高三物理二轮专题训练 (3)
- 格式:ppt
- 大小:2.41 MB
- 文档页数:70
广东高考物理提高第三篇----带电粒子在电磁场中的运动一、 带电粒子在匀强电场中的运动 1. 加速(通常应用动能定理求解)【例2】如图所示,两个极板的正中央各有一小孔,两板间加以电压U ,一带正电荷q 的带电粒子以初速度v 0从左边的小孔射入,并从右边的小孔射出,则射出时速度为多少?mquv V 220+= 小结:1.带电粒子在匀强电场中加速运动,它的运动特点是:带电粒子在匀强电场中的电场力F 的作用下,以恒定加速度F qU a m md==做匀加速直线运动,处理方法有:(1)牛顿运动定律和运动学公式;(2)能量观点。
2.偏转(通常垂直进入电场,作类平抛运动)电荷量为q 、质量为m 的带电粒子由静止开始经电压U 1加速后,以速度v 1垂直进入由两带电平行金属板产生的匀强电场中,则带电粒子在匀强电场中做类平抛运动,其轨迹是一条抛物线(如图所示).qU 1=12m v 12设两平行金属板间的电压为U 2,板间距离为d ,板长为L . (1)带电粒子进入两板间后粒子在垂直于电场的方向上做匀速直线运动,有:v x =v 1,L =v 1t粒子在平行于电场的方向上做初速度为零的匀加速直线运动,有:v y =at ,y =12at 2,a =qE m =qU 2md.(2)带电粒子离开极板时侧移距离y =12at 2=qU 2L 22md v 12=U 2L 24dU 1轨迹方程为:y =U 2x 24dU 1(与m 、q 无关)偏转角度φ的正切值tan φ=at v 1=qU 2L md v 12=U 2L2dU 1若在偏转极板右侧D 距离处有一竖立的屏,在求电子射到屏上的侧移距离时有一个很有用的推论,即:所有离开偏转电场的运动电荷好像都是从极板的中心沿中心与射出点的连线射出的.这样很容易得到电荷在屏上的侧移距离 y ′=(D +L2)tan φ.以上公式要求在能够证明的前提下熟记,并能通过以上式子分析、讨论侧移距离和偏转角度与带电粒子的速度、动能、比荷等物理量的关系.q练习1.一束电子流在经U=5000V 的加速电压加速后,在距两极板等距处垂直进入平行板间的匀强电场,如图所示,若两板间距d=1.0cm ,板长l =5.0cm ,那么,要使电子能从平行板间飞出,两个极板上最多能加多大电压?试着讨论:要让荧光屏上出现如下所示的四种情况的亮斑,在偏转电极XX ’,以及YY ’方向上应该分别加上怎样的偏转电压? ( 如U XX ’>0,U YY ’<0)U XX ’=0, U YY ’>0 U XX ’=0, U YY ’<0 U XX ’<0, U YY ’=0 U XX ’>0, U YY ’>0二、不计重力的带电粒子在磁场中的运动1.匀速直线运动:若带电粒子的速度方向与匀强磁场的方向平行,则粒子做匀速直线运动. 2.匀速圆周运动:若带电粒子的速度方向与匀强磁场的方向垂直,则粒子做匀速圆周运动.质量为m 、电荷量为q 的带电粒子以初速度v 垂直进入匀强磁场B 中做匀速圆周运动,其角速度为ω,轨道半径为R ,运动的周期为T ,则有:由q v B =m v 2R 得:R =m v qB T =2πmqB(与v 、R 无关),3.对于带电粒子在匀强磁场中做匀速圆周运动的问题,应注意把握以下几点. (1)粒子圆轨迹的圆心的确定①若已知粒子在圆周运动中的两个具体位置及通过某一位置时的速度方向,可在已知的速度方向的位置作速度的垂线,同时作两位置连线的中垂线,两垂线的交点为圆轨迹的圆心,如图4-2 所示.②若已知做圆周运动的粒子通过某两个具体位置的速度方向,可在两位置上分别作两速度的垂线,两垂线的交点为圆轨迹的圆心,如图4-3所示.③若已知做圆周运动的粒子通过某一具体位置的速度方向及圆轨迹的半径R ,可在该位置上作速度的垂线,垂线上距该位置R 处的点为圆轨迹的圆心(利用左手定则判断圆心在已知位置的哪一侧),如图4-4所示.图4-2 图4-3 图4-4(2)粒子圆轨迹的半径的确定①可直接运用公式R =m vqB来确定.②画出几何图形,利用半径R 与题中已知长度的几何关系来确定.在利用几何关系时,要注意一个重要的几何特点,即:粒子速度的偏向角φ等于对应轨迹圆弧的圆心角α,并等于弦切角θ的2倍,如图4-5所示. (3)粒子做圆周运动的周期的确定①可直接运用公式T =2πm qB来确定. ②利用周期T 与题中已知时间t 的关系来确定.若粒子在时间t 内通过的圆弧所对应的圆心角为α,则有:t =α360°·T (或t =α2π·T ).(4)圆周运动中有关对称的规律①从磁场的直边界 射入的粒子,若再从此边界射出,则速度方向与边界的夹角相等,如图4-6所示. ②在 圆形磁场区域 内,沿径向射入的粒子必沿径向射出,如图4-7所示.(5)带电粒子在有界磁场中运动的极值问题刚好穿出磁场边界的条件通常是带电粒子在磁场中运动的轨迹与边界相切. 题型一 选择题1.空间虚线上方存在匀强磁场,磁感应强度为B ;一群电子以不同速率v 从边界上的P 点以相同的方向射入磁场。
2023届高三二轮复习联考(三)全国卷理综物理试题学校:___________姓名:___________班级:___________考号:___________一、未知1.我国自主研发的氢原子钟已运用于中国的北斗导航系统中,它通过氢原子能级跃迁而产生的电磁波校准时钟。
如图所示为氢原子的能级结构示意图。
则( )A .用11eV 的光子照射处于基态的氢原子可以使之发生跃迁B .用11eV 的电子去轰击处于基态的氢原子可能使之发生跃迁C .用4eV 的光子照射处于3n =的激发态的氢原子不能使之电离D .一个处于3n =激发态的氢原子,在向低能级跃迁时最多可辐射3种频率的光子二、单选题A .0时刻,甲、乙两车恰好并排B .0—t 0时间内,甲车的平均速度大于乙车的平均速度C .02t 时刻,甲、乙两车的瞬时速度大小相等D .0—t 0时间内,甲车的加速度始终大于乙车的加速度A.A、B的轨道半径之比为C.B的质量为232 4L GT π4.如图所示,M N右侧存在垂直纸面向里、磁感应强度大小为用粗细均匀、总阻值为R的漆包电阻丝做成两个半径均为A.2:1三、未知5.如图所示,间距1mL=的粗糙倾斜金属轨道与水平面间的夹角37θ=︒,在其顶端与阻值为2R的定值电阻相连,间距相同的光滑金属轨道固定在水平面上,两轨道都足够长且在AA'处平滑连接,AA'至DD'间是绝缘带,保证倾斜轨道与水平轨道间电流不导通。
倾斜轨道处有垂直轨道向上、磁感应强度大小为10.5TB=的匀强磁场,水平轨道处有竖直向上、磁感应强度大小为21TB=的匀强磁场。
两根导体棒1、2的质量均为0.1kg m =,两棒接入电路部分的电阻均为R ,初始时刻,导体棒1放置在倾斜轨道上,且距离AA '足够远,导体棒2静置于水平轨道上,已知倾斜轨道与导体棒1间的动摩擦因数0.5μ=,1R =Ω。
现将导体棒1由静止释放,运动过程中未与导体棒2发生碰撞。
2024届重庆市高三下学期二轮复习联考物理高频考点试题(三)一、单选题 (共6题)第(1)题如图所示,abcd是由粗细均匀的绝缘线制成的正方形线框,其边长为L,O点是线框的中心,线框上均匀地分布着正电荷,现将线框左侧中点M处取下足够短的一小段,该小段带电量为q,然后将其沿OM连线向左移动的距离到N点处,线框其他部分的带电量与电荷分布保持不变,若此时在O点放一个带电量为Q的正点电荷,静电力常量为k,则该点电荷受到的电场力大小为( )A.B.C.D.第(2)题对于同一物理问题,常常可以从宏观与微观两个不同角度进行研究,找出其内在联系,从而更加深刻的理解其物理本质。
一段长为l、电阻率为ρ、横截面积为S的细金属直导线,单位体积内有n个自由电子,电子电荷量为e、质量为m。
经典物理学认为,金属的电阻源于定向运动的自由电子与金属离子(即金属原子失去电子后的剩余部分)的碰撞,该碰撞过程将对电子的定向移动形成一定的阻碍作用,该作用可等效为施加在电子上的一个沿导线的平均阻力。
若电子受到的平均阻力大小与电子定向移动的速率成正比,比例系数为k。
下列说法不正确的是()A.比例系数B.当该导线通有恒定的电流I时导线中自由电子定向移动的速率C.比例系数k与导线中自由电子定向移动的速率v无关D.金属中的自由电子定向移动的速率不变,则电场力对电子做的正功与阻力对电子做的负功大小相等第(3)题一块质量为M、长为l的长木板A 静止放在光滑的水平面上,质量为m的物体B(可视为质点)以初速度v0从左端滑上长木板 A 的上表面并从右端滑下,该过程中,物体B的动能减少量为,长木板A的动能增加量为,A、B间因摩擦产生的热量为Q,下列说法正确的是( )A.A、B组成的系统动量、机械能均守恒B.,,Q的值可能为,,C.,,Q的值可能为,,D.若增大v0和长木板A的质量M,B一定会从长木板A的右端滑下,且Q将增大第(4)题如图所示,球形石墩放置在水平面上,一小玻璃弹珠从石墩顶部由静止释放沿表面落下,弹珠在运动过程中的速度v、加速度a、重力势能、动能随时间变化的图像可能正确的是( )A.B.C.D.第(5)题如图所示,竖直平面内一绝缘细圆环的左、右半圆均匀分布着等量异种电荷,a、b为圆环竖直直径上两点,c、d为圆环水平直径上两点,它们与圆心O的距离相等.以无穷远处为电势零点,则下列说法正确的是( )A.O点场强大小为0,电势大于0B.c点的场强大于d点的场强C.将一电子从a点沿直线移动到b点,电场力不做功D.质子在d点的电势能大于在c点的电势能第(6)题如图所示为一个原、副线圈匝数比为的理想变压器,原线圈两端接有一个交流电源,其电动势随时间变化的规律为,内阻为,所有电表均为理想交流电表。
(2023届高三物理二轮学案)专题三电场和磁场第二讲带电粒子在电磁场中的运动第一课时带电粒子在电场中的运动(一)带电粒子在电场中做直线运动的解题思路(二)利用“两个分运动”求解带电粒子在电场中的偏转问题1.把偏转运动分解为两个独立的直线运动——平行于极板的匀速直线运动,L=v0t;垂直于极板的匀加速直线运动,a=qUmd,vy=at,偏转距离y=12at2,速度偏转角tan θ=vyv0。
2.根据动能定理,带电粒子的动能变化量ΔEk =ydUq。
(三)分时分段处理带电粒子在交变电场中的运动当粒子平行电场方向射入时,粒子可做周期性的直线运动,当粒子垂直于电场方向射入时,沿初速度方向的分运动为匀速直线运动,沿电场方向的分运动可能具有周期性。
典型例题1.(多选)如图所示,一带电荷量为q的带电粒子以一定的初速度由P点射入匀强电场,入射方向与电场线垂直。
粒子从Q点射出电场时,其速度方向与电场线成30°角。
已知匀强电场的宽度为d,P、Q两点的电势差为U,不计重力作用,设P点的电势为零。
则下列说法正确的是( )A.带电粒子带负电B.带电粒子在Q点的电势能为-UqC.此匀强电场的电场强度大小为E=23U 3dD.此匀强电场的电场强度大小为E=3U 3d2.(多选)如图所示,板长为L的平行板电容器与一直流电源相连接,其极板与水平面成30°角;若带电粒子甲、乙由图中的P点射入电容器,分别沿着虚线1和2运动(虚线1为水平线,虚线2为平行且靠近上极板的直线)。
下列关于带电粒子的说法正确的是( )A.两粒子均做匀减速直线运动B.两粒子电势能均逐渐增加C.两粒子机械能均守恒D.若两粒子质量相同,则甲的电荷量一定比乙的电荷量大3.(多选)如图所示,质子(11H)、氘核(12H)和α粒子(24He)都沿平行板电容器的中线OO′方向,垂直于电场线射入两极板间的匀强电场中,射出后都能打在同一个与中线垂直的荧光屏上,使荧光屏上出现亮点。
基础实验器材和读数专题训练1.(1)图甲是用游标卡尺测量某金属圆筒外径时的示数,可读出该圆筒外径为cm。
(2)图乙是用螺旋测微器测量某金属棒直径时的示数,可读出该金属棒直径为mm。
解析:(1)游标卡尺主尺读数为24 mm,50分度游标卡尺的精确度为0.02 mm,游标卡尺第50条刻度线与主尺刻度线对齐,故游标尺读数为1.00 mm,所以该圆筒外径测量值为25.00 mm=2.500 cm。
(2)螺旋测微器固定刻度部分读数为2.5 mm,可动刻度部分最小分度值为0.01 mm,可动刻度部分读数为32.6×0.01 mm=0.326 mm,因此金属棒的直径测量值为2.826 mm。
答案:(1)2.500 (2)2.826(2.825~2.828均对)2.某同学利用图甲所示的实验装置,探究物块在水平桌面上的运动规律,物块在重物的牵引下开始运动,重物落地后,物块再运动一段距离停在桌面上(尚未到达滑轮处)。
从纸带上便于测量的点开始,每5个点取1个计数点,相邻计数点间的距离如图乙所示。
打点计时器电源的频率为50 Hz。
(1)通过分析纸带数据,可判断物块在相邻计数点和之间某时刻开始减速。
(2)打计数点5时,物块对应的速度大小为m/s。
(结果保留三位有效数字)(3)物块减速运动过程中加速度的大小为a= m/s2。
(结果保留三位有效数字)解析:(1)从纸带上的数据分析得知,在打计数点6之前,两点之间的位移逐渐增大,是加速运动,在打计数点7之后,两点之间的位移逐渐减小,是减速运动,所以物块在相邻计数点6和7之间某时刻开始减速。
(2)每5个点取1个计数点,所以相邻的计数点间的时间间隔T=0.1 s,根据匀变速直线运动中间时刻的速度等于该过程中的平均速度,得v5= m/s≈1.00 m/s。
(3)由纸带可知,计数点7往后做减速运动,根据逐差法得a= m/s2≈-2.00 m/s2。
所以物块减速运动过程中加速度的大小为2.00 m/s2。
2021届高三物理二轮复习专题三电场和磁场第1讲电场和磁场逐题对点特训1.(2021·湖北襄阳调研)公元前600年左右,希腊人泰勒斯就发觉了用毛皮摩擦过的琥珀能吸引轻小物体.公元一世纪,我国学者王充在《论衡》一书中也写下了“顿牟掇芥”.关于静电场,下列说法正确的是( C )A.沿电场线方向电场强度越来越小B.若电场中某点的电场强度为零,则该点电势也必定为零C.等势面一定与电场强度的方向垂直D.初速度为零的带电粒子在电场中一定沿电场线运动解析在匀强电场中,沿电场线方向电场强度不变,选项A错误;电势与场强无关,等量同种点电荷连线中点处的场强为0、电势不为0(选无穷远处电势为0),选项B错误;沿电场线方向电势降低,等势面与电场线垂直,选项C正确;在非匀强电场中,初速度为零的带电粒子不一定沿电场线运动,选项D错误.2.(2021·河北二校联考)一个带负电的粒子仅在电场力作用下运动,其电势能随时刻变化规律如图所示,则下列说法正确的是( D )A.该粒子可能做直线运动B.该粒子在运动过程中速度保持不变C.t1、t2两个时刻,粒子所处位置电场强度一定相同D.粒子运动轨迹上各点的电势一定相等解析粒子的电势能不变,电场力不做功,而带电粒子只受电场力,不可能做直线运动,选项A错误;依照能量守恒定律可知粒子的动能不变,速度大小不变,粒子做曲线运动,速度方向在改变,选项B错误;粒子的电势能不变,电场力不做功,依照电场力公式W=qU 知粒子运动轨迹上各点的电势一定相等,而电场强度与电势无关,t1、t2两个时刻,粒子所处位置电场强度不一定相同,选项C错误,D正确.3.(2021·山西重点中学模拟)如图所示,一个质量为m 、带电荷量为-q 的滑块(可视为质点)放置在质量为M 的光滑斜劈上,斜劈的倾角为θ=30°,斜劈固定在水平地面上,现在斜劈的底端C 点竖直放置一绝缘杆,绝缘杆的顶端放置一带电荷量为+Q 的小球(可视为质点).已知斜劈的斜边长为L ,绝缘杆的高度也为L ,静电力常量为k ,现给滑块一沿斜劈向下的初速度v ,让滑块沿斜面下滑,若滑块始终在斜面上运动,则下列说法中正确的是( B )A .运动过程中滑块所受库仑力一直增大B .滑块受到的库仑力最大值为4kqQ3L 2C .滑块运动到斜面中点时速度最大D .滑块运动到C 点时的速度大小为v解析 滑块沿斜面向下运动的过程中与小球的距离先减小后增大,故所受库仑力先增大后减小,当滑块运动到斜面的中点时所受库仑力最大,现在F 库=kqQ L cos θ2=4kqQ 3L2,故选项A 错误,B 正确.当滑块所受重力沿斜面向下的分力等于库仑力沿斜面向上的分力时,滑块的速度最大,滑块运动到斜面中点时加速度方向沿斜面向下,因此滑块运动到斜面中点时速度不是最大,选项C 错误;滑块运动到C 点的过程中,依照对称性,库仑力对滑块做的总功为零,由动能守恒可得12mv 2+mgL ·sin θ=12mv 2C ,故v C >v ,选项D 错误.4.(2021·陕西咸阳模拟)如图,真空中a 、b 、c 、d 四点共线且等距.先在a 点固定一点电荷+Q ,测得b 点场强大小为E .若再将另一点电荷+2Q 放在d 点,则( B )A .b 点场强大小为94EB .c 点场强大小为74EC .若将电子从b 点移动到c 点,其电势能不变D .b 点电势比c 点电势高解析 设a 、b 之间的距离为r ,则b 、d 之间的距离为2r ,a 、c 之间的距离为2r ,c 、d 之间的距离为r ,+Q 在b 点产生的电场强度E =k Q r2,方向由a 指向d .若再将另一点电荷+2Q 放在d 点,它在b 点产生的电场强度E ′=k 2Q2r2=kQ2r2,方向由d 指向a .依照电场叠加原理,b 点的场强大小为E b =E -E ′=k Q r 2-k Q 2r 2=k Q 2r 2=E2,方向由a 指向d ,选项A 错误;+Q 在c 点产生的电场强度E 1=kQ2r2,+2Q 在c 点产生的电场强度E 2=k 2Qr2,二者方向相反,c 点的场强大小为E c =E 2-E 1=k 2Q r 2-k Q 4r 2=74k Q r 2=74E ,方向由d 指向a ,选项B 正确;若将电子从b 点移动到c 点,电场力先做负功后做正功,其电势能先增大后减小,选项C 错误;b 点的电势比c 点的电势低,选项D 错误.5.(2021·江苏高考题)如图所示,三块平行放置的带电金属薄板A 、B 、C 中央各有一小孔,小孔分别位于O 、M 、P 点.由O 点静止开释的电子恰好能运动到P 点.现将C 板向右平移到P ′点,则由O 点静止开释的电子( A )A .运动到P 点返回B .运动到P 和P ′点之间返回C .运动到P ′点返回D .穿过P ′点解析 电子在A 、B 板间的电场中加速运动,在B 、C 板间的电场中减速运动,设A 、B 板闻的电压为U ,B 、C 板间的电场强度为E ,M 、P 两点间的距离为d ,则有eU -eEd =0,若将C 板向右平移到P ′点,B 、C 两板所带电荷量不变,由E =U d =Q C 0d =4πkQεS可知,C 板向右平移到P ′时,B 、C 两板间的电场强度不变,由此能够判定,电子在A 、B 板间加速运动后,在B 、C 板间减速运动,到达P 点时速度为零,然后返回,A 项正确,B 、C 、D 项错误.6.(2021·河南郑州推测)等量异种点电荷在周围空间产生静电场,其连线(x 轴)上各点的电势φ随x 的分布图象如图所示.x 轴上AO <OB <,A 、O 、B 三点的电势分别为φA 、φO 、φB ,电场强度大小分别为E A 、E O 、E B ,电子在A 、O 、B 三点的电势能分别为E p A 、E p O 、E p B .下列判定正确的是( D )A .φB >φA >φOB .E A >E O >E BC .E p O <E p A <E p BD .E p B -E p O >E p O -E p A解析 正电荷周围电势较高,负电荷周围电势较低,φA >φO >φB ,选项A 错误;依照电场强度的合成可知B 点场强最大,O 点最小,选项B 错误;电子带负电.依照电势能E p =qφ,可知E p B 最大,E p A 最小,选项C 错误;由图象可知U OB >U AO ,依照电场力做功W =qU ,电子带负电,可知W BO >W OA ,即E p B -E p O >E p O -E p A ,故选项D 正确.7.(2021·湖北武汉调考)(多选)如图所示,水平放置的平行金属板A 、B 连接一恒定电压,两个质量相等的电荷M 和N 同时分别从极板A 的边缘和两极板的正中间沿水平方向进入板间电场,两电荷恰好在板间某点相遇,若不考虑电荷的重力和它们之间的相互作用,则下列说法正确的是( AC )A .电荷M 的电荷量大于电荷N 的电荷量B .两电荷在电场中运动的加速度相等C .从两电荷进入电场到两电荷相遇,电场力对电荷M 做的功大于电场力对电荷N 做的功D .电荷M 进入电场的初速度大小与电荷N 进入电场的初速度大小一定相同解析 从轨迹能够看出y M >y N ,故12·Uq M dm M t 2>12·Uq N dm N t 2,运算得出Uq M dm M >Uq Ndm N,q M >q N ,选项A 正确,B 错误;依照动能定理,电场力的功为W =12mv 2y ,质量m 相同,M 电荷竖直分位移大,竖直方向的末速度v y =2yt也大,故电场力对电荷M 做的功大于电场力对电荷N 做的功,选项C正确;从轨迹能够看出x M >x N ,故v M >v N ,选项D 错误.8.(2021·宁夏银川模拟)(多选)一平行板电容器两极板的正对面积为S ,两极板间的距离为d .若两极板之间为空气,则电容为C .若将此电容器串联一个电阻R 后接到电动势为E 、内阻为r 的电源两端充电,如图所示.下列说法正确的是( BC )A .若保持开关闭合,增大d ,则极板带电荷量Q 不变B .若保持开关闭合,减小S ,则两极板之间的电场强度不变C .若断开开关,增大d ,则两极板之间的电场强度不变D .若断开开关,在两极板间插入云母片,两极板之间的电压不变解析 若保持开关闭合,则两极板之间的电压不变.增大d ,依照C =εr S4πkd ,可知电容减小,由C =Q U ,可知极板带电荷量Q 减小,选项A 错误.由E =U d可知,减小S ,则两极板之间的电场强度不变,选项B 正确.若断开开关,则极板带电荷量Q 不变,由E =U d =Q Cd=4πkQεr S,可知增大d ,两极板之间的电场强度不变,选项C 正确.在两极板间插入云母片,电容增大,由C =Q U,可知两极板之间的电压减小,选项D 错误.9.(2021·河北保定调研)(多选)在匀强电场中,一电荷量为+q 的粒子(不计重力)以初动能E 0由A 点沿某一方向射出;通过C 点时其动能为3E 0;若将该粒子还以初动能E 0由A 点沿另一方向射出,粒子通过B 点时动能为9E 0.如图所示,A 、B 、C 三点构成直角三角形且∠ABC = 30°,匀强电场平行于△ABC 所在平面.U AB 、U AC 分别表示A 、B 两点与A 、C 两点间电势差,已知AC =d ,下列说法正确的是( BC )A .U AC ∶U AB =1∶3 B .U AC ∶U AB =1∶4C .匀强电场的电场强度大小为4E 0qdD .匀强电场沿BC 方向 解析带电粒子由A 到C 的过程,由动能定理得qU AC =3E 0-E 0,带电粒子由A 到B 的过程,由动能定理得qU AB =9E 0-E 0,解得U AC ∶U AB =1∶4,选项A 错误,B 正确;由分析可知,C 点的电势比B 点的电势高,且在AB 上与C 点电势相等的点为D 点,D 点为AB 的四等分点,如图所示,由几何关系知CD ⊥AB ,因此电场强度的方向由A 指向B ,又AB =2d ,则E =U AB 2d =4E 0qd,选项C 正确,D 错误.10.(2021·河北石家庄二中模拟)(多选)如图所示在两个等量同种负点电荷连线的中垂面上以连线中点O 为圆心的两个同心圆,两圆上有a 、b 、c 、d 四个点,Oac 三点共线,则( BD )A .a 、c 两点的电场强度方向相同,大小不可能相等B .a 、b 两点的电势相同C .将带正电的试探电荷在平面内从b 移到d 点,电场力不做功D .带正电的试探电荷仅在电场力作用下在此平面内可能做匀速圆周运动解析 依照两个等量同种负点电荷电场线特点,a 、c 两点的电场强度方向相同,大小可能相等,选项A 错误;a 、b 两点在同一等势面上,两点的电势相同,选项B 正确;由于b 、d 两点不在同一等势面上,将带正电的试探电荷在平面内从b 移到d 点,电场力做负功,选项C 错误;在中垂面内带正电的试探电荷始终受到方向指向O 点的电场力,在此平面内可能做匀速圆周运动,选项D 正确.11.(2021·广西柳州模拟)(多选)如图甲所示,竖直极板A 、B 之间距离为d 1,电压为U 1,水平极板C 、D 之间距离为d 2,GH 为足够长的荧光屏,到极板C 、D 右侧的距离为L .极板C 、D 之间的电压如图乙所示.在A 板中央有一电子源,能不断产生速率几乎为零的电子.电子经极板A 、B 间电场加速后从极板B 中央的小孔射出,之后沿极板C 、D 的中心线射入极板C 、D 内.已知t =0时刻射入C 、D 间的电子经时刻T 恰好能从极板C 的边缘飞出.不计阻力、电子的重力以及电子间的相互作用,下列说法正确的是( AC )A .电子在荧光屏上形成的亮线长度为d 23B .保持其他条件不变,只增大d 1,荧光屏上形成的亮线长度变长C .保持其他条件不变,只增大d 2,荧光屏上形成的亮线长度变短D .保持其他条件不变,只增大L ,荧光屏上形成的亮线长度变长解析 t =0时刻射入C 、D 间的电子,eU 22md 2⎝ ⎛⎭⎪⎫T 22+eU 2md 2⎝ ⎛⎭⎪⎫T 22=d 22,则t =T2时刻射入C 、D 间的电子,eU 22md 2⎝ ⎛⎭⎪⎫T 22=d 26,因为电子穿过C 、D 运动的时刻相等,则出电场时竖直方向的速度恒定,所有电子均平行射出电场,故亮线长度为d 22-d 26=d 23,选项A 正确;若只增大d 1,则电子射入C 、D 间时的速度不变,荧光屏上形成的亮相长度不变,选项B 错误;若增大C 、D间距离为d ′2,则有eU 22md ′2⎝ ⎛⎭⎪⎫T 22+eU 2md ′2⎝ ⎛⎭⎪⎫T 22=d 222d ′2和eU 22md ′2⎝ ⎛⎭⎪⎫T 22=d 226d ′2,d 222d ′2-d 226d ′2=d 223d ′2<d 23,即荧光屏上形成的亮线长度变短,选项C 正确;因为电子均平行射出电场,故亮线长度与L 无关,选项D 错误.12.(2021·江苏南京模拟)(多选)一个带正电的试探电荷,仅在电场力作用下在x 轴上从-x 1向x 1运动,其速度v 随位置x 变化的图象如图所示,由图象可知( BD )A .电荷从x =-x 1运动到x =0的过程做匀减速直线运动B .从x =0到x =x 1,电场强度逐步增大C .在x 轴上,x =0处电势最低D .从x =-x 1到x =x 1的过程中,电荷的电势能先增大后减小解析 速度随着位移逐步减小,但不是匀减速直线运动,选项A 错误;从x =0到x =x 1,速度与位移成正比,速度的平方对位移求导表示加速度,因此电场强度逐步增大,选项B 正确;从x =-x 1到x =x 1的过程中,动能先减小后增大,因此电荷的电势能先增大后减小,选项D 正确;在x 轴上,x =0处电势最高,选项C 错误.13.(2021·山西重点中学联考)如图所示为一多级加速器模型,一质量为m =×10-3kg 、电荷量为q =×10-5C 的带正电小球(可视为质点)通过1、2级无初速度地进入第3级加速电场,之后沿位于轴心的光滑浅槽,通过多级加速后从A 点水平抛出,恰好能从MN 板的中心小孔B 垂直金属板进入两板间,A 点在MN 板左端M 点正上方,倾斜平行金属板MN 、PQ 的长度均为L =1.0 m ,金属板与水平方向的夹角为θ=37°,sin 37°=,cos 37°=,重力加速度g =10 m/s 2.(1)忽略在加速级中带电小球重力的阻碍,求A 点到M 点的高度以及多级加速电场的总电压U ;(2)若该平行金属板间有图示方向的匀强电场,且电场强度大小E =100 V/m ,要使带电小球不打在PQ 板上,则两板间的距离d 至少要多长?解析 (1)设小球从A 点到B 点的运动时刻为t 1,小球的初速度为v 0,A 点到M 点的高度为y ,则有v 0gt 1=tan θ, ① L2cos θ=v 0t 1,② y -L 2sin θ=12gt 21,③ 联立①②③并代人数据解得v 0= 3 m/s ,y =1730 m .④带电小球在多级加速器加速的过程,依照动能定理有qU =12mv 20-0,⑤代人数据解得U = V.(2)进入电场时,以沿板向下为x 轴正方向和垂直于板向下为y 轴正方向建立直角坐标系,将重力正交分解,则沿y 轴方向有F y =mg cos θ-qE =0,⑥ 沿x 轴方向有F x =mg sin θ,⑦故小球进入电场后做类平抛运动,设刚好从P 点离开,则有F x =ma , ⑧L 2=12at 22, ⑨ d min =v 0sin θt 2,○10 联立④⑦⑧⑨⑩并代人数据,解得d min =526 m ,即两板间的距离d 至少为526m.答案 (1) V (2)526m14.(2021·四川重点中学联考)如图,将一内壁光滑的绝缘细圆管做成的圆环BDC 固定在竖直面内,圆环的圆心为O ,D 为圆环的最低点,其中∠BOC =90°,圆环的半径为R =2L ,过OD 的虚线与过BC 的虚线垂直且交于点S ,虚线BC 的上方存在水平向右的范畴足够大的匀强电场.圆心O 的正上方A 点有一质量为m 、带电荷量为-q 的绝缘小球(可视为质点),其直径略小于圆管内径,AS =L .现将该小球无初速度开释,通过一段时刻小球刚好无碰撞地进入圆管中并连续在圆管中运动,重力加速度大小用g 表示.(1)求虚线BC 上方匀强电场的电场强度大小;(2)求当小球运动到圆环的最低点D 时对圆环压力的大小;(3)小球从管口C 离开后,通过一段时刻后落到虚线BC 上的F 点(图中未标出),则C 、F 两点间的电势差为多大?解析 (1)小球被开释后在重力和电场力的作用下做匀加速直线运动,小球从B 点沿切线方向进入,则现在速度方向与竖直方向的夹角为45°,即加速度方向与竖直方向的夹角为45°,则tan 45°=mg Eq ,解得E =mg q.(2)小球从A 点到D 点的过程中,依照动能定理得 12mv 2D -0=mg (2L +2L )+EqL , 当小球运动到圆环的最低点D 时,依照牛顿第二定律得F N -mg =m v 2DR,联立解得F N =3(2+1)mg ,依照牛顿第三定律得小球运动到圆环的最低点D 时对圆环的压力大小为3(2+1)mg . (3)小球从A 点到B 点的过程中,依照动能定理得 12mv 2B =mgL +EqL ,解得v B =2gL , 小球从C 点抛出后做类平抛运动,抛出时的速度大小v C =v B =2gL ,小球的加速度大小g ′=2g .当小球沿抛出方向和垂直抛出方向的位移相等时,回到虚线BC 上,则有v C t =12g ′t 2,解得t =22L g,则小球沿虚线BC 方向运动的位移x CF =2v C t =2×2gL ×22Lg=8L ,沿着电场线方向电势降低,则C 点与F 点间的电势差为U CF =-Ex CF =-8mgLq.答案 (1)mg q(2)3(2+1)mg (3)-8mgLq15.(2021·安徽师大附中模拟)如图所示,在场强大小为E 、方向竖直向上的匀强电场内取一个半径为R 的圆周,圆周所在平面平行于电场方向,O 点为该圆周的圆心,A 点是圆周上的最低点,B 点是圆周上最右侧的点.在A 点有放射源,在圆周所在的平面内沿着垂直电场向右的方向开释出相同的粒子,这些粒子从A 点射出时的初速度大小各不相同,已知粒子的质量为m ,带电荷量为+q ,不计重力.(1)某一粒子运动轨迹通过圆周上的B 点,求该粒子从A 点射出时的初速度大小; (2)取圆周上的C 点,使OC 连线与OA 夹角为θ,试求出粒子通过C 点时的动能表达式; (3)若第(2)问中的C 点位置满足θ=60°,则从B 、C 之间穿过圆周的这些粒子中通过圆周时所获得的最大动能和最小动能分别是多少?解析 (1)依照牛顿第二定律得a =qE m, 水平方向有R =v 0t , 竖直方向有R =12at 2,联立解得v 0=qER 2m. (2)水平方向有R sin θ=v 0t , 竖直方向有R -R cos θ=12at 2,得v 20=qER sin 2θ2m 1-cos θ,11 / 11 12v 20=qER sin 2θ41-cos θ=qER 1+cos θ4, 通过C 点时的动能 E k =Eq (R -R cos θ)+12mv 20=14EqR (5-3cos θ). (3)由(2)中的结论能够看出,当θ从0°变化到180°时,电荷通过圆周时的动能逐步增大,因此穿过C 点的电荷的末动能最小,穿过B 点的电荷的末动能最大 E k C =14EqR (5-3cos 60°)=78EqR ,E k B =14EqR (5-3cos 90°)=54EqR .答案 (1)qER 2m (2)3mv 202qL (3)见解析。
专题强化训练(三)(在1~9题给出的四个选项中,第1~5题只有一项符合题目要求,第6~9题有多项符合题目要求.)1.在静电场中,将一正电荷从A点移到B点,电场力做负功,则().A.B点的电场强度一定比A点的大B.电场线方向一定从B指向AC.B点的电势一定比A点的高D.该电荷的动能一定减小解析电场力做功与否与电场强弱无关,无法比较电场强度大小,故选项A 错误;正电荷从A点移到B点,电场力做负功,正电荷电势能增加,电势升高,φB>φA,故选项C正确;A、B不一定在同一条电场线上,所以电场线不一定由B指向A,故选项B错误;虽然电场力做负功,但正电荷可能受其他力作用且合外力做正功,其动能可能变大,故选项D错误.答案 C2.如图3-1所示,平行板电容器的一个极板与滑动变阻器的滑片C相连接.电子以速度v0垂直于电场线方向射入并穿过平行板间的电场.在保证电子还能穿出平行板间电场的情况下,若使滑动变阻器的滑片C上移,则关于电容器极板上所带电荷量Q和电子穿越平行板所需的时间t的说法中,正确的是().图3-1A.电荷量Q增大,时间t也增大B.电荷量Q不变,时间t增大C.电荷量Q增大,时间t不变D.电荷量Q不变,时间t也不变解析当滑动变阻器的滑片C上移时,BC间的电阻值变大,电容器两板间的电压变大,由Q=CU知电荷量Q增大,由t=lv0知,电子穿越平行板的时间不变,选项C正确.答案 C3.美国物理学家劳伦斯于1932年发明的回旋加速器,应用运动的带电粒子在磁场中做圆周运动的特点,能使带电粒子在较小的空间范围内经过电场的多次加速获得较大的能量,使人类在获得较高能量带电粒子方面前进了一步.如图3-2所示为一种改进后的回旋加速器的示意图,其中盒缝间的加速电场的场强大小恒定,且被限制在A、C板间,带电粒子从P0处静止释放,并沿电场线方向射入加速电场,经加速后再进入D形盒中的匀强磁场做匀速圆周运动,对于这种改进后的回旋加速器,下列说法正确的是().图3-2A.带电粒子每运动一周被加速一次B.P1P2=P2P3C.加速粒子的最大速度与D形盒的尺寸无关D.加速电场的方向需要做周期性的变化解析由题图可以看出,带电粒子每运动一周被加速一次,A正确;由R=m v qB和qU=12m v22-12m v21可知,带电粒子每运动一周,电场力做功都相同,动能增量都相同,但速度的增量不相同,故粒子做圆周运动的半径增加量不相同,B错误;由v=qBRm可知,加速粒子的最大速度与D形盒的半径R有关,C错误;粒子在电场中运动的方向始终不变,故D错误.答案 A4.如图3-3所示,带电粒子在没有电场和磁场的空间以v0从坐标原点O沿x轴方向做匀速直线运动,若空间只存在垂直于xOy 平面的匀强磁场时,粒子通过P 点时的动能为E k ;当空间只存在平行于y 轴的匀强电场时,则粒子通过P 点时的动能为 ( ).图3-3A .E kB .2E kC .4E kD .5E k解析 只有电场时,粒子做类平抛运动,y =qEt 22m ,则运动时间t =2m v 0qE ,故电场力做功W =qEy =2m v 20=4E k ,因此粒子通过P 点时的动能为5E k . 答案 D5.带电粒子以初速度v 0从a 点进入匀强磁场,如图3-4所示.运动中经过b 点,Oa =Ob ,若撤去磁场加一个与y 轴平行的匀强电场,仍以v 0从a 点进入电场,粒子仍能通过b 点,那么电场强度E 与磁感应强度B 之比为( ).图3-4A .v 0B .1C .2v 0D .v 02解析 带电粒子在匀强磁场中做匀速圆周运动,O 为圆心,故Oa =Ob =r =m v 0qB , ①带电粒子在匀强电场中做类平抛运动,故Ob =v 0t =Oa =qE 2m t 2=2m v 20qE , ②由①②得EB=2v0,故选项C对.答案 C6.如图3-5所示,在xOy平面内有两根平行y轴水平放置的长直导线,通有沿y轴正方向大小相等的电流I,两导线关于y轴对称,P为x轴上一点,Q为z轴上一点,下列说法正确的是().图3-5A.O点处的磁感应强度为零B.P、Q两点处的磁感应强度方向垂直C.P、Q两点处的磁感应强度方向平行D.正电荷从O点沿z轴向上运动不受洛伦兹力作用解析根据安培定则可判断两电流在O点处产生的磁感应强度等大反向,合磁感应强度为零,A正确.两电流在P点产生的磁场方向相反,叠加后合磁场方向沿z轴正方向;两电流在z轴正方向上各点产生的磁感应强度矢量叠加后,都沿x轴负方向,P、Q两点磁场方向垂直,B正确,C错误.正电荷从O点沿z轴向上运动,由左手定则判断其受沿y轴正方向的洛伦兹力作用,D错.答案AB7.(2013·天津卷,6)两个带等量正电的点电荷,固定在图3-6中P、Q两点,MN为PQ连线的中垂线,交PQ于O点,A为MN上的一点.一带负电的试探电荷q,从A点由静止释放,只在静电力作用下运动,取无限远处的电势为零,则().图3-6A .q 由A 向O 的运动是匀加速直线运动B .q 由A 向O 运动的过程电势能逐渐减小C .q 运动到O 点时的动能最大D .q 运动到O 点时电势能为零解析 q 由A 向O 运动的过程中,电场力的方向始终由A 指O ,但力的大小变化,所以电荷q 做变加速运动,电场力做正功,到O 点时速度最大,动能最大,电势能最小,故选项B 、C 均正确,选项A 、D 错误.答案 BC8.如图3-7所示,平面直角坐标系的第Ⅰ象限内有一匀强磁场垂直于纸面向里,磁感应强度为B .一质量为m 、电荷量为q 的粒子以速度v 从O 点沿着与y 轴夹角为30°的方向进入磁场,运动到A 点时速度方向与x 轴的正方向相同,不计粒子的重力,则 ( ).图3-7A .该粒子带正电B .A 点与x 轴的距离为m v 2qBC .粒子由O 到A 经历时间t =πm 3qBD .运动过程中粒子的速度不变解析 由左手定则可判断该粒子带负电,A 错误;粒子运动轨迹如图所示,则A点离x轴的距离为r(1-cos θ)=m vBq(1-cos 60°)=m v2Bq,B正确;t=θ2πT=πm3qB,C正确;运动过程中粒子速度大小不变,方向时刻改变,D错误.答案BC9.(2013·浙江卷,20)在半导体离子注入工艺中,初速度可忽略的磷离子P+和P3+,经电压为U的电场加速后,垂直进入磁感应强度大小为B、方向垂直纸面向里、有一定宽度的匀强磁场区域,如图3-8所示.已知离子P+在磁场中转过θ=30°后从磁场右边界射出.在电场和磁场中运动时,离子P+和P3+().图3-8A.在电场中的加速度之比为1∶1B.在磁场中运动的半径之比为3∶1C.在磁场中转过的角度之比为1∶2D.离开电场区域时的动能之比为1∶3解析磷离子P+和P3+的质量相等,设为m,P+的电荷量设为q,则P3+的电荷量为3q,在电场中由a=Eqm知,加速度之比为所带电荷量之比,即为1∶3,A错误;由qU=12m v2得Ek∝q,即离开电场区域时的动能之比为1∶3,D正确;又由q v B =m v 2r ,得r =1B 2mU q ∝1q ,所以r P +∶r P3+=3∶1,B 正确;由几何关系可得P 3+在磁场中转过60°角后从磁场右边界射出,C 正确. 答案 BCD10.(2013·北京卷,22)如图3-9所示,两平行金属板间距为d ,电势差为U ,板间电场可视为匀强电场;金属板下方有一磁感应强度为B 的匀强磁场.带电量为+q 、质量为m 的粒子,由静止开始从正极板出发,经电场加速后射出,并进入磁场做匀速圆周运动.忽略重力的影响,求:图3-9(1)匀强电场场强E 的大小;(2)粒子从电场射出时速度v 的大小;(3)粒子在磁场中做匀速圆周运动的半径R .解析 (1)匀强电场的场强E =U d(2)在加速电场中由动能定理得:Uq =12m v 2v =2Uqm(3)由牛顿第二定律得:q v B =m v 2R R =m v qB =1B 2mU q答案 (1)U d (2)2Uq m (3)1B 2mU q 11.如图3-10甲所示,在x 轴上O 到d 范围内存在电场(图中未画出),x 轴上各点的电场沿着x 轴正方向,并且电场强度大小E 随x 的分布如图乙所示;在x 轴上d 到2d 范围内存在垂直纸面向里的匀强磁场,磁感应强度大小为B .一质量为m ,电荷量为+q 的粒子沿x 轴正方向以某一初速度从O 点进入电场,最终粒子恰从坐标为⎝⎛⎭⎪⎫2d ,33d 的P 点离开磁场.不计粒子重力. (1)求在x =0.5d 处,粒子的加速度大小a ;(2)求粒子在磁场中的运动时间t ;图3-10解析 (1)由图乙可知,x =0.5d 处,电场强度为E =0.5E 0,由牛顿第二定律得:qE =ma解得:a =qE 02m(2)粒子在磁场中运动轨迹示意图如图所示,设半径为R ,由几何关系R 2=d 2+⎝⎛⎭⎪⎫R -33d 2 解得:R =233d设圆弧所对圆心角为α,满足:sin α=d R =32解得:α=π3粒子在磁场中做圆周运动,设在磁场中运动的周期为T在磁场的运动速率为v ,圆周运动半径为R ,有:q v B =m v 2R粒子运动的周期T =2πR v =2πm qB所以,粒子在磁场中的运动时间t =α2πT =πm 3qB答案 (1)qE 02m (2)πm 3qB12.如图3-11所示,在两个水平平行金属极板间存在着竖直向下的匀强电场和垂直于纸面向里的匀强磁场,电场强度和磁感应强度的大小分别为E =2×106N/C 和B 1=0.1 T ,极板的长度l =33 m ,间距足够大.在板的右侧还存在着另一圆形区域的匀强磁场,磁场的方向为垂直于纸面向外,圆形区域的圆心O 位于平行金属极板的中线上,圆形区域的半径R =33 m .有一带正电的粒子以某速度沿极板的中线水平向右飞入极板后恰好做匀速直线运动,然后进入圆形磁场区域,飞出圆形磁场区域后速度方向偏转了60°,不计粒子的重力,粒子的比荷q m =2×108 C/kg.图3-11(1)求圆形区域磁场的磁感应强度B 2的大小;(2)在其他条件都不变的情况下,将极板间的磁场B 1撤去,为使粒子飞出极板后不能进入圆形区域的磁场,求圆形区域的圆心O 离极板右边缘的水平距离d 应满足的条件.解析 (1)设粒子的初速度大小为v ,粒子在极板间做匀速直线运动,则: q v B 1=qE设粒子在圆形区域磁场中做圆周运动的半径为r ,则:q v B 2=m v 2r粒子速度方向偏转了60°,则:r =R cot 30°解得:B 2=0.1 T(2)撤去磁场B 1后,粒子在极板间做类平抛运动,设在板间运动时间为t ,运动的加速度为a ,飞出电场时竖直方向的速度为v y ,速度的偏转角为θ,则: qE =mal =v tv y =attan θ=v y v解得:tan θ=33,即θ=30°设粒子飞出电场后速度恰好与圆形区域的边界相切时,圆心O 离极板右边缘的水平距离为d 0,如图所示,则:d 0=R sin θ-l 2解得:d 0=32 m所以d >32 m ⎝ ⎛⎭⎪⎫或d ≥32 m 答案 (1)0.1 T (2)d >32 m ⎝ ⎛⎭⎪⎫或d ≥32 m。
2021届高三物理二轮复习:专题三动态平衡问题姓名:__________ 班级:__________考号:__________1、如图所示,某同学站在地面上,用恒定的、竖直向下的拉力通过绕过光滑定滑轮的轻绳拉动木箱,使木箱向左沿粗糙水平地面运动。
在木箱向左运动的过程中()A.地图对术箱的支持力减小B.地面对木箱的支持力增大C.地面受到的摩擦力减小D.地面受到的摩擦力增大2、如图所示,一倾斜木板上放一质量为m物体,当板的倾角θ逐渐增大时,物体始终保持静止状态,则物体所受()A、重力变大B、支持力变大C、摩擦力变大D、合外力变大3、质量分别为m A和m B的物体A、B用细绳连接后跨过滑轮,A静止在倾角为45°的斜面上,B悬挂着,已知m A=2m B,不计滑轮摩擦,现将斜面倾角由45°增大到50°,系统仍保持静止.下列说法正确的是()A.绳子对A的拉力将增大B.物体A对斜面的压力将增大C.物体A受到的静摩擦力增大D.物体A受到的静摩擦力减小4、如图所示,轻质不可伸长的晾衣绳两端分别固定在竖直杆M、N上的a、b两点,悬挂衣服的衣架挂A.绳的右端上移到b’,绳子拉力不变B.将杆N向右移一些,绳子拉力变大C.绳的两端高度差越小,绳子拉力越小D.若换挂质量更大的衣服则衣架悬挂点右移5、如图所示,质量均为m的小球A、B用劲度系数为k1的轻弹簧相连,B球用长为L的细绳悬于O点,A 球固定在O点正下方L处,当小球B平衡时,绳子所受的拉力为F T1,弹簧的弹力为F1;现把A、B间的弹簧换成原长相同但劲度系数为k2(k2>k1)的另一轻弹簧,在其他条件不变的情况下仍使系统平衡,此时绳子所受的拉力为F T2,弹簧的弹力为F2.下列关于F T1与F T2、F1与F2大小之间的关系,正确的是( )A.F T1>F T2B.F T1=F T2C.F1<F2D.F1=F26、一挡板把两根完全相同的圆木挡在倾角为斜坡上,截面图如图所示。