2020高考数学热点难点微专题代数推理问题(2页)
- 格式:docx
- 大小:22.21 KB
- 文档页数:2
2020年高考数学(文)二轮复习命题考点串讲系列-专题17 算法、复数、推理与证明1、考情解读1.以客观题形式考查算法的基本逻辑结构,会与函数、数列、不等式、统计、概率等知识结合命题.2.以客观题形式考查复数的运算、复数的相等、共轭复数和复数及其代数运算的几何意义,与其他知识较少结合,应注意和三角函数结合的练习.2、重点知识梳理 一、算法框图与复数 1.算法框图(1)程序框图是由一些图框和带箭头的流程线组成的,其中图框表示各种操作的类型,图框中的文字和符号表示操作的内容,带箭头的流程线表示操作的先后次序.图框有输入、输出框、处理框、判断框、起止框四种. (2)三种基本的算法结构①依次进行多个处理的结构称为顺序结构.②先根据条件作出判断,再决定执行哪一种操作的结构称为选择结构. ③需要重复执行同一操作的结构称为循环结构. 2.复数(1)复数的相关概念及分类①定义:形如a +b i(a 、b ∈R )的数叫复数,其中a 为实部,b 为虚部;i 是虚数单位,且满足i 2=-1.②分类:设复数z =a +b i(a 、b ∈R )z ∈R ⇔b =0;z 为虚数⇔b ≠0,z 为纯虚数⇔⎩⎨⎧a =0b ≠0.③共轭复数:复数a +b i 的共轭复数为a -b i. ④复数的模:复数z =a +b i 的模|z |=a 2+b 2.(2)复数相等的充要条件a +b i =c +d i ⇔a =c 且b =d (a 、b 、c 、d ∈R ). 特别地,a +b i =0⇔a =0且b =0(a 、b ∈R ). (3)运算法则①加减法:(a +b i)±(c +d i)=(a ±c )+(b ±d )i. ②乘法:(a +b i)(c +d i)=(ac -bd )+(ad +bc )i. ③除法:(a +b i)÷(c +d i)=ac +bd+bc -ad ic 2+d 2.(4)复数加减法的几何意义①加法:若复数z 1、z 2对应的向量OZ 1→、OZ 2→不共线,则复数z 1+z 2是以OZ 1→、OZ 2→为邻边的平行四边形的对角线所对应的复数.②减法:复数z 1-z 2是连接向量OZ 1→、OZ 2→的终点,并指向OZ 1→的终点的向量对应的复数. 二、推理与证明 1.合情推理 (1)归纳推理根据一类事物的部分对象具有某种性质,推出这类事物的所有对象都具有这样性质的推理,叫做归纳推理,归纳是由特殊到一般的推理.归纳推理的思维过程:实验观察→概括、推广→猜测一般性结论. (2)类比推理根据两类不同事物之间具有某些类似(或一致)性,推测其中一类事物具有与另一类事物类似(或相同)的性质的推理叫做类比推理,类比推理是由特殊到特殊的推理.类比推理的思维过程:观察、比较→联想、类推→猜测新的结论. 2.演绎推理根据一般性的真命题(或逻辑规则)导出特殊性命题为真的推理叫做演绎推理.演绎推理是由一般性命题到特殊性命题的推理.(1)演绎推理的特点当前提为真时,结论必然为真. (2)演绎推理的一般模式——“三段论” ①大前提——已知的一般原理;②小前提——所研究的特殊情况;③结论——根据一般原理,对特殊情况做出的判断.3.直接证明从命题的条件或结论出发,根据已知的定义、公理、定理,直接推证结论的真实性的证明称为直接证明.综合法和分析法是直接证明中最基本的两种方法,也是解决数学问题时常用的思维方法.(1)综合法从已知条件和某些数学定义、公理、定理等出发,经过逐步的推理论证,最后达到待证的结论,这种证明方法叫综合法.也叫顺推证法或由因导果法.(2)分析法从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知的条件、定理、定义、公理等)为止.这种证明方法叫分析法.也叫逆推证法或执果索因法.4.间接证明(1)反证法的定义一般地,由证明p⇒q转向证明:¬q⇒r⇒…⇒t,t与假设矛盾,或与某个真命题矛盾.从而判断¬q为假,推出q为真的方法,叫做反证法.(2)反证法的特点先假设原命题不成立,再在正确的推理下得出矛盾,这个矛盾可以是与已知条件矛盾,或与假设矛盾,或与定义、公理、定理、公式或已被证明了的结论,或与公认的简单事实等矛盾.5.数学归纳法(理)一个与自然数相关的命题,如果(1)当n取第一值n0时命题成立;(2)在假设当n=k(k∈N+,且k≥n0)时命题成立的前提下,推出当n=k+1时题命题也成立,那么可以断定,这个命题对n 取第一个值后面的所有正整数成立.3、高频考点突破考点1 程序框图例1.【2017山东,文6】执行右侧的程序框图,当输入的x值为4时,输出的y的值为2,则空白判断框中的条件可能为A.3x >B.4x >C.4x ≤D.5x ≤ 【答案】B【解析】由题意得4x = 时判断框中的条件应为不满足,所以选B.【变式探究】【2016高考新课标1卷】执行右面的程序框图,如果输入的011x y n ===,,,则输出x ,y 的值满足(A )2y x = (B )3y x = (C )4y x = (D )5y x =n=n +1输出x,y x 2+y 2≥36?x =x+n-12,y=ny 输入x,y,n 开始【答案】C【变式探究】(2015·四川,3)执行如图所示的程序框图,输出S 的值为( )A .-32 B. 32C .-12 D.12 【答案】D【解析】每次循环的结果依次为: k =2,k =3,k =4,k =5>4, ∴S =sin 5π6=12.选D. 考点2 复数的概念例2.【2017课标1,文3】下列各式的运算结果为纯虚数的是 A .i(1+i)2 B .i 2(1-i) C .(1+i)2 D .i(1+i)【答案】C【解析】由2(1)2i i +=为纯虚数知选C .【变式探究】【2016高考新课标3文数】若i 12z =+,则4i1zz =-( ) (A)1 (B) -1 (C)i (D) i - 【答案】C 【解析】4i 4ii (12i)(12i)11zz ==+---,故选C . 【变式探究】(2015·安徽,1)设i 是虚数单位,则复数2i1-i在复平面内所对应的点位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限【答案】B考点3 复数的四则运算例3.【2017山东,文2】已知i 是虚数单位,若复数z 满足i 1i z =+,则2z = A.-2i B.2i C.-2 D.2 【答案】A【解析】由i 1i z =+得22(i)(1i)z =+,即22i z -=,所以22i z =-,故选A. 【2016高考天津文数】已知,a b ∈R ,i 是虚数单位,若(1)(1)i bi a +-=,则ab的值为_______. 【答案】2【解析】由(1i)(1i)1(1)i b b b a +-=++-=,可得110b a b +=⎧⎨-=⎩,所以21a b =⎧⎨=⎩,2ab =,故答案为2.【变式探究】(2015·北京,1)复数i(2-i)=( ) A .1+2iB .1-2iC .-1+2iD .-1-2i【解析】i(2-i)=2i -i 2=1+2i. 【答案】A 考点4 类比推理例4、【2017课标II ,文9】甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说,你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩,看后甲对大家说:我还是不知道我的成绩,根据以上信息,则A.乙可以知道两人的成绩B.丁可能知道两人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩 【答案】D【变式探究】在Rt△ABC中,CA⊥CB,斜边AB上的高为h1,则1h21=1CA2+1CB2;类比此性质,如图,在四面体P-ABC中,若P A、PB、PC两两垂直,底面ABC上的高为h,则得到的正确结论为________.【答案】1h2=1P A2+1PB2+1PC2【解析】本题考查了合情推理的能力.连接CO并延长交AB于点D,连接PD,由已知可得PC⊥PD,在直角三角形PDC中,DC·h=PD·PC,则PD2+PC2·h=PD·PC,所以1h2=PD2+PC2PD2·PC2=1PC2+1PD2.容易知道AB⊥平面PDC,所以AB⊥PD,在直角三角形APB中,AB·PD=P A·PB,所以P A2+PB2·PD=P A·PB,1PD 2=P A 2+PB 2P A 2·PB 2=1P A 2+1PB 2,故1h 2=1P A 2+1PB 2+1PC 2.(也可以由等体积法得到).【变式探究】在平面直角坐标系中,设△ABC 的顶点分别为A (0,a )、B (b,0)、C (c,0),点P (0,p )在线段AO 上(异于端点),设a 、b 、c 、p 均为非零实数,直线BP 、CP 分别交AC 、AB 于点E 、F ,一同学已正确算出OE 的方程:(1b -1c )x +(1p -1a )y =0,则OF 的方程为:(________)x +(1p -1a )y =0.【答案】1c -1b【解题分析】观察E ,F 两点可以发现,E 、F 两点的特征类似,E 是BP 与AC 的交点,F 是CP 与AB 的交点,故直线OE 与OF 的方程应具有类似的特征,而y 的系数相同,故只有x 的系数满足某种“对称性”,据此可作猜测.y p =1,两式相减得(1c -1b )x +(1p -1a )y =0,显然直线AB 与CP 的交点F 满足此方程,又原点O 也满足此方程,故为所求直线OF 的方程.考点5 直接证明与间接证明例5、若数列a n :a 1,a 2,…,a n (n ≥2)满足|a k +1-a k |=1(k =1,2,…,n -1),则称a n 为E 数列.记S (a n )=a 1+a 2+…+a n .(1)写出一个满足a 1=a 5=0,且S (A 5)>0的E 数列A 5;(2)若a 1=12,n =2000,证明:E 数列a n 是递增数列的充要条件是a n =2011.【解题分析】解答这类新定义题型,一定要先弄清新定义的含义,由条件知E 数列{a n }任意两邻两项相差1,故可据此任意构造E 数列,同时,E 数列{a n }递增⇔a n +1-a n =1. 学@科网【变式探究】已知数列{a n }满足:a 1=12,31+a n +11-a n =21+a n1-a n +1,a n a n +1<0(n ≥1);数列{b n }满足:b n =a 2n +1-a 2n (n ≥1).(1)求数列{a n }、{b n }的通项公式;(2)证明:数列{b n }中的任意三项不可能成等差数列. 【解析】(1)由题意可知,1-a 2n +1=23(1-a 2n ).令c n =1-a 2n ,则c n +1=23c n . 又c 1=1-a 21=34,则数列{c n }是首项为c 1=34,公比为23的等比数列,即c n =34·⎝ ⎛⎭⎪⎫23n -1,假设数列{b n }中存在三项b r 、b s 、b t (r <s <t )按某种顺序成等差数列,由于数列{b n }是首项为14,公比为23的等比数列,于是有b t <b s <b r ,则只可能有2b s =b r +b t 成立.∴2·14⎝ ⎛⎭⎪⎫23s -1=14⎝ ⎛⎭⎪⎫23r -1+14⎝ ⎛⎭⎪⎫23t -1.两边同乘以3t -121-r ,化简得3t -r +2t -r =2·2s -r 3t -s ,由于r <s <t ,所以上式左边为奇数,右边为偶数,故上式不可能成立,导致矛盾. ∴假设不成立.故数列{b n }中任意三项不可能成等差数列. 4、真题感悟(2014-2017年)1.【2017课标1,文3】下列各式的运算结果为纯虚数的是 A .i(1+i)2 B .i 2(1-i) C .(1+i)2 D .i(1+i)【答案】C【解析】由2(1)2i i +=为纯虚数知选C . 【考点】复数运算,复数基本概念 2.【2017课标II ,文2】(1i)(2i)++=A.1i -B.13i +C.3i +D.33i + 【答案】B 【解析】由题意,故选B.3.【2017课标3,文2】复平面内表示复数i(2i)z =-+的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限【答案】C【解析】由题意:12z i =--,在第三象限. 所以选C. 【考点】复数运算4.【2017北京,文2】若复数(1i)(i)a -+在复平面内对应的点在第二象限,则实数a 的取值范围是(A )(,1)-∞ (B )(,1)-∞- (C )(1,)+∞ (D )(1,)-+∞ 【答案】B5.【2017山东,文2】已知i 是虚数单位,若复数z 满足i 1i z =+,则2z = A.-2i B.2i C.-2 D.2 【答案】A【解析】由i 1i z =+得22(i)(1i)z =+,即22i z -=,所以22i z =-,故选A. 【考点】复数的运算6. 【2017山东,文6】执行右侧的程序框图,当输入的x 值为4时,输出的y 的值为2,则空白判断框中的条件可能为A.3x >B.4x >C.4x ≤D.5x ≤【答案】Bx=时判断框中的条件应为不满足,所以选B.【解析】由题意得4【考点】程序框图7.【2017课标1,文10】如图是为了求出满足321000n n->的最小偶数n,那么在和A.A>1000和n=n+1 B.A>1000和n=n+2C.A≤1000和n=n+1 D.A≤1000和n=n+2【答案】D8.【2017课标3,文8】执行下面的程序框图,为使输出S的值小于91,则输入的正整数N的最小值为()A.5 B.4 C.3 D.2【答案】D【解析】若2N =,第一次进入循环,12≤成立,100100,1010S M ==-=-,2i =2≤成立,第二次进入循环,此时101001090,110S M -=-==-=,3i =2≤不成立,所以输出9091S =<成立,所以输入的正整数N 的最小值是2,故选D.【考点】循环结构流程图9.【2017课标II ,文9】甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说,你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩,看后甲对大家说:我还是不知道我的成绩,根据以上信息,则A.乙可以知道两人的成绩B.丁可能知道两人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩 【答案】D 【考点】推理10. 【2017课标II ,文10】执行右面的程序框图,如果输入的1a =-,则输出的S = A.2 B.3 C.4 D.5【答案】B【解析】阅读流程图,初始化数值.循环结果执行如下:【考点】循环结构流程图11.【2017北京,文3】执行如图所示的程序框图,输出的s 值为(A )2 (B )32(C )53 (D )85【答案】C【解析】0k =时,03<成立,第一次进入循环111,21k s +===,13<成立,第二次进入循环,2132,22k s +===,23<成立,第三次进入循环31523,332k s +===,33< 否,输出53s =,故选C.【考点】循环结构12.【2017天津,文9】已知a ∈R ,i 为虚数单位,若i2ia -+为实数,则a 的值为 . 【答案】2-【解析】()(2)(21)(2)2122(2)(2)555a i a i i a a i a aii i i-----+-+===-++-为实数,13.【2017北京,文14】某学习小组由学生和学科网&教师组成,人员构成同时满足以下三个条件:(ⅰ)男学生人数多于女学生人数;(ⅱ)女学生人数多于教师人数;(ⅲ)教师人数的两倍多于男学生人数.①若教师人数为4,则女学生人数的最大值为__________.②该小组人数的最小值为__________.【答案】6,12【考点】1.不等式的性质;2.推理.14.【2017江苏,2】已知复数(1i)(12i),z=++其中i是虚数单位,则z的模是.10【解析】(1)(12)1122510z i i i i=++=++==10【考点】复数的模15.【2017江苏,4】右图是一个算法流程图,若输入x的值为116,则输出的y的值是.【答案】-2【解析】由题意得212log 216y =+=-,故答案为-2. 1.【2016高考新课标1卷】执行右面的程序框图,如果输入的011x y n ===,,,则输出x ,y 的值满足(A )2y x = (B )3y x = (C )4y x = (D )5y x =n=n +1结束输出x,y x 2+y 2≥36?x =x+n-12,y=ny 输入x,y,n 开始【答案】C2.【2016高考新课标3文数】执行下图的程序框图,如果输入的46,,那么a b==输出的n=()(A)3 (B)4 (C)5 (D)6【答案】B3.【2016年高考四川文数】秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n,x的值分别为3,2,则输出v的值为(A )9 (B )18 (C )20 (D )35 【答案】B4.【2016高考新课标2文数】中国古代有计算多项式值的秦九韶算法,下图是实现该算法的程序框图.执行该程序框图,若输入的2,2x n ==,依次输入的a 为2,2,5,则输出的s =( )(A )7 (B )12 (C )17 (D )34 【答案】C5.【2016年高考北京文数】执行如图所示的程序框图,若输入的a 值为1,则输出的k 值为()A.1B.2C.3D.4【答案】B【解析】输入1=a ,则0=k ,1=b ;进入循环体,21-=a ,否,1=k ,2-=a ,否,2=k ,1=a ,此时1==b a ,输出k ,则2=k ,选B.6.【2016高考山东文数】执行右边的程序框图,若输入的a ,b 的值分别为0和9,则输出的i 的值为________.【答案】37.【2016高考天津文数】阅读右边的程序框图,运行相应的程序,则输出S 的值为( ) (A )2(B )4(C )6(D )8【答案】B【解析】依次循环:8,n 2;S 2,n 3;S 4,n 4S ======结束循环,输出S 4=,选B. 8.【2016高考江苏卷】如图是一个算法的流程图,则输出的a 的值是 .【答案】91.【2016新课标理】设(1)=1+,x i yi +其中x ,y 实数,则i =x y +( ) (A )1 (B 2 (C 3 (D )2 【答案】B【解析】因为(1)=1+,x i yi +所以=1+,=1,1,||=|1+|2,x xi yi x y x x yi i +==+=故选B. 2.【2016高考新课标3文数】若i 12z =+,则4i1zz =-( )(A)1 (B) -1 (C)i (D) i - 【答案】C 【解析】4i 4ii (12i)(12i)11zz ==+---,故选C . 3.【2016高考新课标2文数】已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是( )(A )(31)-, (B )(13)-, (C )(1,)∞+ (D )(3)∞--, 【答案】A【解析】要使复数z 对应的点在第四象限应满足:m 30m 10+>⎧⎨-<⎩,解得3m 1-<<,故选A.4.【2016年高考北京文数】设a R ∈,若复数(1)()i a i ++在复平面内对应的点位于实轴上,则a =_____.【答案】-1【解析】(1)()1(1)1i a i a a i R a ++=-++∈⇒=-,故填:-15.【2016高考山东文数】若复数z 满足232i,z z +=- 其中i 为虚数单位,则z =( ) (A )1+2i (B )1-2i (C )12i -+ (D )12i --【答案】B【解析】设bi a z +=,则i bi a z z 2332-=+=+,故2,1-==b a ,则i z 21-=,选B. 6.【2016高考天津文数】已知,a b ∈R ,i 是虚数单位,若(1)(1)i bi a +-=,则ab的值为___.【答案】2【解析】由(1i)(1i)1(1)i b b b a +-=++-=,可得110b a b +=⎧⎨-=⎩,所以21a b =⎧⎨=⎩,2ab =,故答案为2.7.【2016高考江苏卷】复数(12i)(3i),z =+-其中i 为虚数单位,则z 的实部是______. 【答案】5【解析】(12)(3)55=+-=+,故z的实部是5z i i i1.(2015·重庆,7)执行如图所示的程序框图,输出的结果为()A.(-2,2) B.(-4,0)C.(-4,-4) D.(0,-8)【答案】B【解析】第一次循环:S=1-1=0,t=1+1=2;x=0,y=2,k=1;第二次循环:S=0-2=-2,t=0+2=2,x=-2,y=2,k=2;第三次循环:S=-2-2=-4,t=-2+2=0,x=-4,y=0,k=3.输出(-4,0).2.(2015·福建,6)阅读如图所示的程序框图,运行相应的程序,则输出的结果为()A.2 B.1 C.0 D.-1【答案】C3.(2015·北京,3)执行如图所示的程序框图,若输出k的值为8,则判断框内可填入的条件是()A.s≤34B.s≤56C.s≤1112D.s≤2524【答案】C【解析】由程序框图,k的值依次为0,2,4,6,8,因此s=12+14+16=1112(此时k=6)还必须计算一次,因此可填s≤1112,选C.4.(2015·新课标全国Ⅱ,8)下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a,b分别为14,18,则输出的a=()A.0 B.2 C.4 D.14【答案】B5.(2015·山东,13)执行如图所示的程序框图,输出的T的值为________.【答案】116【解析】当n =1时,T =1+⎠⎛01x 1d x =1+21102x =1+12=32;当n =2时,T =32+⎠⎛01x 2d x =32+31103x =32+13=116;当n =3时,结束循环,输出T =116.6.(2015·新课标全国Ⅱ,2)若a 为实数,且(2+a i)(a -2i)=-4i ,则a =( ) A .-1 B .0 C .1 D .2 【答案】B【解析】因为a 为实数,且(2+a i)(a -2i)=4a +(a 2-4)i =-4i ,得4a =0且a 2-4=-4,解得a =0,故选B.7.(2015·广东,2)若复数z =i(3-2i)(i 是虚数单位),则z =( ) A .3-2i B .3+2i C .2+3i D .2-3i【答案】D【解析】因为z =i(3-2i)=2+3i ,所以z =2-3i ,故选D. 8.(2015·四川,2)设i 是虚数单位,则复数i 3-2i =( ) A .-i B .-3i C .i D .3i 【答案】C【解析】i 3-2i =-i -2ii 2=-i +2i =i.选C. 9.(2015·山东,2)若复数z 满足z1-i=i ,其中i 为虚数单位,则z =( ) A .1-i B .1+i C .-1-iD .-1+i【答案】A 【解析】∵z1-i=i ,∴z =i(1-i)=i -i 2=1+i ,∴z =1-i. 10.(2015·新课标全国Ⅰ,1)设复数z 满足1+z1-z=i ,则|z |=( ) A .1 B . 2 C. 3 D .2 【答案】A 【解析】由1+z 1-z =i ,得1+z =i -z i ,z =-1+i1+i=i ,∴|z |=|i|=1. 11.(2015·重庆,11)设复数a +b i(a ,b ∈R )的模为3,则(a +b i)(a -b i)=________. 【答案】3【解析】由|a +b i|=3得a 2+b 2=3,即a 2+b 2=3,所以(a +b i)(a -b i)=a 2+b 2=3. 1. 【2014高考安徽卷文第1题】设i 是虚数单位,z 表示复数z 的共轭复数. 若,1i z +=则zi z i+⋅=( ) A. 2- B. i 2- C. 2 D. i 2 【答案】C【解析】由题意21(1)(1)1112z i i ii z i i i i i i i i+++⋅=+-=++=-++=,故选C. 【考点定位】复数的运算、共轭复数.2. 【2014高考北京版文第9题】复数21()1i i+=- .【答案】1-【解析】i i i i i i i ==+-+=-+22)1)(1()1(112,所以1)11(22-==-+i ii . 【考点定位】复数的运算3. 【2014高考福建卷第1题】复数(32)z i i =-的共轭复数z 等于( ).23A i -- .23B i -+ .23C i - .23D i + 【答案】C【解析】依题意可得32,23z i z i =+∴=-.故选C.【考点定位】复数的运算.4. 【2014高考广东卷文第2题】已知复数z 满足()3425i z +=,则z =( ) A.34i - B.34i + C.34i -- D.34i -+ 【答案】A【考点定位】复数的四则运算5. 【2014高考湖北卷文第1题】 i 为虚数单位,则=+-2)11(ii ( )A. 1-B. 1C. i -D.i 【答案】A【解析】因为122)11(2-=-=+-iii i ,故选A.【考点定位】复数的运算6. 【2014高考湖南卷第1题】满足i ziz =+(i 是虚数单位)的复数=z ( ) A.i 2121+ B. i 2121- C. i 2121+- D. i 2121-- 【答案】B 【解析】由题可得()()()()111111122i i z i i i z i zi z i i z i z i i i -++-=⇒+=⇒-=-⇒===---+, 故选B.【考点定位】复数运算7. 【2014高考江苏卷第2题】已知复数2(52)Z i =-(i 为虚数单位),则复数Z 的实部是 .【答案】21【解析】由题意22(52)25252(2)2120z i i i i =+=+⨯⨯+=+,其实部为21. 【考点定位】复数的概念8. 【2014江西高考文第1题】z 是z 的共轭复数. 若2=+z z ,2)(=-i z z (i 为虚数单位),则=z ( )A.i +1B. i --1C. i +-1D. i -1 【答案】D【解析】设,(,)z a bi a b R =+∈,则,z a bi =-由2=+z z 得:1a =,由2)(=-i z z 得:1b =-,所以1,z i =-选D.【考点定位】共轭复数9. 【2014辽宁高考文第2题】设复数z 满足(2)(2)5z i i --=,则z =( ) A .23i + B .23i - C .32i + D .32i - 【答案】A 【解析】因为5223(2)z i z i i =+∴=+-,故选A. 【考点定位】 复数的运算.10. 【2014全国1高考理第2题】=-+23)1()1(i i ( ) A. i +1 B. i -1 C. i +-1 D. i --1 【答案】D【解析】由已知得=-+23)1()1(i i 22(1)(1)2(1)1(1)2i i i i i i i+++==----. 【考点定位】复数的运算11. 【2014全国2高考文第2题】设复数1z ,2z 在复平面内的对应点关于虚轴对称,12z i =+,则12z z =( )A. - 5B. 5C. - 4+ iD. - 4 - i 【答案】A【解析】由题意知:22z i =-+,所以12z z =-5,故选A 。
2020江苏高考数学二轮热点难点微专题突破微专题04 多元最值问题多元问题是代数问题中重点和难点问题.二元或者三元取值范围问题是考察重点,常见于基本不等式的应用中,函数和数列的综合问题中.这类考察了减元思想以及整体思想的运用,将多元问题转化为一元问题来处理.【例1】若a ,b ∈R ,且a 2+2ab -3b 2=1,则a 2+b 2的最小值为________. 答案:5+14解析:(解法1)条件为(a +3b )(a -b )=1,设m =a +3b ,n =a -b , 则mn =1,且4a =m +3n,4b =m -n ,所以16(a 2+b 2)=(m +3n )2+(m -n )2=2m 2+10n 2+4, 因为2m 2+10n 2≥45,所以a 2+b 2≥5+14. (解法2)设1=a 2+2ab -3b 2≤a 2-3b 2≤a 2-3b 2+⎝⎛⎭⎫λa 2+1λb 2 =(1+λ)a 2+⎝⎛⎭⎫1λ-3b 2(λ>0). 令1+λ=1λ-3,解得λ=5-2.再将λ=5-2回代可得,(5-1)a 2+(5-1)b 2≥1,即a 2+b 2≥5+14. 【例2】设实数a ,b ,c 满足a 2+b 2≤c ≤1,则a +b +c 的最小值为________. 答案:-12解析:(解法1)因为 c ≥a 2+b 2,所以a +b +c ≥a +b +a 2+b 2=⎝⎛⎭⎫a +122+⎝⎛⎭⎫b +122-12, 故a +b +c 的最小值为-12.(解法2)因为 c ≥a 2+b 2,所以a +b +c ≥a +b +a 2+b 2.又因为 a 2+b 2≥(a +b )22 ,故 a +b +c ≥a +b +a 2+b 2≥(a +b )22+(a +b )=12[(a +b )+1]2-12,故a +b +c 的最小值为-12.(解法3)换元法 令 a =r cos θ,b =r cos θ,r ∈[0,1].a +b +c ≥a +b +a 2+b 2=r 2+r (cos θ+sin θ)=r 2+2r sin ⎝⎛⎭⎫θ+π4=⎣⎡⎦⎤r +22sin ⎝⎛⎭⎫θ+π42-12sin 2⎝⎛⎭⎫θ+π4,故 a +b +c 的最小值为-12. 【方法规律】方法1根据条件进行放缩,利用配方法解决问题;方法2根据条件进行放缩,关注到基本不等式,同时有整体配方思想. 方法3通过换元,利用三角函数的有界性解决问题.【例3】已知△ABC 的三边长a ,b ,c 成等差数列,且a 2+b 2+c 2=84,则实数b 的取值范围为________. 答案:(26,27]解析:设等差数列的公差为d ,由题意得△ABC 三边满足b >|a -c |=2|d |,所以|d |<12b .因为a 2+b 2+c 2=84,所以(b -d )2+b 2+(b +d )2=84,即3b 2+2d 2=84.又因为3b 2+2d 2<3b 2+12b 2=72b 2,所以72b 2>84,即b 2>24,解得b >26(b <-26舍去).因为△ABC 的三边长a ,b ,c 成等差数列,所以2b =a +c ,故4b 2=a 2+c 2+2ac ,即a 2+c 2=4b 2-2ac .因为a 2+b 2+c 2=84,所以84=5b 2-2ac ≥5b 2-(a +c )22=3b 2,当且仅当a =c 时取等号,所以b 2≤28,所以0<b ≤27.综上所述,实数b 的取值范围是(26,27]. 【方法规律】本题关键在于消元,将三元问题转化为两元.在解答本题时要注意△ABC 三边长a ,b ,c 应该满足的限制条件有三条:三角形边的关系、2b =a +c 和a 2+b 2+c 2=84,有许多考生忽视了本题中“三角形边的关系”而只利用另外两个条件求出0<b ≤27这个错误答案,因此提醒考生答题时要完全读懂题意再解答,避免此类错误的发生.(通过本课题的学习,你学到了什么?你还有其它疑惑吗?)A 组1.已知正实数a ,b 满足9a 2+b 2=1,则ab3a +b的最大值为________.答案:212解析:(解法1)212 利用不等式21x +1y≤x 2+y 22可得 2ab 3a +b =21b 3+1a ≤a 2+b 292=132,则 ab 3a +b 的最大值为212. 【点评】直接利用基本不等式(解法2)由9a 2+b 2=1可得 ab ≤16.因为 3a +b ≥23ab ,此两处取号时均为3a =b ,故ab 3a +b ≤ab 23ab =ab 23≤123·6=212. 【点评】两次运用基本不等式,注意等号成立的条件.(解法3)因为 ⎝⎛⎭⎫ab 3a +b 2=(ab )29a 2+b 2+6ab =(ab )21+6ab =11(ab )2+6ab =1⎝⎛⎭⎫1ab +32-9,由9a 2+b 2=1可得 ab ≤16,则 ⎝⎛⎭⎫ab 3a +b 2≤172,所以 ab 3a +b 的最大值为212.(解法4)令3a =sin θ,b =cos θ,θ∈⎝⎛⎭⎫0,π2,则 ab 3a +b =13·sin θcos θsin θ+cos θ, 令sin θ+cos θ=t ,t ∈(1,2],则 sin θcos θ=t 2-12,于是ab 3a +b =13·sin θcos θsin θ+cos θ=16⎝⎛⎭⎫t -1t ,由于函数f (t )=t -1t 在区间(]1,2上递增,故当t =2时,取最大值212. 2.已知x >0,y >0,z >0,且x +3y +z =6,则x 3+y 2+3z 的最小值为________. 答案:374解析:思路分析:本题消元后转化为二元问题研究.(解法1)函数思想:x 3+y 2+3z =x 3+y 2+3(6-x -3y )=x 3-3x +y 2-33y +18=x 3-3x +⎝⎛⎭⎫y -3322+454≥x 3-3x +454,当且仅当y =332时取等号.设g (x )=x 3-3x ,g ′(x )=3x 2-3.令g ′(x )=0得x =1,得g (x )在(0,1)上单调递减,在(1,+∞)上单调递增,从而g (x )min =g (1)=-2,所以(x 3+y 2+3z )min =-2+454=374,即所求最小值为374,当且仅当x =1,y =332,z =12时取等号. (解法2)基本不等式:由x 3+1+1≥3x (当且仅当x =1,取等号),y 2+274≥33y ⎝⎛⎭⎫当且仅当y =332取等号,得x 3+y 2+3z +2+274≥3(x +3y +z )=18,x 3+y 2+3z ≥374⎝⎛⎭⎫当且仅当x =1,y =332,z =12取等号.3.已知a ,b ,c 为正实数,且a +2b ≤8c ,2a +3b ≤2c ,则3a +8b c 的取值范围为________.答案:[27,30]解析:因为a ,b ,c 为正实数,a +2b ≤8c 的左、右两边同除c ,得a c +2bc≤8.对2a +3b ≤2c 的左、右两边同乘c ,得2c a +3c b ≤2;令x =a c ,y =bc,则条件可转化为 ⎩⎪⎨⎪⎧x >0,y >0,x +2y ≤8,2x +3y ≤2,再进行化简,可得⎩⎪⎨⎪⎧x >0,y >0,x +2y ≤8,y ≥32+32x -2.求z =3a +8bc=3x +8y 的取值范围问题转换为线性规划的问题,画出可行域.对y =32+32x -2求导,并令导函数值为-38,可得切点横坐标为3,代入曲线,计算出切点坐标为⎝⎛⎭⎫3,94,利用线性规划,可知z =3x +8y 分别在(2,3)和⎝⎛⎭⎫3,94取最大值和最小值,代入计算可得范围为[27,30].4.若a ,b ,c 是三个正实数,且a 2=ab +bc +ac ,则2b +3ca的最小值为________. 答案:43-5解析:由a 2=ab +bc +ac ,得1=b a ·c a +b a +c a ,设x =b a >0,y =ca >0,则1=xy +x +y ,即(x +1)(y +1)=2,则2b +3c a =2x +3y .因为(2x +2)(3y +3)=12≤(2x +3y +5)24,所以(2x +3y +5)2≥48,又x >0,y >0,所以2x +3y 的最小值为43-5,当且仅当⎩⎪⎨⎪⎧2x +2=3y +3,1=xy +x +y ,即x=3-1,y =23-33时等号成立.B 组1.已知函数f (x )=log 2(x -2),若实数m ,n 满足f (m )+f (2n )=3,则m +n 的最小值为______. 答案:7解析:由f (m )+f (2n )=3可得log 2(m -2)+log 2(2n -2)=3, 则(m -2)(n -1)=4,其中(m >2,n >1).由基本不等式(m -2)(n -1)≤m -2+n -12, 即m +n ≥7,当且仅当m =4,n =3时,取“=”.所以m +n 的最小值为7.2.若a >b >c ,且a +b +c =0,则ca 的取值范围是________.答案:⎝⎛⎭⎫-2,-12 解析:(解法1)因为a >b >c ,a +b +c =0,所以a >0,c <0,则c a =-(a +b )a >-(a +a )a =-2,c a =c -(b +c )<c -(c +c )=-12,故-2<c a <-12. (解法2)因为a >b >c ,a +b +c =0,所以a >0,c <0,则c <b =-a -c <a ,解得-2<c a <-12.3.已知a >0,b >0,且a +3b =1b -1a ,则b 的最大值为________.答案:13解析:由a +3b =1b -1a ,得1b -3b =a +1a .又a >0,所以1b -3b =a +1a ≥2(当且仅当a =1时取等号),即1b -3b ≥2,又b >0,解得0<b ≤13,所以b 的最大值为13.4.已知x ,y 为正实数且满足x +y ≤1,则14x +1y +1的最小值为________.答案:98解析:因为⎝⎛⎭⎫14x +1y +1(x +y +1)=y +14x +x y +1+54≥94,所以14x +1y +1≥94(x +y +1)≥94(1+1)=98,当且仅当x =23,y =13时,取“=”.所以14x +1y +1的最小值为98.5.若正实数a ,b ,c 满足ab =a +2b ,abc =a +2b +c ,则c 的最大值为_______. 答案:87解析:(解法1)由abc =a +2b +c 得,c =a +2b ab -1=a +2b a +2b -1=1+1a +2b -1.由ab =a +2b 得,1b +2a =1,所以a +2b =(a +2b )⎝⎛⎭⎫1b +2a =4+a b +4ba≥4+2a b ·4b a =4+4=8,故c ≤87. (解法2)因为abc =a +2b +c ,ab =a +2b ,所以abc =ab +c ,故c =ab ab -1=1+1ab -1.由ab =a +2b 利用基本不等式得ab ≥22ab ,故ab ≥8,当且仅当a =4,b =2时等号成立,故c =1+1ab -1≤1+18-1=87.6.国际上钻石的重量计量单位为克拉.已知某种钻石的价值V 美元与其重量ω克拉的平方成正比,若把一颗钻石切割成重量分别为m ,n (m ≥n )的两颗钻石,且价值损失的百分率为原有价值-现有价值原有价值×100%(切割中重量损耗不计),则价值损失的百分率的最大值为________. 答案:50%解析:因为V 与ω的平方成正比,所以设V =kω2, 则原有价值V 0=k (m +n )2,现有价值V =V 1+V 2=km 2+kn 2, 所以价值损失的百分率=V 0-V V 0=k (m +n )2-km 2-kn 2k (m +n )2×100%,而k (m +n )2-km 2-kn 2k (m +n )2=2mn (m +n )2≤2mn 4mn =12,当且仅当m =n 时取等号. 故价值损失的百分率的最大值为50%.7.已知a ,b ,c 为正实数且满足b +c ≥a ,则b c +c a +b 的最小值为________.答案:2-12解析:由b +c ≥a 可得b c +c a +b ≥b c +c b +c +b =b c +12bc +1.令bc=t ,则t >0,2t +1>0,则b c +c a +b ≥t +12t +1=12(2t +1)+12t +1-12≥2-12,当且仅当t =2-12 时, 取“=”. 所以b c +c a +b 的最小值为2-12.8.已知实数a >b >0,且a +b =2,则3a -b a 2+2ab -3b 2的最小值为________.答案:3+54解析:因为a +b =2,所以0<b =2-a <a ,解得1<a <2,从而3a -ba 2+2ab -3b 2=3a -(2-a )a 2+2a (2-a )-3(2-a )2=2a -1-2(a 2-4a +3),令t =2a -1∈(1,3),则3a -b a 2+2ab -3b 2=2t-t 2+6t -5=26-⎝⎛⎭⎫t +5t ≥26-25=3+54,当且仅当t =5时等号成立.9.设二次函数f (x )=ax 2+bx +c (a ,b ,c 为常数)的导函数为f ′(x ).对任意x ∈R ,不等式f (x )≥f ′(x )恒成立,则b 2a 2+c 2的最大值为________.答案:22-2解析:因为f ′(x )=2ax +b ,所以f (x )≥f ′(x ),即ax 2+(b -2a )x +c -b ≥0恒成立,故⎩⎪⎨⎪⎧a >0,Δ=(b -2a )2-4a (c -b )≤0, 即⎩⎪⎨⎪⎧a >0,b 2≤4ac -4a 2,故b 2a 2+c 2≤4ac -4a 2a 2+c 2=4⎝⎛⎭⎫ca -11+⎝⎛⎭⎫c a 2. 令t =c a -1>0,则b 2a 2+c 2≤4t t 2+2t +2=4t +2t+2≤42+22=22-2, 当且仅当t =2=ca -1且b 2=4ac -4a 2时等号成立.10.若不等式k sin 2B +sin A sin C >19sin B sin C 对任意△ABC 都成立,则实数k 的最小值为________. 答案:100解析:(解法1)因为k sin 2B +sin A sin C >19sin B sin C ,所以由正弦定理可得kb 2+ac >19bc ,即k >19bc -ac b 2.因为△ABC 为任意三角形,所以a >|b -c |,即19bc -ac b 2<19bc -|b -c |cb 2=⎩⎨⎧⎝⎛⎭⎫c b 2+18⎝⎛⎭⎫c b , 0<c b≤1,-⎝⎛⎭⎫c b 2+20⎝⎛⎭⎫c b , c b >1.当0<cb≤1时,⎝⎛⎭⎫c b 2+18⎝⎛⎭⎫c b ≤19;当c b >1时,-⎝⎛⎭⎫c b 2+20⎝⎛⎭⎫c b ≤100,即19bc -|b -c |c b 2的最大值为100,所以k ≥100,即实数k 的最小值为100.(解法1)基本不等式 因为k sin 2B +sin A sin C >19sin B sin C ,所以由正弦定理可得kb 2+ac >19bc ,即k >19bc -ac b 2.又19bc -ac b 2=c b ⎝⎛⎭⎫19-a b .因为c <a +b ,所以c b <1+a b ,即c b ⎝⎛⎭⎫19-a b <⎝⎛⎭⎫1+a b ⎝⎛⎭⎫19-a b ≤⎣⎡⎦⎤⎝⎛⎭⎫1+a b +⎝⎛⎭⎫19-a b 24=100⎝⎛⎭⎫要求最大值,19-a b 至少大于0,当且仅当1+a b =19-a b ,即ab=9时取等号. 【方法规律】本题首先用正弦定理将三角函数转化为边,然后再利用三角形中的边的不等关系,消元后转化为二元问题研究.二元问题的最值问题,可以用基本不等式来处理.。
热点06 平面向量、复数【命题趋势】复数及其运算时高考的一个必考点,内容比较简单,主要是考查共轭复数,复平面以及复数之间的一些运算.一般出现在选择题的第一或者是第二题.平面向量也是高考的一个重要考点,主要涉及到向量的代数运算以及线性运算.1+1模式.两者结合的综合性题目也是高考填空第三题的一个重要方向.本专题也是学生必回的知识点.通过选取了高考出现频率较高的复数、向量知识点采用不同的题型加以训练,题型与高考题型相似并猜测一部分题型,希望通过本专题的学习,学生能够彻底掌握复数与平面向量.【知识点分析以及满分技巧】复数一般考查共轭复数以及复平面的意义比较多,中间夹杂着复数之间的运算法则,这类题目相对比较简单,属于送分题目.牵涉到知识点也是比较少.主要注重基本运算.特别会求复数类题目可采取答案带入式运算.平面向量代数运算类题目一般采用基本运算法则,只要简单记住向量的坐标运算以及模长运算即可.平面向量的线性运算一般采用三角形法则,应掌握一些常识性结论,如三点共线问题,重心问题等,在解决此类题目中记住三角形法则核心即可.平面向量综合性的题目一般是代数运算与线性运算相结合.此类题目简便解法是采用数形结合的方式去求解.【考查题型】选择题,填空【限时检测】(建议用时:45分钟)1.(2018·河北衡水中学高考模拟(理))已知i是虚数单位,则复数37izi+=的实部和虚部分别为A.7,3i-B.7-,3C.7-,3i D.7,3-【答案】D【解析】先化简复数z,再确定复数z的实部和虚部.【详解】由题得2373737731i i i z i i i +--====--,所以复数z 的实部和虚部分别为7和-3.故答案为:D 【名师点睛】(1)本题主要考查复数的除法运算和复数的实部虚部的概念,意在考查学生对这些知识的掌握水平和计算推理能力.(2) 注意复数(,)z a bi a b R =+∈的实部是a,虚部是“i”的系数b ,不包含“i”,不能写成bi.2.(2019·河北衡水中学高考模拟(理))已知i 为虚数单位,若复数11ti z i-=+在复平面内对应的点在第四象限,则t 的取值范围为( )A .[1,1]-B .(1,1)-C .(,1)-∞-D .(1,)+∞ 【答案】B【解析】 由题()()()()1-ti 1-i 1-ti 1-t 1+t z===-i 1+i 1+i 1-i 22.又对应复平面的点在第四象限,可知110022t t 且-+>-<,解得11t -<<.故本题答案选B . 3.(2019·河南高三月考(理))若1312i i -+与1()2i a ai -的虚部互为相反数,则实数a 的值为( )A .2-B .2C .1-D .1 【答案】D【解析】分别对两个复数进行四则运算化成复数的标准形式,分别得到得复数的虚部,再相加等于0,从而求得a 的值. 【详解】因为13(13)(12)5511255i i i i i i -----===--+,所以虚部为1-, 因为1122i a ai a ai ⎛⎫-=+ ⎪⎝⎭,所以虚部为a ,。
2020版高考理科数学考前猜押致胜高考必须掌握的20个热点2复数与推理1.欧拉公式:e ix=cos x+isin x(i为虚数单位),由瑞士数学家欧拉发明,它建立了三角函数与指数函数的关系,根据欧拉公式,= ( )A.1B.-1C.iD.-i2.记复数z的共轭复数为,若(1-i)=2i(i为虚数单位),则|z|= ( )A. B.1 C.2 D.23.复数z=在复平面内对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限4.设复数z满足=1,z在复平面内对应的点为(x,y),则( )A.(x+1)2+y2=1B.(x-1)2+y2=1C.x2+(y-1)2=1D.x2+(y+1)2=15.已知复数(a+2i)(1+i)的实部为0,其中i为虚数单位,则实数a的值是________.6.有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.7.甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一个城市.由此可判断乙去过的城市为________.8.在复平面内,复数z=a+bi(a∈R,b∈R)对应向量(O为坐标原点),设||=r,以射线Ox为始边,OZ为终边旋转的角为θ,则z=r(cos θ+isin θ),法国数学家棣莫弗发现棣莫弗定理:z1=r1(cos θ1+isin θ1),z2=r2(cos θ2+isin θ2),则z1z2=r1r2[cos(θ1+θ2)+isin(θ1+θ2)],由棣莫弗定理导出了复数乘方公式:[r(cos θ+isin θ)]n=r n(cos nθ+isin nθ),则=________.9.我国古代数学名著《九章算术》的论割圆术中有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”它体现了一种无限与有限的转化过程.比如在表达式1+中“…”即代表无数次重复,但原式却是个定值,它可以通过方程1+=x求得x=.类比上述过程,则=________.。
高中数学《推理与证明》复习知识点一、选择题1.学业水平测试成绩按照考生原始成绩从高到低分为A 、B 、C 、D 、E 五个等级.某班共有36名学生且全部选考物理、化学两科,这两科的学业水平测试成绩如图所示.该班学生中,这两科等级均为A 的学生有5人,这两科中仅有一科等级为A 的学生,其另外一科等级为B ,则该班( )A .物理化学等级都是B 的学生至多有12人 B .物理化学等级都是B 的学生至少有5人C .这两科只有一科等级为B 且最高等级为B 的学生至多有18人D .这两科只有一科等级为B 且最高等级为B 的学生至少有1人 【答案】D 【解析】 【分析】根据题意分别计算出物理等级为A ,化学等级为B 的学生人数以及物理等级为B ,化学等级为A 的学生人数,结合表格中的数据进行分析,可得出合适的选项. 【详解】根据题意可知,36名学生减去5名全A 和一科为A 另一科为B 的学生105858-+-=人(其中物理A 化学B 的有5人,物理B 化学A 的有3人), 表格变为:A BCD E物理 10550--= 16313-= 910 化学8530--= 19514-=72对于A 选项,物理化学等级都是B 的学生至多有13人,A 选项错误;对于B 选项,当物理C 和D ,化学都是B 时,或化学C 和D ,物理都是B 时,物理、化学都是B 的人数最少,至少为13724--=(人),B 选项错误;对于C 选项,在表格中,除去物理化学都是B 的学生,剩下的都是一科为B 且最高等级为B 的学生,因为都是B 的学生最少4人,所以一科为B 且最高等级为B 的学生最多为1391419++-=(人), C 选项错误;对于D 选项,物理化学都是B 的最多13人,所以两科只有一科等级为B 且最高等级为B 的学生最少14131-=(人),D 选项正确. 故选:D. 【点睛】本题考查合情推理,考查推理能力,属于中等题.2.设a ,b ,c 都大于0,则三个数1a b +,1b c +,1c a+的值( ) A .至少有一个不小于2 B .至少有一个不大于2 C .至多有一个不小于2 D .至多有一个不大于2【答案】A 【解析】 【分析】根据基本不等式,利用反证法思想,即可得出答案 【详解】因为a ,b ,c 都大于01111116a b c a b c b c a a b c +++++=+++++≥ 当且仅当1a b c ===时取得最小值若12a b +<,12b c+<,12c a +<则1116a b c b c a+++++<,与前面矛盾所以三个数1a b +,1b c +,1c a+的值至少有一个不小于2 故选:A 【点睛】本题是一道关于基本不等式应用的题目,掌握基本不等式是解题的关键.3.甲、乙、丙三人参加某公司的面试,最终只有一人能够被该公司录用,得到面试结果以后甲说:丙被录用了;乙说:甲被录用了;丙说:我没被录用.若这三人中仅有一人说法错误,则下列结论正确的是( ) A .丙被录用了 B .乙被录用了C .甲被录用了D .无法确定谁被录用了 【答案】C 【解析】【分析】假设若甲被录用了,若乙被录用了,若丙被录用了,再逐一判断即可. 【详解】解:若甲被录用了,则甲的说法错误,乙,丙的说法正确,满足题意, 若乙被录用了,则甲、乙的说法错误,丙的说法正确,不符合题意, 若丙被录用了,则乙、丙的说法错误,甲的说法正确,不符合题意, 综上可得甲被录用了, 故选:C. 【点睛】本题考查了逻辑推理能力,属基础题.4.在平面几何中,与三角形的三条边所在直线的距离相等的点有4个,类似的,在立体几何中,与四面体的四个面所在平面的距离相等的点有( ) A .1个 B .5个C .7个D .9个【答案】B 【解析】 【分析】根据平面图形的结论,通过想象类比得出立体图形对应的结论. 【详解】根据三角形的内切圆和旁切圆可得与三角形的三条边所在直线的距离相等的点有且只有4个, 由此类比到四面体中,四面体的内切球的球心到四个面所在的平面的距离相等, 还有四个旁切球的球心到四个面所在的平面的距离相等, 因此这样的点有且只有5个. 故选:B 【点睛】本题考查的是类比推理,找出切入点是解题的关键.5.数学家托勒密从公元127年到151年在亚历山大城从事天文观测,在编制三角函数表过程中发现了很多重要的定理和结论,如图便是托勒密推导倍角公式“2212cos a sin a =-”所用的几何图形,已知点,B C 在以线段AC 为直径的圆上,D 为弧BC 的中点,点E 在线段AC 上且,AE AB =点F 为EC 的中点.设2,AC r =,DAC a ∠=那么下列结论:2,DC rcosa =① 22,AB rcos a =②()12,FC r cos a =-③ ()22DC r r AB =-④.其中正确的是( ) A .②③ B .②④C .①③④D .②③④【答案】D 【解析】 【分析】在Rt ADC ∆中,可判断①,Rt ABC ∆中,可判断②,利用ADB ∆与ADE ∆全等及ADC ∆与DFC ∆相似即可判断③④. 【详解】在Rt ADC ∆中,2sin ,DC r a =故①不正确; 因为 ,BD DC =所以2,BAC a ∠=在Rt ABC ∆中,2cos2AB r a =,故②正确; 因为AE AB BD DC ==,,易知ADB ∆与ADE ∆全等,故DE BD DC DF EC ==⊥,,所以()1cos22ABFC r r a =-=-, 又CC ACD FC D =,所以()22DC AC FC r r AB =⋅=-,故③④正确, 由2sin 2cos2DC r a AB r a ==,,()22DC r r AB =-,可得()()22sin 22cos2r a r r r a =-,即22sin 1cos2a a =-.故选:D. 【点睛】本题考查推理与证明,考查学生在圆中利用三角形边长证明倍角公式的背景下,判断所需的边长是否正确,是一道中档题.6.甲、乙、丙、丁四人通过抓阄的方式选出一人周末值班(抓到“值”字的人值班).抓完阄后,甲说:“我没抓到.”乙说:“丙抓到了.”丙说:“丁抓到了”丁说:“我没抓到."已知他们四人中只有一人说了真话,根据他们的说法,可以断定值班的人是( ) A .甲B .乙C .丙D .丁【解析】 【分析】可采用假设法进行讨论推理,即可得到结论. 【详解】由题意,假设甲:我没有抓到是真的,乙:丙抓到了,则丙:丁抓到了是假的, 丁:我没有抓到就是真的,与他们四人中只有一个人抓到是矛盾的; 假设甲:我没有抓到是假的,那么丁:我没有抓到就是真的, 乙:丙抓到了,丙:丁抓到了是假的,成立, 所以可以断定值班人是甲. 故选:A. 【点睛】本题主要考查了合情推理及其应用,其中解答中合理采用假设法进行讨论推理是解答的关键,着重考查了推理与分析判断能力,属于基础题.7.观察下列各式:2749=,37343=,472401=,…,则10097的末两位数字为( ) A .49 B .43C .07D .01【答案】C 【解析】 【分析】先观察前5个式子的末两位数的特点,寻找规律,结合周期性进行判断即可. 【详解】观察2749=,37343=,472401=,572401716807=⨯=,67168077117649=⨯=,…,可知末两位每4个式子一个循环,2749=到10097一共有1008个式子,且10084252÷=,则10097的末两位数字与57的末两位数字相同,为07. 故选:C. 【点睛】本题主要考查归纳推理的应用,根据条件寻找周期性是解决本题的关键.8.2019年10月1日,为了庆祝中华人民共和国成立70周年,小明、小红、小金三人以国庆为主题各自独立完成一幅十字绣赠送给当地的村委会,这三幅十字绣分别命名为“鸿福齐天”、“国富民强”、“兴国之路”,为了弄清“国富民强”这一作品是谁制作的,村支书对三人进行了问话,得到回复如下: 小明说:“鸿福齐天”是我制作的;小红说:“国富民强”不是小明制作的,就是我制作的; 小金说:“兴国之路”不是我制作的,若三人的说法有且仅有一人是正确的,则“鸿福齐天”的制作者是( ) A .小明B .小红C .小金D .小金或小明【解析】【分析】将三个人制作的所有情况列举出来,再一一论证.【详解】依题意,三个人制作的所有情况如下所示:若小明的说法正确,则均不满足;若小红的说法正确,则4满足;若小金的说法正确,则3满足.故“鸿福齐天”的制作者是小红,故选:B.【点睛】本题考查推理与证明,还考查推理论证能力以及分类讨论思想,属于基础题.9.现有甲、乙、丙、丁四人参加数学竞赛,其中只有一位获奖. 有人走访了四人,甲说:“乙、丁都未获奖”,乙说:“是甲或丙获奖”,丙说:“是甲获奖”,丁说:“是乙获奖”,四人所说话中只有一位是真话,则获奖的人是( )A.甲B.乙C.丙D.丁【答案】B【解析】【分析】结合题意分类讨论甲乙丙丁获奖的情况,然后考查说真话的人的个数即可确定获奖的人.【详解】结合题意分类讨论:若甲获奖,则说真话的人为:甲乙丙,说假话的人为:丁,不合题意;若乙获奖,则说真话的人为:丁,说假话的人为:甲乙丙,符合题意;若丙获奖,则说真话的人为:甲乙,说假话的人为:丙丁,不合题意;若丁获奖,则说假话的人为:甲乙丙丁,不合题意;综上可得,获奖人为乙.故选:B.【点睛】本题主要考查数学推理的方法,分类讨论的数学思想,属于中等题.10.对于实数a ,b ,已知下列条件:①2a b +=;②2a b +>;③2a b +>-;④1ab >;⑤log 0a b <.其中能推出“a ,b 中至少有一个大于1”的条件为( ) A .②③④ B .②③④⑤ C .①②③⑤ D .②⑤【答案】D 【解析】 【分析】根据条件分别利用特殊值以及反证法进行判断即可. 【详解】①当a =b =1时,满足a +b =2,但此时推不出结论,②若a ≤1,b ≤1,则a +b ≤2,与a +b >2,矛盾,即a +b >2,可以推出,③当a 12=,b 12=时,满足条件a +b >﹣2,则不可以推出, ④若a =﹣2,b =﹣1.满足ab >1,但不能推出结论,⑤由log a b <0得log a b <log a 1,若a >1,则0<b <1,若0<a <1,则b >1,可以推出结论.故可能推出的有②⑤, 故选:D . 【点睛】本题主要考查合情推理的应用,利用特殊值法以及反证法是解决本题的关键.比较基础.11.甲、乙、丙,丁四位同学一起去问老师询问成语竞赛的成绩。
2020版高考理科数学考前猜押致胜高考必须掌握的20个热点2
复数与推理
1.B 由e ix=cos x+isin x,得==i2=-1.
2.A 由(1-i)=2i,可得===-1+i,
所以z=-1-i,则|z|=.
3.D 由题可得z=====-,
则z=在复平面内对应的点为,位于第四象限.
4.C z=x+yi,z-i=x+(y-1)i,==1,则x2+(y-1)2=1.
5.【解析】(a+2i)(1+i)=a+ai+2i+2i2=a-2+(a+2)i,令a-2=0,解得a=2.
答案:2
6.【解析】先从丙说的可得丙拿的是1和2,或1和3,再由乙说的可得乙拿的是2和3,最后从甲说的可得甲拿的是1和3.
答案:1和3
7.【解析】因为丙说:三人同去过同一个城市,甲说没去过B城市,乙说:我没去过C城市
所以三人同去过同一个城市应为A,所以乙至少去过A,若乙再去城市B,甲去过的城市至多两个,不可能比乙多,所以可判断乙去过的城市为A.
答案:A
8.【解析】由题意得复数z=+i可化为z=cos+isin,所以=
=cos+isin=-i.
答案:-i
9.【解析】令=m(m>0),
则两边平方得,则3+2=m2,
即3+2m=m2,解得m=3或m=-1(舍去).
答案:3。
2020 年高考数学(理)总复习:算法、复数、推理与证明题型一复数的观点与运算【题型重点】复数问题的解题思路(1)以复数的基本观点、几何意义、相等的条件为基础,联合四则运算,利用复数的代数形式列方程或方程组解决问题.(2)若与其余知识联合考察,则要借助其余的有关知识解决问题.【例 1】设有下边四个命题()1p1:若复数 z 知足z∈R,则 z∈R;p2:若复数 z 知足 z2∈R,则 z∈R;p3:若复数 z1,z2知足 z1z2∈R,则 z1=Z2;p4:若复数 z∈R,则 z ∈R.此中的真命题为()A . p1, p3 B. p1, p4C.p2, p3 D. p2, p4【分析】令 z=a+ bi(a, b∈R),则由1= 1 =a2-bi2∈R得b=0,所以z∈R,故z a+ bi a + bp1正确;当 z= i 时,因为 z2= i 2=- 1∈R,而 z= i? R知,故 p2不正确;当z1= z2= i 时,知足 z1·z2=- 1∈R,但 z1≠Z2,知 p3不正确;对于 p4,因为实数没有虚部,所以它的共轭复数是它自己,也属于实数,故p4正确,应选 B.【答案】 B【例 2】. i 是虚数单位,复数4+ 2i- (1- i) 2- 4i = ()1- 2iA . 0B . 2C .- 4iD . 4i【分析】4+2i- (1- i) 2-4i =4+2i1+2i - (1- 2i - 1)- 4i =2i + 2i - 4i = 0,所以选1- 2i1- 2i 1+ 2iA.【答案】A【例 3】.已知 a ∈ R ,若 a + 2i是纯虚数,则在复平面内,复数z = ai + i 2018 所对应的点4- i位于()A .第一象限B .第二象限C .第三象限D .第四象限【分析】依题意,a + 2i a + 2i 4+ i 4a - 2+ a +8 i4a - 2= 0 1 = = ,故a + 8≠0,解得 a = .4- i4- i 4+ i172故 z = ai +i2018=12i - 1 在复平面内所对应的点为1, 1,位于第二象限,应选 B.2【答案】 B题组训练一复数的观点与运算1.已知 a ∈ R , i 是虚数单位.若 a - i与 3i - 5i 互为共轭复数,则a = ()2+i 2- i11A. 3 B .- 3 C .- 3D . 3a - i a - i 2- i 2a - 1 - a + 2 i 2a - 1 a + 2 5i = 3i【分析】 2+ i =5 = 5 = 5 - 5 i,3i - 2- i - 5i 2+ i - 5+ 10i a - i 5i 2a - 1 a + 2=3i 与3i =-1,解得 a= 3.应选 D.【答案】 D2.已知复数 z 的共轭复数为z 在复平面内对应的点z =1+ 3i(i 为虚数单位 ),则复数1+i位于()A .第一象限B.第二象限C.第三象限D.第四象限【分析】∵ z = 1+3i(i 为虚数单位 ),∴ z= 1- 3i.则复数z = 1- 3i= 1- 3i 1- i =- 2- 4i=- 1- 2i1 + i 1+ i 1+ i 1- i 2在复平面内对应的点(- 1,- 2)位于第三象限.应选 C. 【答案】 C3.“z= 1 -1 π(此中 i 是虚数单位 )是纯虚数.”是“θ=+ 2kπ”的 ________条件sin θ+ cos θ·i 2 6()A .充足不用要B.必需不充足C.充要D.既不充足也不用要【分析】z= 1 -1= sin θ-1- icos θ(此中 i 是虚数单位 )是纯虚数.sin θ+ cos θ·i 2 2则 sin θ-1= 0, cos θ≠0,2ππ解得:θ= 2kπ+或θ= 2kπ+π- (k∈Z ).6 6∴ z= 1π-1(此中 i 是虚数单位 )是纯虚数.”是“θ=+ 2kπ”的必需不充足条sin θ+ cos θ·i 2 6 件.应选 B.【答案】 B题型二程序框图【题型重点】解答程序框图问题的三个关注点(1)弄清程序框图的三种基本结构,按指向履行直至结束.(2)关注输出的是哪个量,何时结束.(3)解答循环结构问题时,要写出每一次的结果,防备运转程序不完全,同时注意划分计算变量与循环变量.【例 4】履行以下图的程序框图,输出的n 为 ()A . 1 B. 2C.3 D. 4【分析】当 n= 1 时, f(x)= 1,知足 f(x)= f(-x),不知足 f(x)= 0 有解,故 n= 2;当 n =2时, f(x)=2x,不知足 f(x)= f(- x),故 n= 3;当 n=3 时, f(x) =3x2,知足 f(x) =f(- x),知足 f( x)= 0 有解,故输出的n 为 3,应选 C.【答案】 C1+1+1++1的值的一个框图,此中菱形判断框内应填【例 5】.如图给出的是计算2 4 620入的条件是 ()A . i >8B. i> 9 C.i >10D. i> 11【分析】经过第一次循环获取S=1, i = 2,此时的i 应当不知足判断框中的条件21 1经过第二次循环获取S=+, i = 3,此时的i 应当不知足判断框中的条件11 1经过第三次循环获取S=++, i= 4,此时的i 应当不知足判断框中的条件经过第十次循环获取S=12+14+16++201,i= 11,此时的 i 应当知足判断框中的条件,履行输出故判断框中的条件是i > 10,应选 C.【答案】 C题组训练二程序框图1.以下程序框图输出的 a 的值为 ()A . 5 B. 0C.- 5 D. 10【答案】 A2.履行以下图的程序框图,假如输入的x= 0,y= 1,n=1,则输出 x,y 的值知足 ()A . y= 2x B. y= 3xC.y= 4x D. y= 5x【分析】输入 x= 0, y=1, n= 1,运转第一次,x=0, y= 1,不知足x2+ y2≥ 36;运转第二次,x=12, y= 2,不知足x2+ y2≥ 36;运转第三次,x=3, y= 6,知足 x2+ y2≥ 36,2输出 x=3, y= 6. 2因为点3,6在直线y=4x上,应选C. 2【答案】 C题型三推理与证明【题型重点】合情推理的解题思路(1)在进行概括推理时,要先依据已知的部分个体,把它们适合变形,找出它们之间的联系,进而概括出一般结论.(2)在进行类比推理时,要充足考虑已知对象的性质,而后经过类比,推导出类比对象的性质.(3)概括推理重点是找规律,类比推理重点是看共性.【例 6】我国古代数学著作《九章算术》有以下问题:“今有人持金出五关,前关二而税一,次关三而税一,次关四而税一,次关五而税一,次关六而税一.并五关所税,适重一下.问本持金几何?”其意思为“今有人持金出五关,第 1 关收税金1,第 2 关收税金为节余2的1,第 3 关收税金为节余的1,第 4 关收税金为节余的1,第 5 关收税金为节余的1,5 关所3 4 5 6收税金之和,恰巧重 1 斤,问本来持金多少?”若将“5关所收税金之和,恰巧重1 斤,问原本持金多少?”改成“假定这个人本来持金为x,按此规律经过第8 关”,则第 8 关所收税金为____________x.1 1 1 x x【分析】第1 关收税金:2x;第 2 关收税金:3 1 2 x=6=2×3;第 3 关收税金:11 1 x =x ;412 6x=12 3×4第 8 关收税金:x=x. 8×9 721【答案】72【例 7】.已知点A(x1, ax1)、 B( x2, ax2)是函数y= a x(a> 1)的图象上随意不一样两点,依ax 1+ ax 2x 1 +x 2据图象可知,线段 AB 老是位于 A 、B 两点之间函数图象的上方, 所以有结论> a22建立.运用类比思想方法可知,若点A(x 1, sin x 1 )、 B(x 2, sin x 2)是函数 y = sin x[ x ∈(0 ,π )] 图象上的不一样两点,则近似地有 ________建立.xx【分析】 由题意知, 点 A 、B 是函数 y = a (a > 1)的图象上随意不一样两点, 函数 y = a (a >1) 图象下凸,线段 AB 老是位于A 、B 两点之间函数图象的上方,所以有结论ax 1+ ax 2>2x 1 + x 2a 建立;而函数 y = sin x(x ∈ (0,π))图象上凸,线段 AB 老是位于 A 、B 两点之间函数图 2象的下方,所以可类比获取结论sin x 1+ sin x 2 < sin x 1+ x 2. 2 2【答案】sin x 1+ sin x 2x 1+ x 22< sin2题组训练三 推理与证明1.“已知对于 x 的不等式 ax 2+ bx + c>0 的解集为 (1,2),解对于 x 的不等式 cx 2+ bx + a>0. ” 给出以下的一种解法:【解】 由 ax 2+ bx + c>0 的解集为 (1,2),得 a1x2+b1+ c>0 的解集为1,1 ,即x2对于 x 的不等式 cx 2+ bx +a>0 的解集为1,1 .2类比上述解法:若对于x 的不等式 b + x + b1,1∪1,1 ,则对于<0 的解集为x +a x + c32bx - bx 的不等式->0 的解集为 ______________________ .x - a x - c【分析】依据题意,由 b+ x + b1,1 1 ,<0 的解集为∪,1x +a x + c32得 b + - x + b1,11,1 ,-x + c <0 的解集为∪- x + a23即 b - x - b1, 11,1 .x - a x -c>0的解集为2 ∪ 3【答案】1,1∪1,1232.学校艺术节对同一类的A ,B ,C ,D 四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品展望以下:甲说: “是 C 或 D 作品获取一等奖”;乙说: “B 作品获取一等奖”;丙说: “A,D 两项作品未获取一等奖”;丁说: “是 C 作品获取一等奖”.若这四位同学中只有两位说的话是对的,则获取一等奖的作品是________.【分析】若 A 为一等奖,则甲,丙,丁的说法均错误,故不知足题意,若 B 为一等奖,则乙,丙说法正确,甲,丁的说法错误,故知足题意,若 C 为一等奖,则甲,丙,丁的说法均正确,故不知足题意,若 D 为一等奖,则只有甲的说法正确,故不合题意,故若这四位同学中只有两位说的话是对的,则获取一等奖的作品是B.【答案】B题型四 复数代数运算的转变方法【题型重点】(1) 求解复数问题:就是利用复数相等转变为实数问题,此中解法一、二、三用了整体思想,即 x +yi 是一个数.(2)解法三是技巧,利用了模的性质:Z 1 Z 1 |z 1·z 2|= |z 1| |z ·2|,.Z 2Z 2【例 8】若 i(x + yi) =3+ 4i , x , y ∈R ,则复数 x + yi 的模是 ()A . 2 B. 3 C.4 D. 5 【分析】法一:因为 i(x+ yi) = 3+ 4i,所以 x+yi =3+4i=3+4i -i= 4- 3i,i i - i故 |x+ yi|= |4- 3i|=42+-3 2=5.法二:因为 i(x+ yi) = 3+ 4i,所以 (- i)i( x+ yi) = (- i) (3·+ 4i)= 4- 3i,即 x+ yi = 4-3i ,故 |x+ yi|= |4- 3i|=42+-3 2=5. 法三:∵ i( x+ yi) = 3+ 4i∴ |i(x+ yi)| = |3+4i|∴ |i||x+ yi|= 5,∴ |x+ yi|= 5.法四:因为 i(x+ yi) = 3+ 4i,所以- y+ xi =3+ 4i,所以 x=4, y=- 3,故 |x+ yi|= |4- 3i|= 42+- 3 2= 5.【答案】 D题组训练四复数代数运算的转变方法已知 i 是虚数单位,则7+i= ________. 3+ 4i【分析】7+ i = 7+i 3- 4i = 25- 25i=1-i,填1-i.3+ 4i 25 25【答案】1- i【专题训练】一、选择题1.设 a, b 是两个实数,给出以下条件:①a+ b>1;② a+b= 2;③ a+ b>2;④ a2+ b2>2;⑤ ab>1.此中能推出:“a,b中起码有一个大于1”的条件是 ()A .②③B.①②③C.③D.③④⑤【分析】若 a=1, b=2,则 a+b>1 ,但 a<1, b<1,故①推不出;2 3若 a=b= 1,则 a+ b= 2,故②推不出;若 a=- 2, b=- 3,则 a2+b2 >2,故④推不出;若 a=- 2, b=- 3,则 ab>1,故⑤推不出;对于③,即 a+b>2,则 a, b 中起码有一个大于 1,反证法:假定a≤1且 b≤1,则 a+ b≤2与 a+ b>2 矛盾,所以假定不建立,a, b 中起码有一个大于 1.【答案】 C2.若复数z=1-3i(i 为虚数单位 ),则 |z+ 1|=() 1+ iA . 3 B. 2 C. 2 D. 5【分析】z= 1-3i = 1- 3i 1-i=- 1-2i1+ i 1+ i 1- i 所以 |z+ 1|= 2,应选 B.【答案】 B1,则 z- |z|对应的点所在的象限为 ()3.已知复数 z=1-iA .第一象限B.第二象限C.第三象限D.第四象限【分析】∵复数 z= 1 =1+ i 1+1 i ,=1- i 1- i 1+ i 2 22 2 2+1 i ,∴ z- |z|=1+1i - 1 1 = 1-2 2 2 2 2 2其对应的点 1 2 , 1 所在的象限为第二象限.应选B.2 2【答案】 B4.复数 z=m-2i( m∈R, i 为虚数单位 )在复平面上对应的点不行能位于() 1+ 2iA .第一象限B.第二象限C.第三象限D.第四象限【分析】由已知 z=m-2i=m-2i1-2i =1[(m- 4)- 2(m+1)i] 在复平面对应点假如1+ 2i 1+2i 1- 2i 5在第一象限,则m- 4> 0,而此不等式组无解,即在复平面上对应的点不行能位于第一象m+ 1< 0,限.应选 A.【答案】 A5.履行以下图的程序框图,若输入m= 1, n=3,输出的 x= 1.75 ,则空白判断框内应填的条件为 ( )A . |m- n|< 1B. |m- n|<C.|m- n|<D. |m- n|<【分析】当第一次履行, x = 2,2 2-3>0, n = 2,返回,第二次履行 3 3 2-3<0 ,x = , ()22m = 3,返回,第三次, x =3+ 4=,(7)2- 3>0,n = 7,要输出 x ,故知足判断框,此时 m2444-n = 3- 7=- 1,应选 B.244 【答案】B6.老师带甲、乙、丙、丁四名学生去参加自主招生考试,考试结束后老师向四名学生认识考试状况,四名学生回答以下:甲说:“我们四人都没考好 ”;乙说: “我们四人中有人考得好 ”;丙说: “乙和丁起码有一人没考好 ”;丁说: “我没考好 ”.结果,四名学生中有两 人说对了,则四名学生中说对了的两人是( )A .甲 丙B .乙 丁C .丙 丁D .乙 丙【分析】 假如甲对, 则丙、丁都对, 与题意不符, 故甲错, 乙对; 假如丙错, 则丁错, 所以只好是丙对,丁错,应选D.【答案】D7.定义:若函数 f(x)的图象经过变换 T 后所得图象对应函数的值域与 f(x)的值域同样,则称变换 T 是 f(x)的 “同值变换 ”.下边给出四个函数及其对应的变换 T ,此中不属于 f(x)的 “同值变换 ”的是 ()A . f(x)= (x - 1)2, T :将函数 f(x)的图象对于 y 轴对称B .f(x)= 2x + 3, T :将函数 f(x)的图象对于点 ( -1,1)对称C .f(x)= 2x -1- 1,T :将函数 f(x)的图象对于 x 轴对称D . f(x)= sin x, T :将函数 f(x)的图象对于点 (- 1,0)对称3【分析】A . f(x)= (x - 1)2 对于 y 轴对称的函数是 y = (x + 1)2,值域 (0,+ ∞)同样;B .f(x)= 2x + 3 对于点 (- 1,1)对称的函数为 f(x)= 2x +3,值域 R 同样;C .f(x)= 2x -1- 1>- 1,对于 x 轴对称的函数是 y =- 2x - 1+ 1<1,值域不一样;D. f(x)= sin x对于(-1,0)对称的函数是y=- sin 2 x,值域[-1,1]相3 3同,应选 C.【答案】 C8.履行以下程序框图,若输出i 的值为 3,则输入x 的取值范围是()A . 0<x<3B. 1<x<3C.1≤x<3D. 1<x≤3【分析】该程序框图履行以下程序:i = 1, x= 2x+ 1; i = 2, x= 2(2x+ 1)+ 1= 4x+ 3; i = 3, x= 2(4x+ 3)+ 1 = 8x+ 7 则由8x+ 7>15可得 1<x≤3.4x+ 3≤ 15应选 D.【答案】 D9.“现代五项”是由现代奥林匹克之父顾拜旦先生创办的运动项目,包含射击、击剑、游泳、马术和越野跑五项运动.已知甲、乙、丙共三人参加“现代五项”.规定每一项运动的前三名得分都分别为a, b,c(a> b> c 且 a,b,c∈N* ),选手最后得分为各项得分之和.已知甲最后得22 分,乙和丙最后各得9 分,且乙的马术竞赛获取了第一名,则游泳竞赛的第三名是()A .甲B.乙C.丙D.乙和丙都有可能【分析】∵甲最后得22 分,乙和丙最后各得9 分,∴5(a+ b+c)= 22+ 9+9? a+ b+ c= 8即每个项目三个名次总分是8 分.每个项目的三个名次的分值状况只有两种:①5分、2分、1分;②4分、3分、1分;对于状况① 5 分、 2 分、 1 分:乙的马术竞赛获取了第一名, 5 分,余下四个项目共得 4 分,只好是四个第三名;余下四个第一名,若甲得三个第一名,15 分,还有两个项目得7 分不行能,故甲一定得四个第一名,一个第二名,余下一个第三名,四个第二名恰巧切合丙得分,由此可得乙和丙都有可能得第三名.对于状况② 4 分、 3 分、 1 分;同上剖析,应选 D.【答案】 D10.以下图将若干个点摆成三角形图案,每条边(包含两个端点)有 n(n> 1, n∈N )个点,相应的图案中总的点数记为a n,则9 +9+9++9=()a2a3a3a4a4a5a2 015a2 0162 012 2 013A.2 013 B.2 0122 014 2 014C.2 015 D.2 013【分析】每条边有 n 个点,所以三条边有3n 个点,三角形的 3 个极点都被重复计算了一次,所以减 3 个极点,即 a = 3n- 3,那么9 =9 = 1 =1-1,则9n a n a n+1 3n- 3 ×3n n- 1 n n- 1 na2 a3 +9 +9 ++9a3a4 a4a5 a2 015a2 016=11 1 1 1 1 1 11 2 2 3 3 4 2014 2015= 1- 1 =2 014 ,应选 C.2 015 2 015【答案】 C11.以下数表的结构思路源于我国南宋数学家杨辉所著的《详解九章算术》一书中的“杨辉三角形”.该表由若干行数字构成,从第 2 行起,第一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数,则这个数为()2 015 2 014A.2 017 ×2 B. 2 017 ×22 015 2 014C.2 016 ×2 D. 2 016 ×2【分析】由题意知数表的每一行都是等差数列,且第 1 行数的公差为1,第 2 行数的公差为 2,第 3 行数的公差为4,,第 2 015行数的公差为22 014,第 1 行的第一个数为 2×2-1,第 2 行的第一个数为 3×20,第 3 行的第一个数为 4×21,第 n 行的第一个数为 (n+ 1) ×2n-2,【答案】 B二、填空题12.有三张卡片,分别写有 1 和 2,1 和 3,2 和 3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上同样的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上同样的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.【分析】由丙说:“我的卡片上的数字之和不是5”可知,丙为“1和 2”或“1和 3”,又乙说“我与丙的卡片上同样的数字不是 1”,所以乙只可能为“2和 3”,所以由甲说“我与乙的卡片上同样的数字不是 2”,所以甲只好为“1和 3”.【答案】 1和 3z13.设复数 z 的共轭复数为z ,若 z= 1- i(i 为虚数单位 ),则z+ z2的虚部为 ________.16【分析】∵ z=1- i(i 为虚数单位 ),z 1+i+ (1- i)2= 2 - 2i ∴+ z2=1+ iz 1- i 1- i 1+ i=2i- 2i=- i,故其虚部为- 1. 2【答案】- 114.履行以下图所示的程序框图,则S 的值为 ()A.16 B. 32C.64 D. 128【分析】模拟程序的运转,可得i= 1, S= 1,履行循环体,S= 2, i= 2,知足条件 i ≤4,履行循环体,S= 8, i = 4.知足条件 i ≤4,履行循环体,S= 128, i =8.此时,不知足条件i ≤4,退出循环,输出S 的值为 128.故答案为 D.【答案】 D15. 2016 年夏天大美青海又迎来了旅行热,甲、乙、丙三位旅客被咨询能否去过陆心之海青海湖,海北百里油菜花海,茶卡天空之境三个地方时,甲说:我去过的地方比乙多,但没去过海北百里油菜花海;乙说:我没去过茶卡天空之境;丙说:我们三人去过同一个地方.由此可判断乙去过的地方为____________ .【分析】由乙说:我没去过茶卡天空之境,则乙可能去过陆心之海青海湖或茶卡天空之境,但甲说:我去过的城市比乙多,但没去过海北百里油菜花海,则乙只好是去过陆心之海青海湖,茶卡天空之境中的任一个,再由丙说:我们三人去过同一个地方,则由此可判断乙去过的地方为陆心之海青海湖.【答案】陆心之海青海湖16.在我国南宋数学家杨辉所著的《详解九章算法》(1261 年 )一书中,用以以下图 1 所示的三角形,解说二项和的乘方规律.在欧洲直到1623 年此后,法国数学家布莱士·帕斯卡的著作 (1655 年 )介绍了这个三角形.最近几年来外国也渐渐认可这项成就属于中国,所以有些书上称这是“中国三角形”(Chinesetriangle) 如图 1,17 世纪德国数学家莱布尼茨发现了“莱布尼茨三角形”以以下图 2.在杨辉三角中相邻两行知足关系式:r r+1 r+1C n+C n = C n+1,此中 n 是行数, r∈N.请类比上式,在莱布尼茨三角形中相邻两行知足的关系式是________.1 11 2 11 3 3 11 4 6 4 11 5 10 10 5 1C n0 C n1 C n r C n n-1 C n n图 11 12 21 1 13 6311 1 14 12 12 41 1 1 1 1520 3020 51 1 1 1 1 16 30 60 60 30 6111 1r1110 111n -11nC n +1C n C n +1C n C n +1C n C n +1 C n C n +1C n图 2【分析】 类比察看得,将莱布尼茨三角形的每一行都能提出倍数11,而相邻两项之C n +1和是上一行的二者相拱之数, 所以类比式子 C r n + C n r + 1=C nr ++11,有 1 1 r=11 r + 1 1r + 1.C n +1C nC n + 2C n + 1 C n + 2C n + 1【答案】1= 1 1 11r r + 1r +1C n +1C n C n +2 C n + 1 C n + 2C n + 1。
高考高三数学一轮热点、难点一网打尽第56讲由已知到未知的推理技巧与方法考纲要求:1.了解合情推理的含义,能进行简单的归纳推理和类比推理,体会合情推理在数学发现中的作用.2.了解演绎推理的含义,了解合情推理和演绎推理的联系和差异;掌握演绎推理的“三段论”,能运用“三段论”进行一些简单的演绎推理.基础知识回顾:一、合情推理1.归纳推理(1)定义:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理(简称归纳).(2)特点:由部分到整体、由个别到一般的推理.2.类比推理(1)定义:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理(简称类比).(2)特点:类比推理是由特殊到特殊的推理.3.合情推理:归纳推理和类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理,我们把它们统称为合情推理二、演绎推理1.演绎推理:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.简言之,演绎推理是由一般到特殊的推理.2.“三段论”是演绎推理的一般模式(1)大前提——已知的一般原理;(2)小前提——所研究的特殊情况;(3)结论——根据一般原理,对特殊情况做出的判断.应用举例:类型一、归纳推理1、形的推理例1.下面图形由小正方形组成,请观察图1至图4的规律,并依此规律,写出第n个图形中小正方形的个数是________.2、式的推理例2.已知f(x)=x1+x,x≥0,若f1(x)=f(x),f n+1(x)=f(f n(x)),n∈N+,则f2 014(x)的表达式为__________________.例3.观察下列不等式1+122<32,1+122+132<53,1+122+132+142<74……照此规律,第五个不等式为__________.3、数的推理例4.观察下列等式:13=12,13+23=32,13+23+33=62,13+23+33+43=102,…,根据上述规律,第n 个等式为________.点评:运用归纳推理时的一般步骤:首先,通过观察特例发现某些相似性(特例的共性或一般规律);然后,把这种相似性推广到一个明确表述的一般命题(猜想);最后,对所得出的一般性命题进行检验.在数学上,检验的标准是能否进行严格的证明.类型二、类比推理例5.已知点A(x 1,ax 1),B(x 2,ax 2)是函数y =a x(a>1)的图象上任意不同两点,依据图象(图略)可知,线段AB 总是位于A ,B 两点之间函数图象的上方,因此有结论ax 1+ax 22>a x 1+x 22成立.运用类比思想方法可知,若点A(x 1,sin x 1),B(x 2,sin x 2)是函数y =sin x(x ∈(0,π))的图象上任意不同两点,则类似地有________成立.例6.在Rt △ABC 中,AB ⊥AC ,AD ⊥BC 于D ,求证:1AD 2=1AB 2+1AC 2,那么在四面体A -BCD 中,类比上述结论,你能得到怎样的猜想?并说明理由.点评:(1)类比推理是由特殊到特殊的推理,其一般步骤为:①找出两类事物之间的相似性或一致性;②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).(2)类比推理的关键是找到合适的类比对象.平面几何中的一些定理、公式、结论等,可以类比到立体几何中,得到类似的结论.①平面中的三角形与空间中的三棱锥是类比对象;②三角形各边的边长与三棱锥的各面的面积是类比对象;③三角形边上的高与三棱锥面上的高是类比对象;④三角形的面积与三棱锥的体积是类比对象;⑤三角形的面积公式中的“二分之一”与三棱锥的体积公式中的“三分之一”是类比对象.类型三、演绎推理例7.数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n +2nS n (n ∈N *).证明: (1)数列⎩⎨⎧⎭⎬⎫S n n 是等比数列;(2)S n +1=4a n .点评:演绎推理的推证规则(1)演绎推理是从一般到特殊的推理,其一般形式是三段论,应用三段论解决问题时,应当首先明确什么是大前提和小前提,如果前提是显然的,则可以省略,本题中,等比数列的定义在解题中是大前提,由于它是显然的,因此省略不写.(2)在推理论证过程中,一些稍复杂一点的证明题常常要由几个三段论才能完成方法、规律归纳:类比推理的关键是找到合适的类比对象.平面几何中的一些定理、公式、结论等,可以类比到立体几何中,得到类似的结论.比如 :①平面中的三角形与空间中的三棱锥是类比对象;②三角形各边的边长与三棱锥的各面的面积是类比对象; ③三角形边上的高与三棱锥面上的高是类比对象; ④三角形的面积与三棱锥的体积是类比对象;⑤三角形的面积公式中的“二分之一”与三棱锥的体积公式中的“三分之一”是类比对象.实战演练:1.正弦函数是奇函数,f (x )=sin(x 2+1)是正弦函数,因此f (x )=sin(x 2+1)是奇函数,以上推理( ) A .结论正确B .大前提不正确C .小前提不正确D .全不正确2.在等差数列{a n }中,若a n >0,公差d >0,则有a 4·a 6>a 3·a 7,类比上述性质,在等比数列{b n }中,若b n >0,公比q >1,则b 4,b 5,b 7,b 8的一个不等关系是( ) A .b 4+b 8>b 5+b 7 B .b 4+b 8<b 5+b 7 C .b 4+b 7>b 5+b 8D .b 5·b 8<b 4·b 73.观察一列算式:1⊗1,1⊗2,2⊗1,1⊗3,2⊗2,3⊗1,1⊗4,2⊗3,3⊗2,4⊗1,…,则式子3⊗5是第( ) A .22项 B .23项 C .24项D .25项4.已知“整数对”按如下规律排成一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,则第60个“整数对”是( ) A .(7,5) B .(5,7) C .(2,10)D .(10,1)5.观察下式:1=12,2+3+4=32,3+4+5+6+7=52,4+5+6+7+8+9+10=72,…,则第n 个式子是( ) A .n +(n +1)+(n +2)+…+(2n -1)=n 2 B .n +(n +1)+(n +2)+…+(2n -1)=(2n -1)2 C .n +(n +1)+(n +2)+…+(3n -2)=(2n -1)2 D .n +(n +1)+(n +2)+…+(3n -1)=(2n -1)26.对于命题:若O 是线段AB 上一点,则有|OB →|·OA →+|OA →|·OB→=0.将它类比到平面的情形是:若O 是△ABC 内一点,则有S △OBC ·OA →+S △OCA ·OB →+S △OBA ·OC →=0,将它类比到空间情形应该是:若O 是四面体ABCD 内一点,则有__________. 7.将全体正整数排成一个三角形数阵 12 34 5 67 8 9 1011 12 13 14 15…根据以上排列规律,数阵中第n(n≥3)行的从左至右的第3个数是________.8.把正整数排列成如下图甲的三角形数阵,然后擦去第偶数行的奇数和第奇数行中的偶数,得到如图乙的三a,若a n=2015,则n _________.角数阵,再把图乙中的数按从小到大的顺序排成一列,得到数列{}n9.某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:①sin213°+cos217°-sin 13°c os 17°;②sin215°+cos215°-sin 15°cos 15°;③sin218°+cos212°-sin 18°cos 12°;④sin2(-18°)+co s248°-sin(-18°)cos 48°;⑤sin2(-25°)+cos255°-sin(-25°)cos 55°.(1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.10.观察下列各式:C01=40;C03+C13=41;C05+C15+C25=42;C07+C17+C27+C37=43;…照此规律,当n∈N*时,=________.C02n-1+C12n-1+C22n-1+…+C n-12n-1。
2020高考数学热点难点微专题代数推理问题
解答题
1. 由部分自然数构成如图的数表,用a ij (i ≥j )表示第i 行第j 个数(i ,j ∈N *),使a i 1=a ii =i ,每行中的其余各数分别等于其“肩膀”上的两个数的之和.设第n (n ∈N *)行中各数之和为b n .
(1) 求b 6;
(2) 用b n 表示b n +1;
(3) 试问:数列{b n }中是否存在不同的三项b p ,b q ,b r (p ,q ,r ∈N *)恰好成等差数列?若存在,求出p ,q ,r 的关系;若不存在,请说明理由.
2. 设数列{a n }的通项公式为a n =pn +q (n ∈N *,p >0). 数列{b n }定义如下:对于正整数m ,b m 是使得不等式a n ≥m 成立的所有n 中的最小值.
(1) 若p =12,q =-13,求b 3;
(2) 若p =2,q =-1,求数列{b m }的前2m 项和公式;
(3) 是否存在p 和q ,使得b m =3m +2(m ∈N *)?如果存在,求p 和q 的取值范围;如果不存在,请说明理由.
3. 设{a n }是首项为a 1,公差为d 的等差数列,{b n }是首项为b 1,公比为q 的等比数列.
(1) 设a 1=0,b 1=1,q =2,若|a n -b n |≤b 1对n =1,2,3,4均成立,求d 的取值范围;
(2) 若a 1=b 1>0,m ∈N *,q ∈(1,m 2],证明:存在d ∈R ,使得|a n -b n |≤b 1
对n =2,3,…,m +1均成立,并求d 的取值范围(用b 1,m ,q 表示).
4. 已知数列{a n }的前n 项和为S n ,记b n =S n +1n .
(1) 若{a n }是首项为a 、公差为d 的等差数列,其中a ,d 均为正数.
① 当3b 1,2b 2,b 3成等差数列时,求a d 的值;
② 求证:存在唯一的正整数n ,使得a n +1≤b n <a n +2;
(2) 设数列{a n }是公比为q (q >2)的等比数列,若存在r ,t (r ,t ∈N *,r <t )使得b t b r
=t +2r +2,求q 的值.。