电阻应变片传感器
- 格式:pdf
- 大小:177.08 KB
- 文档页数:4
电阻应变式传感器应变式传感器是基于测量物体受力变形所产生应变的一种传感器,最常用的传感元件为电阻应变片。
应用范围:可测量位移、加速度、力、力矩、压力等各种参数。
应变式传感器特点①精度高,测量范围广;②使用寿命长,性能稳定可靠;③结构简单,体积小,重量轻;④频率响应较好,既可用于静态测量又可用于动态测量;⑤价格低廉,品种多样,便于选择和大量使用。
1、应变式传感器的工作原理(1) 金属的电阻应变效应金属导体在外力作用下发生机械变形时,其电阻值随着它所受机械变形(伸长或缩短)的变化而发生变化的现象,称为金属的电阻应变效应。
公式推导:若金属丝的长度为L,截面积为S,电阻率为ρ,其未受力时的电阻为R,则:(9.1)如果金属丝沿轴向方向受拉力而变形,其长度L变化dL,截面积S 变化dS,电阻率ρ变化,因而引起电阻R变化dR。
将式(9.1)微分,整理可得:(9.2)对于圆形截面有:(9.3)为金属丝轴向相对伸长,即轴向应变;而则为电阻丝径向相对伸长,即径向应变,两者之比即为金属丝材料的泊松系数μ,负号表示符号相反,有:(9.9)将式(9.9)代入(9.3)得:(9.5)将式(9.5)代入(9.2),并整理得:(9.6)(9.7)或K0称为金属丝的灵敏系数,其物理意义是单位应变所引起的电阻相对变化。
K0称为金属丝的灵敏系数,其物理意义是单位应变所引起的电阻相对变化。
公式简化过程:由式可以明显看出,金属材料的灵敏系数受两个因素影响:一个是受力后材料的几何尺寸变化所引起的,即项;另一个是受力后材料的电阻率变化所引起的,即项。
对于金属材料项比项小得多。
大量实验表明,在电阻丝拉伸比例极限范围内,电阻的相对变化与其所受的轴向应变是成正比的,即K0为常数,于是可以写成:(9.8) Array通常金属电阻丝的K0=1.7~4.6。
通常金属电阻丝的K0=1.7~4.6。
(2) 应变片的基本结构及测量原理距用面积。
应变片的规格一般以使用面积和电阻值表示,如2为的电阻丝制成的。
电阻应变片式传感器应变式传感器已成为目前非电量电测技术中非常重要的检测手段,广泛的应用于工程测量和科学实验中。
它具有以下几个特点。
(1)精度高,测量范围广。
对测力传感器而言,量程从零点几N 至几百kN ,精度可达0.05%F S ⋅(F S ⋅表示满量程);对测压传感器,量程从几十Pa 至1110Pa ,精度为0.1%F S ⋅。
应变测量范围一般可由数με(微应变)至数千με(1με相当于长度为1m 的试件,其变形为1m μ时的相对变形量,即61110μεε-=⨯)。
(2)频率响应特性较好。
一般电阻应变式传感器的响应时间为710s -,半导体应变式传感器可达1110s -,若能在弹性元件设计上采取措施,则应变式传感器可测几十甚至上百kHz 的动态过程。
(3)结构简单,尺寸小,质量轻。
因此应变片粘贴在被测试件上对其工作状态和应力分布的影响很小。
同时使用维修方便。
(4)可在高(低)温、高速、高压、强烈振动、强磁场及核辐射和化学腐蚀等恶劣条件下正常工作。
(5)易于实现小型化、固态化。
随着大规模集成电路工艺的发展,目前已有将测量电路甚至A/D 转换器与传感器组成一个整体。
传感器可直接接入计算机进行数据处理。
(6)价格低廉,品种多样,便于选择。
但是应变式传感器也存在一定缺点:在大应变状态中具有较明显的非线性,半导体应变式传感器的非线性更为严重;应变式传感器输出信号微弱,故它的抗干扰能力较差,因此信号线需要采取屏蔽措施;应变式传感器测出的只是一点或应变栅范围内的平均应变,不能显示应力场中应力梯度的变化等。
尽管应变式传感器存在上述缺点,但可采取一定补偿措施,因此它仍不失为非电量电测技术中应用最广和最有效的敏感元件。
一、电阻应变片的工作原理电阻应变片的工作原理是基于应变效应。
电阻应变效应是指金属导体在外力作用下发生机械变形时,其电阻值随着所受机械变形(伸长或缩短)的变化而发生变化的现象。
其中半导体材料在受到外力作用时,其电阻率ρ发生变化的现象叫应变片的压阻效应。
电阻应变片称重传感器工作原理电阻应变片称重传感器工作原理解析1. 什么是电阻应变片称重传感器?电阻应变片称重传感器是一种常用于测量物体重量或受力情况的传感器。
它利用电阻应变片的特性来实现力的测量,并将其转换为电信号输出。
2. 电阻应变片的基本原理电阻应变片,简称应变片,是一种金属片或薄膜,其阻值随着受力情况发生变化。
当物体受到外力作用时,应变片会发生弯曲或扭转,从而导致其电阻值发生变化。
3. 应变片与电桥电路的结合为了精确测量应变片的电阻值变化,常将其与电桥电路结合使用。
电桥电路由四个电阻元件组成,一般为电阻应变片和三个精确的固定电阻。
无激励电桥电路在无激励电桥电路中,电桥两端施加相同的电压,应变片作为一个变阻器插入电桥电路,根据其受力情况引起的电阻值变化,电桥会产生一个微小的输出电压。
通过测量这个输出电压的大小,可以推算出物体所受的力或重量。
有激励电桥电路有激励电桥电路则在无激励电桥电路的基础上添加了一个激励电源。
激励电源为电桥施加一个恒定的电压,使得电桥处于工作状态,提高了灵敏度和测量精度。
4. 使用电阻应变片称重传感器的注意事项•选用合适的电阻应变片,根据具体应用需求选择金属片或薄膜。
•搭配适宜的电桥电路,根据实际测量要求选用无激励或有激励电桥电路。
•注意电阻应变片的安装方式和位置,确保准确测量力或重量。
•防止电阻应变片的过载和机械损坏,避免影响传感器的工作性能。
结论通过电阻应变片与电桥电路的结合,电阻应变片称重传感器能够准确地测量物体的重量或受力情况。
这种传感器具有简单、可靠的特点,被广泛应用于工业生产、航空航天、交通运输等领域。
了解其工作原理和使用注意事项,能够更好地应用电阻应变片称重传感器进行实际生产和测量工作。
5. 电阻应变片的灵敏度和线性度在使用电阻应变片称重传感器时,我们需要关注其灵敏度和线性度。
灵敏度是指传感器输出信号对于输入信号变化的反应程度。
对于电阻应变片称重传感器来说,灵敏度可以通过应变片的量程值来表示。
简述电阻应变片传感器的工作原理。
电阻应变片传感器是一种广泛应用于工业领域的传感器,它能够测量材料在受力情况下的应变变化,进而转化为电阻值的变化。
本文将就电阻应变片传感器的工作原理进行简要介绍,以便读者对其基本原理有所了解。
电阻应变片传感器的基本结构由一个薄膜或金属片组成,当外力作用于这些材料时,会引起其形变。
这种形变会导致电阻应变片的几何尺寸发生微小变化,在弹性变形范围内,形变与外力成正比。
这一点是电阻应变片传感器能够测量应变的基础。
电阻应变片传感器中常使用的材料包括硅、铝、金属薄膜等,这些材料具有良好的弹性和导电性,使其能够感知外力的变化并将其转化为电信号。
一般情况下,电阻应变片传感器可以分为片式和网格式两种。
片式电阻应变片传感器可以将材料表面的应变转变为电阻变化,而网格式电阻应变片传感器则以网格形式设计,更加灵敏和稳定。
接着,当外力作用于电阻应变片传感器时,其材料会微小变形,从而使电阻值发生改变。
这种电阻值的变化可以通过接入电路测量出来,传感器输出的电阻值与外力的大小成正比。
通常情况下,传感器的输出信号会通过线性放大电路进行放大处理,以便用于后续的数据采集和控制系统中。
电阻应变片传感器的工作原理简而言之就是应变产生的电阻变化,这一电阻值的变化再通过测量电路转化为电信号输出。
利用这一原理,电阻应变片传感器可以实现在工程领域的多种应用,例如测力、称重、应变测量等。
电阻应变片传感器的工作原理基于材料的弹性形变与电阻值之间的关系,通过测量电路将这一关系转化为可用的电信号输出。
希望通过本文的介绍,读者能对电阻应变片传感器的工作原理有所了解,这对于进一步的学习和应用将有所帮助。
一、实验目的1. 理解电阻应变式传感器的基本原理和结构。
2. 掌握电阻应变式传感器的测量方法及其在工程中的应用。
3. 通过实验验证电阻应变式传感器在不同应变条件下的响应特性。
二、实验原理电阻应变式传感器是利用电阻材料的应变效应,将机械变形转换为电阻变化的传感器。
其基本原理如下:当电阻丝受到拉伸或压缩时,其长度和截面积将发生变化,从而导致电阻值的变化。
这种电阻值的变化与应变值呈线性关系。
通过测量电阻值的变化,可以计算出应变值。
实验中使用的电阻应变式传感器主要由电阻应变片、引线、电桥电路和电阻应变仪组成。
三、实验器材1. 电阻应变式传感器2. 电桥电路3. 电阻应变仪4. 拉伸装置5. 载荷装置6. 电流表7. 电压表8. 电阻箱四、实验步骤1. 将电阻应变式传感器安装到拉伸装置上,确保传感器与拉伸装置的连接牢固。
2. 将电桥电路连接到电阻应变仪上,并调整电桥电路的平衡。
3. 通过拉伸装置对传感器施加不同等级的拉伸力,记录相应的应变值。
4. 使用电阻应变仪测量电阻值的变化,并计算应变值。
5. 重复步骤3和4,验证电阻应变式传感器在不同应变条件下的响应特性。
五、实验结果与分析1. 电阻应变式传感器在不同应变条件下的响应特性实验结果表明,电阻应变式传感器在不同应变条件下的响应特性良好,其电阻值的变化与应变值呈线性关系。
当拉伸力逐渐增大时,电阻值也随之增大,且变化趋势与应变值的变化趋势基本一致。
2. 电阻应变式传感器的灵敏度实验结果表明,电阻应变式传感器的灵敏度较高。
在相同的应变条件下,电阻应变式传感器的电阻值变化较大,说明其具有较高的灵敏度。
3. 电阻应变式传感器的线性度实验结果表明,电阻应变式传感器的线性度较好。
在一定的应变范围内,电阻应变式传感器的电阻值变化与应变值呈线性关系,说明其具有较高的线性度。
六、实验结论1. 电阻应变式传感器是一种有效的应变测量装置,具有灵敏度高、线性度好等优点。
2. 电阻应变式传感器在工程中具有广泛的应用前景,如结构健康监测、材料力学性能测试等。
应变片式电阻传感器实验报告
一、实验目的
本次实验的目的是通过实验了解应变片式电阻传感器的工作原理和使用方法,掌握应变片式电阻传感器的基本特性和应用场景。
二、实验原理
应变片式电阻传感器是一种基于电阻变化的传感器,其工作原理是利用应变片的应变变化引起电阻值的变化,从而实现对应变片所受应变的测量。
应变片式电阻传感器的特点是精度高、响应速度快、可靠性好、使用寿命长等。
三、实验步骤
1.将应变片式电阻传感器连接到电路板上,并连接电源和万用表。
2.通过手动施加外力,使应变片受到应变,记录下此时的电阻值。
3.重复以上步骤,记录不同应变下的电阻值。
4.根据实验数据,绘制应变-电阻曲线图。
四、实验结果
通过实验,我们得到了应变-电阻曲线图,可以看出应变片式电阻传
感器的电阻值随着应变的增加而增加,呈现出线性关系。
同时,我们还发现应变片式电阻传感器的响应速度很快,精度高,可以满足很多实际应用场景的需求。
五、实验结论
应变片式电阻传感器是一种精度高、响应速度快、可靠性好、使用寿命长的传感器,可以广泛应用于工业自动化、机器人控制、航空航天等领域。
通过本次实验,我们深入了解了应变片式电阻传感器的工作原理和特性,为今后的实际应用提供了基础。
六、实验心得
通过本次实验,我深刻认识到了应变片式电阻传感器的重要性和应用价值,同时也掌握了应变片式电阻传感器的基本使用方法和实验技巧。
在今后的学习和工作中,我将更加注重实践操作,不断提高自己的实验能力和技术水平。
简述电阻应变片式传感器的工作原理
电阻应变片式传感器是一种常用的力、压力、扭矩等物理量测量传感器。
其工作原理是利用金属电阻应变效应,将受力物体的力或压力转化为电阻值的变化。
电阻应变片式传感器由一个金属电阻应变片和一个电桥组成。
电阻应变片是由材料特殊制成的弹性金属片,具有高灵敏度和高线性度。
当受到力或压力作用时,电阻应变片会发生形变,导致电阻值发生变化。
电桥由四个电阻组成,其中一个电阻是电阻应变片,其余三个电阻为调零电阻和补偿电阻。
当外力作用下,电桥会产生电势差,通过测量电桥的电压变化,便可知道受力物体的力或压力大小。
具体的工作过程为:当施加力或压力时,电阻应变片发生形变,其电阻值发生变化。
由于电桥平衡条件的改变,电桥会产生一个输出信号,即电压变化。
通过测量这一电压变化,便可以得知受力物体的力或压力。
电阻应变片式传感器可靠性高,精度较高。
在实际应用中,常用于测量力、压力、扭矩等物理量。
电阻应变片传感器,对于外行人来说,或者不懂它具体指的是哪一款类型的传感器,其实弄懂其中关系就很简单,传感器代表的是一种产品,而电阻应变片实际是特指电阻应变式原理下的一款重要零部件。
所以说,电阻应变片传感器可以用一句话解释,即工作原理是电阻应变式原理的传感器。
电阻应变式传感器是基于这样一个原理:弹性体在外力作用下产生弹性变形,使粘贴在他表面的电阻应变片(转换元件)也随同产生变形,电阻应变片变形后,它的阻值将发生变化(增大或减小),再经相应的测量电路把这一电阻变化转换为电信号(电压或电流),从而完成了将外力变换为电信号的过程。
由此可见,电阻应变片是电阻应变式传感器中不可缺少一个部分。
电阻应变片是把一根电阻丝机械的分布在一块有机材料制成的基底上,即成为一片应变片。
他的一个重要参数是灵敏系数K。
我们来
介绍一下它的意义。
设有一个金属电阻丝,其长度为L,横截面是半径为r的圆形,其面积记作S,其电阻率记作ρ,这种材料的泊松系数是μ。
当这根电阻丝未受外力作用时,它的电阻值为R:
R=ρL/S(Ω)(2—1)
当他的两端受F力作用时,将会伸长,也就是说产生变形。
设其伸长ΔL,其横截面积则缩小,即它的截面圆半径减少Δr。
此外,还可用实验证明,此金属电阻丝在变形后,电阻率也会有所改变,记作Δρ。
对式(2--1)求全微分,即求出电阻丝伸长后,他的电阻值改变了多少。
我们有:
ΔR=ΔρL/S+ΔLρ/S–ΔSρL/S2(2—2)
用式(2--1)去除式(2--2)得到
ΔR/R=Δρ/ρ+ΔL/L–ΔS/S(2—3)
另外,我们知道导线的横截面积S=πr2,则Δs=2πr*Δr,所以
ΔS/S=2Δr/r(2—4)
从材料力学我们知道
Δr/r=-μΔL/L(2—5)
其中,负号表示伸长时,半径方向是缩小的。
μ是表示材料横向效应泊松系数。
把式(2—4)(2—5)代入(2--3),有
ΔR/R=Δρ/ρ+ΔL/L+2μΔL/L
=(1+2μ(Δρ/ρ)/(ΔL/L))*ΔL/L
=K*ΔL/L(2--6)
其中
K=1+2μ+(Δρ/ρ)/(ΔL/L)(2--7)
式(2--6))说明了电阻应变片的电阻变化率(电阻相对变化)和电阻丝伸长率(长度相对变化)之间的关系。
需要说明的是:灵敏度系数K值的大小是由制作金属电阻丝材料的性质决定的一个常数,它和应变片的形状、尺寸大小无关,不同的材料的K值一般在1.7—3.6之间;其次K值是一个无因次量,即它没有量纲。
在材料力学中ΔL/L称作为应变,记作ε,用它来表示弹性往往显得太大,很不方便常常把它的百万分之一作为单位,记作με。
这样,式(2--6)常写作:
ΔR/R=Kε(2—8)。
蚌埠高灵传感系统工程有限公司在自主创新的基础上开发生产出力敏系列各类传感器上百个品种,各种应用仪器仪表和系统,以及各种起重机械超载保护装置,可以广泛应用于油田、化工、汽车、起重机械、建设、建材、机械加工、热电、军工、交通等领域。
公司除大规模生产各种规格的高精度、高稳定性、高可靠性常规产品外,还可根据用户具体要求设计特殊的非标传感器,以满足用户的特殊要求。
如果您想进一步的了解,可以直接点击官网高灵传感进行在线了解。