】 设二次函数2()(0),f x ax bx c a =++>方程()f x x =的两根12,,x x 满足1210x x a<<<. (Ⅰ)当1(0,)x x ∈时,求证:1()x f x x <<(Ⅱ)设函数()f x 的图象关于0x x =对称,求证:102x x <随堂练习xOy 32【题1】 已知二次函数过点()01-,,且顶点为()12-,,求函数解析式.【题2】 设抛物线为21y x kx k =-+-,根据下列各条件,求k 的值.(1)抛物线的顶点在x 轴上;(2)抛物线的顶点在y 轴上; (3)抛物线经过点(1,2)--; (4)抛物线经过原点;(5)当1x =-时,y 有最小值; (6)y 的最小值为1-.【题3】 已知二次函数2()0y ax bx c a =++≠的图象如图所示,则下列结论:0ac >①;② 方程20ax bx c ++=的两根之和大于0;y ③随x 的增大而增大;④0a b c -+<,其中正确的个数( )A .4个B .3个C .2个D .1个1Oyx课后作业【题4】 若一元二次方程2330kx kx k ++-=的两根都是负数,求k 的取值范围.【题5】 已知()[]2221f x x x x t t =-+∈+,,,若()f x 的最小值为()g t ,写出()g t 的表达式.。
九年级数学二次函数知识点(下)(4)一次函数()0≠+=k n kx y 的图像l 与二次函数()02≠++=a c bx ax y 的图像G 的交点,由方程组⎩⎨⎧++=+=cbx ax y nkx y 2的解的数目来确定: ①方程组有两组不同的解时⇔l 与G 有两个交点; ②方程组只有一组解时⇔l 与G 只有一个交点; ③方程组无解时⇔l 与G 没有交点.知识点5 二次函数的应用:(1)二次函数常用来解决最优化问题,这类问题实际上就是求函数的最大(小)值。
一般而言,最大(小)值会在顶点处取得,达到最大(小)值时的x 即为顶点横坐标值,最大(小)值也就是顶点纵坐标值。
(2)二次函数的应用包括以下方面:分析和表示不同背景下实际问题中变量之间的二次函数关系;运用二次函数的知识解决实际问题中的最大(小)值. 【典型例题】题型3 用配方法将二次函数c bx ax y ++=2化为k h x a y +-=2)(的形式,求顶点及对称轴、开口方向、最值等(基础题型)例6、将二次函数322++=x x y 配成k h x a y +-=2)(的形式.由此可得:抛物线322++=x x y 的顶点坐标为______,对称轴为______例7、求34212+-=x x y 抛物线的顶点坐标和对称轴、开口方向。
例8、已知二次函数6422-+=x x y .(1)将其化成k h x a y +-=2)(的形式;(2)写出开口方向,对称轴方程,顶点坐标; (3)求图象与两坐标轴的交点坐标; (4)根据(1)(2)(3)的结果画出其图象;(图象上要标出顶点、与坐标轴交点的坐标) (5)说明其图象与抛物线y =2x 2的关系; (6)当x 取何值时,y 随x 增大而减小;(7)当x 取何值时,函数y 有最值?其最值是多少?题型4 用待定系数法求二次函数的解析式知识归纳:用三种方法:1.已知抛物线过三点,设一般式为y ax bx c =++22.已知抛物线顶点坐标及一点,设顶点式y =a (x -h)2+k . 3.已知抛物线与x 轴有两个交点(或已知抛物线与x 轴交点的横坐标),设两根式: y =a (x -x 1)(x -x 2) .(其中x 1、x 2是抛物线与x 轴交点的横坐标) 如果是给出的图象,通过观察,找出图象上最适合用上述三种方法之一的点,再求。
例9、二次函数y ax bx c =++2与x 轴的两交点的横坐标是-12,32,与y 轴交点的纵坐标是-5,求这个二次函数的关系式。
例10、已知二次函数y ax bx c =++2的图象如图所示,求这个二次函数的关系式。
(能用几种方法?试一试与同学交流。
)题型5 用二次函数的知识解决实际问题中的最大(小)值。
例11、给你长8m 的铝合金条,试问:①你能用它制成一矩形窗框吗? ②怎样设计,窗框的透光面积最大? ③如何验证?例12、在一个直角三角形的内部作一个矩形ABCD ,其中AB 和AD 分别在两直角边上. (1)如果设矩形的一边AB=xm ,那么AD 边的长度如何表示?设矩形的面积为y ㎡,40m30mD NOA BCM当x 取何值时,y 的值最大?最大值是多少?(2)将问题(1)变式:“设AD 边的长为x m ,则问题会怎样呢?”(3)如图, 将问题变为:在一个直角三角形的内部作一个矩形ABCD ,其中点A 和点D 分别在两直角边上,BC 在斜边上.设矩形的一边BC=x m,那么AB 边的长度如何表示?设矩形的面积为y ㎡,当x 取何值时,y 的值最大? 最大值是多少?方法与思路:▲ 解决此类问题的基本方法:涉及到变量的最大值或最小值的应用问题,可以考虑利用二次函数最值方面的性质去解决。
步骤:第一步设自变量;第二步建立函数的解析式; 第三步确定自变量的取值范围;第四步根据顶点坐标公式或配方法求出最大值或最小值(在自变量的取值范围内) 基本流程为:理解题目 分析已知量与未知量 转化为数学问题. ▲ 解决此类问题的基本思路是: (1)理解问题;(2)分析问题中的变量和常量以及它们之间的关系; (3)用数学的方式表示它们之间的关系; (4)做函数求解;(5)检验结果的合理性,拓展等. 【跟进练习】 一、选择题1.下列说法中错误的是( )A .在函数2x y -=中,当0=x 时,y 有最大值0B .在函数22x y =中,当x >0时,y 随x 的增大而增大C . 抛物线22x y =,2x y -=,221x y -=中,抛物线22x y =的开口最小,抛物线2x y -=的开口最大D .不论a 是正数还是负数,抛物线y =ax 2的顶点都是坐标原点 2. 对于抛物线y =-12x 2和y =-12x 2-2叙述正确的个数为 ( ) ①两条抛物线开口方向都向下 ②两条抛物线都关于y 轴对称③当x <0时,两条抛物线的性质都是y 随x 的增大而增大 ④两条抛物线的顶点坐标相同A.1B.2C.3D.43.对于抛物线22y x =+和2y x =-的论断:(1)开口方向不同;(2)形状完全相同;(3)对称轴相同.其中正确的有( ) A .0个 B .1个 C . 2个D .3个4.抛物线24y x =-与x 轴交于B 、C 两点,顶点为A ,则△ABC 的面积为( )A 16B 8C 4D 25.顶点坐标为(-2,3),开口方向和大小与抛物线221x y =相同的解析式为( )A .3)2(212+-=x yB .3)2(212-+=x y C .3)2(212++=x y D .3)2(212++-=x y6.直线y =mx +1与抛物线y =2x2-8x +k +8相交于点(3,4),则m 、k 值为( )A .⎩⎪⎨⎪⎧m =1k =3B .⎩⎪⎨⎪⎧m =-1k =2 C. ⎩⎪⎨⎪⎧m =1k =2 D. ⎩⎪⎨⎪⎧m =2k =17.一个二次函数的图象经过点 A (0,0),B (-1,-11),C (1,9)三点.则它的解析式为 ( )A .y =x 2+10x B.y =-x 2-10x C.y =x 2-10x D.y =-x 2+10x二、填空题1.已知抛物线c bx ax y ++=2的图象如图,判断下列式子与0的关系.(填<、>、=) ①0____a ; ②0_____b ; ③0____c ; ④0____c b a ++;⑤0____c b a +-; ⑥0_____42ac b -; ⑦0____2b a +; ⑧0____2b a -;2.抛物线142+=x y 关于x 轴对称的抛物线解析式为______________________. 3.如图:①2ax y = ②2bx y = ③2cx y = ④2dx y =比较a 、b 、c 、d 的大小,用“>”连接: 。
4.二次函数2)1(x k y +=的图象如图所示,则k 的取值范围为 。
.5.写出一个顶点坐标为(0,-3),开口方向与抛物线2x y -=的方向相反,形状相同的二次函数解析式____________________________. 6.写出一个顶点是(5,0),形状、开口方向与抛物线22x y -=都相同的二次函数解析式_____________________。
7.二次函数()222--=x y 化成一般形式为_________,其中=a ____,=b ____,=c ____;当=x ______时,函数值y 有最______(填大或小)值为______。
8.抛物线2)2(21+=x y 当x 时,函数值y 随x 的增大而减小;当x ____时,函数值y 随x 的增大而增大;当x 时,函数取得最 值,最 值y =______。
9.362+=x y 与10)1(62+-=x y _____________相同,而____________不同. 10.二次函数2)1(2+-=x y 的最小值为__________________.11.将抛物线3)1(52+-=x y 先向左平移2个单位,再向下平移4个单位后,得到抛物线的解析式为_______________________.12.抛物线1)4(32++-=x y 中,当x =_______时,y 有最________值是________. 13.若抛物线k x a y +-=2)1(上有一点A (3,5),则点A 关于对称轴对称点A ’的坐标为__________________.14.一条抛物线的对称轴是1=x ,且与x 轴有唯一的公共点,并且开口方向向下,则这条抛物线的解析式为____________________________.(任写一个)15.抛物线222--=x x y 与x 轴的交点坐标是______,与y 轴的交点坐标是______。
16.若(5-,0)是抛物线c ax ax y ++=22与x 轴的一个交点,则另一交点坐标为 . 17.已知抛物线y =x 2+mx -5经过点 (2 ,-3), 则该抛物线的解析式为 . 18.已知抛物线 y =ax 2+bx+c 的顶点是 (0,2),且过点(3, 4), 则该抛物线的解析式为 。
19.已知抛物线 y =x 2+bx+c 过点A (4,2), B (5,7), 则它的解析式为 。
20.如图2.7-1,在等腰三角形ABC 中,作矩形CDEF ,若BC =2,CD =x ,矩形CDEF 的面积为S , 则S 用x 表示为 ,当x = 时,S 有最有最 值为 。
21.某商场销售某品种的纯牛奶,每箱进价为40元,若平均每天的销售量y (箱)与每箱售价x (元)之间的函数关系式满足:y =240-3x . (1)每天可获利润W 的表达式为 ;(2)当销售价x = 时,每天所获的利润最大,最大利润为 . 22.一台机器原价为60万元,如果每的折旧率为x,两年后这台机器的价格为y 万元,则y 与x 之间的函数关系式是 ( )A.y =60(1-x )2B. y =60(1-x )C. y =60-x 2D. y =60(1+x )2 三、求解题1.已知函数)3(-=m y 232--m m x 为二次函数. (1)若其图象开口向上,求函数关系式;(2)若当x >0时,y 随x 的增大而减小,求函数的关系式.2.已知抛物线2ax y =经过点A (2,1).(1)求这个函数的解析式并写出抛物线上点A 关于y 轴的对称点B 的坐标; (2)求△OAB 的面积;3.已知函数()412-+=x y 。
(1) 指出函数图象的开口方向、对称轴和顶点坐标;(2) 若图象与x 轴的交点为A 、B 和与y 轴的交点C ,求△ABC 的面积; (3) 指出该函数的最值和增减性;(4) 若将该抛物线先向右平移2个单位,在向上平移4个单位,求得到的抛物线的解析式;(5) 该抛物线经过怎样的平移能经过原点。