应变片式电阻传感器的测量电路
- 格式:doc
- 大小:182.50 KB
- 文档页数:3
2.3应变片式传感器的测量电路电阻应变计可把机械量变化转换成电阻变化,但电阻变化是很小的,用一般的电子仪表很难直接检测。
例如,常规的金属应变计的灵敏系数k 值在1.8~4.8之间,机械应变在10~6000με之间,相对变化电阻/R R k ε∆=就比较小。
例1设某被测件在额定载荷下产生的应变为1000με,粘贴的应变计阻值120R =Ω,灵敏系数2k =,则其电阻的相对变化为6/21000100.002R R k ε-∆==⨯⨯=电阻变化率仅为0.2%。
这样小的电阻变化,必须用专门的电路才能测量。
测量电路把微弱的电阻变化转换为电压的变化,电桥电路就是这种转换的一种最常用的方法。
2.3.1应变电桥电桥电路即是惠斯通电桥,其结构如图所示。
四个阻抗臂1234,,,Z Z Z Z 以顺时针排列,AC 是电源端,工作电压为U ;BD 为输出端,输出电压为0U 。
在这个阻抗电桥的桥臂上接入应变计,就叫应变电桥。
应变电桥按不同的方式可分为不同的类型,主要有以下分类方式。
1按工作臂分单臂电桥:电桥的一个臂接入应变计。
双臂电桥:电桥的两个臂接入应变计。
全臂电桥:电桥的四个臂都接入应变计。
2按电源分按电源不同,可分为直流电桥和交流电桥。
图2.3.1 电桥电路的结构直流电桥的电源是直流电压,其桥臂只能接入阻性元件,主要用于应变电桥的输出,不需中间放大就可直接显示的情况。
例如半导体应变计的输出灵敏度高,可采用直流应变电桥作为测量电路,直接输出并显示结果。
交流电桥的电源是交流电压,其桥臂可以是阻性(R )、感性(L )或容性(C )元件。
主要用于输出需放大的场合。
例如金属应变计的输出灵敏度较低,应采用这种交流应变电桥作为测量电路,以进一步放大输出。
3按工作方式分按工作方式不同,可分为平衡桥式电路和不平衡桥式电路。
平衡桥式电路又叫零位测量法,它带有调整桥臂平衡的伺服反馈机构,当仪表指示测量值时,电桥处于平衡状态。
零位测量法常用于高精度、长时间的静态应变测量。
图1 电子秤平剖图1 台面壳体2均压框架3电阻应变片4弹性体5补偿电阻6可调支撑脚7底座如图1所示,底座通过贴有电阻应变片的双孔型等强度弹性体梁与均压框架相接,均压框架用螺钉与壳体相联。
弹性体是应变式力传感器将力转换为应变量的关键部件。
研究结果表明,双孔梁弹性体按刚架计算比按平行梁计算精确,而且桥路输出和载荷之间的线形好、灵敏度高。
非线性和灵敏度与竖梁的长度和刚度无关。
由于采用陶材料设计制作弹性梁,其灵敏度结构系数不仅取决于弹性体结构形式和应变区的选择,而且和陶瓷材料的微结构、质量及机械强度等因素密切相关。
为此,进行了双孔梁的应力分析、抗冲击载荷分析、额定载荷计量等,并用计算机进行了有限元分析。
经模拟验证分析,选用图1a所示的双孔梁结构形式。
该梁的应力分布均匀对称,其应力最大点在弹性梁的最薄偏离两端处。
根据图1a所示的结构形式:ε=M/W.E (1)式中:ε为应变量;M为弯矩;W为抗弯模数;E为弹性模量。
对于这类应变式弹性体上的全等臂电桥,其输出电压V0和桥压Vi有如下关系:V 0=GF.ε.Vi(2)式中:GF为应变电阻的应变系数。
将式(1)代入式(2),可得:V 0=GF.M.Vi/W.E (3)对于矩形截面,W=1/6b.h2式中:b为弹性体承载面宽度;h为弹性体承载梁厚度。
由A—A剖面分析,负荷F必须由一对剪力F/2与之平衡。
若取一应变电阻进行分析,F/2对应变电阻中心点的弯距为M:M=F(L/2-X)/2 (4)以式(4)代入式(3),可得:V 0=3F(L/2-X)GF.Vi/b.h2.E (5)由式(5)可见,双孔梁的桥路输出和载荷F之间具有良好的线形,而且灵敏度高。
)(434211R R R R R R E +-+=))((43214231R R R R R R R R E ++-•电阻应变式传感器的测量电路电阻应变式传感器是一种利用电阻应变效应,将各种力学量转换为电信号的结构型传感器。
实验一应变式传感器一、应变片单臂电桥性能实验〔一〕、实验目的:了解电阻应变片的工作原理与应用并掌握应变片测量电路。
〔二〕、基本原理:电阻应变式传感器是在弹性元件上通过特定工艺粘贴电阻应变片来组成。
一种利用电阻材料的应变效应将工程结构件的内部变形转换为电阻变化的传感器。
此类传感器主要是通过一定的机械装置将被测量转化成弹性元件的变形,然后由电阻应变片将弹性元件的变形转换成电阻的变化,再通过测量电路将电阻的变化转换成电压或电流变化信号输出。
它可用于能转化成变形的各种非电物理量的检测,如力、压力、加速度、力矩、重量等,在机械加工、计量、建筑测量等行业应用十分广泛。
1、应变片的电阻应变效应所谓电阻应变效应是指具有规则外形的金属导体或半导体材料在外力作用下产生应变而其电阻值也会产生相应地改变,这一物理现象称为“电阻应变效应”。
以圆柱形导体为例:设其长为:L、半径为r、材料的电阻率为ρ时,根据电阻的定义式得〔1—1〕当导体因某种原因产生应变时,其长度L、截面积A和电阻率ρ的变化为dL、dA、dρ相应的电阻变化为dR。
对式〔1—1〕全微分得电阻变化率 dR/R为:〔1—2〕式中:dL/L为导体的轴向应变量εL; dr/r为导体的横向应变量εr由材料力学得:εL= - μεr (1—3)式中:μ为材料的泊松比,大多数金属材料的泊松比为左右;负号表示两者的变化方向相反。
将式〔1—3〕代入式〔1—2〕得:〔1—4〕式〔1—4〕说明电阻应变效应主要取决于它的几何应变〔几何效应〕和本身特有的导电性能〔压阻效应〕。
2、应变灵敏度它是指电阻应变片在单位应变作用下所产生的电阻的相对变化量。
(1)、金属导体的应变灵敏度K:主要取决于其几何效应;可取〔1—5〕其灵敏度系数为:K=金属导体在受到应变作用时将产生电阻的变化,拉伸时电阻增大,压缩时电阻减小,且与其轴向应变成正比。
金属导体的电阻应变灵敏度一般在2左右。
(2)、半导体的应变灵敏度:主要取决于其压阻效应;dR/R<≈dρ⁄ρ。
应变片式传感器的测量电路
电阻应变计可把机械量变化转换成电阻变化,但电阻变化是很小的,用一般的电子仪表很难直接检测。
例如,常规的金属应变计的灵敏系数k 值在1.8~4.8之间,机械应变在10~6000με之间,相对变化电阻/R R k ε∆=就比较小。
例1设某被测件在额定载荷下产生的应变为1000με,粘贴的应变计阻值120R =Ω,灵敏系数2k =,则其电阻的相对变化为
6/21000100.002R R k ε-∆==⨯⨯=
电阻变化率仅为0.2%。
这样小的电阻变化,必须用专门的电路才能测量。
测量电路把微弱的电阻变化转换为电压的变化,电桥电路就是这种转换的一种最常用的方法。
2.3.1 应变电桥
电桥电路即是惠斯通电桥,其结构如图所示。
四个阻抗臂1234
,,,Z Z Z Z 以顺时针排列,AC 是电源端,工作电压为U ;BD 为输出端,输出电压
为0U 。
在这个阻抗电桥的桥臂上接入应变计,就叫应变电桥。
应变电桥按不同的方式可分为不同的类型,主要有以下分类方式。
1 按工作臂分 单臂电桥:电桥的一个臂接入应变计。
双臂电桥:电桥的两个臂接入应变计。
全臂电桥:电桥的四个臂都接入应变计。
2 按电源分
按电源不同,可分为直流电桥和交流电桥。
直流电桥的电源是直流电压,其桥臂只能接入阻性元件,主要用于应变电桥的输出,不需中间放大就可直接显示的情况。
例如半导体应变计的输出灵敏度高,可采用直流应变电桥作为测量电路,直接输出并显示结果。
交流电桥的电源是交流电压,其桥臂可以是阻性(R )、感性(L )或容性(C )元件。
主要用于输出需放大的场合。
例如金属应变计的输出灵敏度较低,应采用这种交流应变电桥作为测量电路,以进一步放大输出。
3 按工作方式分
按工作方式不同,可分为平衡桥式电路和不平衡桥式电路。
平衡桥式电路又叫零位测量法,它带有调整桥臂平衡的伺服反馈机构,当仪表指示测量值时,电桥处于平衡状态。
零位测量法常用于高精度、长时间的静态应变测量。
不平衡桥式电路又称为偏差测量法,其输出的是与桥臂应变量成一定函数关系的不平衡电量,再作进一步放大和显示。
当仪表指示测量值时,电桥处于不平衡状态。
偏差测量法响应快,常用于动态应变测量。
4按桥臂关系分
按桥臂关系不同,可分为半等臂电桥和全等臂电桥。
半等臂电桥又可分为对电源端对称电桥(即1423,Z Z Z Z ==)和对输出端对称电桥(即 1234,Z Z Z Z ==)。
全等臂电桥满足1234Z Z Z Z ===,在实际测量中经常用到的是全等臂电桥和半等臂对输出端对称电
图2.3.1 电桥电路的结构
桥。
5 按负载要求分
按负载要求不同,可分为电压输出桥和功率输出桥。
电压输出桥输出电压,负载L R →∞,即相当于输出端开路,输出电流00I =;而功率输出桥输出一定的电流,负载L R 较小,有输出电压0U 。
这节中,将按直流电桥和交流电桥的分类方法介绍应变电桥的输出特性,由于直流电桥的分析结果可推广到交流电桥,这里以直流电桥作为重点进行介绍。
2.3.2 直流电桥及输出特性
直流电桥的四个臂为纯电阻元件1234,,,R R R R ,如图2.3.2所示。
电源电压U ,负载电阻L R ,电桥输出电压0U ,输出电流为0I 。
电桥初始平衡条件为 1324R R R R =(或1243//R R R R =)(2.3.1)
此时电桥的输出电压00U =,输出电流00I =。
直流电桥的输出通常很小,不能用来直接驱动指示仪表,其电桥输出端
接放大器的输入端,而一般放大器的输入阻抗比电桥内阻要高得多,故可认为电桥输出端为开路状态。
电桥的负载电阻L R 为无穷大,基本无电流流过00I →,只有电压输出,这样的直流电桥叫电压输出桥。
1电压输出桥的输出特性
对电压输出桥,其L R →∞,00I →,因此从ABC 半个电桥看
212
BC R U U R R =+(2.3.2) 从ADC 半个电桥看
334
DC R U U R R =+(2.3.3) 则输出电压为
()()
132401234BC CD BC DC R R R R U U U U U U R R R R -=+=-=++(2.3.4) 由此看出,当1324R R R R =时,输出电压00U =,电桥处于平衡状态。
故把(2.3.1)叫电桥平衡条件。
在实际测量中,电桥都要预调平衡。
设电桥在测量前已调平衡,当应变电桥的四个桥臂均工作,且产生电阻变化分别为123,,R R R ∆∆∆和4R ∆,这时输出电压与电阻变化的关系根据式(2.3.4)得到
()()()()()()
1133224411223344R R R R R R R R U U R R R R R R R R +∆+∆-+∆+∆∆=+∆++∆+∆++∆
图2.3.2 直流电桥的结构。