当前位置:文档之家› 板式塔设备条件图

板式塔设备条件图

板式塔设备条件图
板式塔设备条件图

接 管 表

1

2

板式塔设计

板式塔设计 概述 本章符号说明 英文字母 A a——塔板开孔区面积,m2; A f——降液管截面积,m2; A0——筛孔总面积,m2; A T——塔截面积,m2; c0——流量系数,无因次; C——计算u max时的负荷系数,m/s; C s——气相负荷因子,m/s; d0——筛孔直径,m; D——塔径,m; ev——液沫夹带量,kg(液)/kg(气); E——液流收缩系数,无因次; E T——总板效率,无因次; F——气相动能因子,kg1/2/(s·m1/2); F0——筛孔气相动能因子,kg1/2/(s·m1/2); h1——进口堰与降液管间的水平距离,m; h c——与干板压降相当的液柱高度,m液柱; h d——与液体流过降液管的压降相当的液柱高度,m:h f——塔板上鼓泡层高度,m; h l——与板上液层阻力相当的液柱高度,m; h L——板上清液层高度,m; h0——降液管的底隙高度,m; h ow——堰上液层高度,m; h w——出口堰高度,m; h′w——进口堰高度,m; hσ——与克服σ的压降相当的液柱高度,m;H——板式塔高度; H B——塔底空间高度,m; H d——降液管内清液层高度,m; H D——塔顶空间高度,m; H F——进料板处塔板间距,m ;

H P——人孔处塔板间距,m; H T——塔板间距,m; H1——封头高度,m; H2——裙座高度,m; K——稳定系数,无因次; l W——堰长,m; L h——液体体积流量,m3/h; L S——液体体积流量,m3/s; n——筛孔数目; N T——理论板层数; P——操作压力,Pa; △P——压力降,Pa; △P p——气体通过每层筛板的压降,Pa;r——鼓泡区半径,m; t——筛孔的中心距,m; u——空塔气速,m/s; u F——泛点气速,m/s u0——气体通过筛孔的速度,m/s; u0.min——漏液点气速,m/s; u′0——液体通过降液管底隙的速度,m/s;V h——气体体积流量,m3/h; V S——气体体积流量,kg/s; W L——液体质量流量,kg/s; W V——气体质量流量,kg/s; W c——边缘无效区宽度,m; W d——弓形降液管宽度,m; W s——破沫区宽度,m; Z——板式塔的有效高度,m; 希腊字母 β——充气系数,无因次; δ——筛板厚度,m θ——液体在降液管内停留时间,s;μ——粘度,Pa·s; ρ——密度,kg/m3; σ——表面张力,N/m; φ——开孔率或孔流系数,无因次;

塔设备机械设计

第一章绪论 1.1塔设备概述 塔设备是石油、化工、轻工等各工业生产中仅次与换热设备的常见设备。在上述各工业生产过程中,常常需要将原料中间产物或粗产品中的各个组成部分(称为组分)分离出来作为产品或作为进一步生产的精制原料,如石油的分离、粗酒精的提纯等。这些生产过程称为物质分离过程或物质传递过程,有时还伴有传热和化学反应过程。传质过程是化学工程中一个重要的基本过程,通常采用蒸馏、吸收、萃取。以及吸附、离子交换、干燥等方法。相对应的设备又可称为蒸馏塔、吸收塔、萃取塔等。 在塔设备中所进行的工艺过程虽然各不相同,但从传质的必要条件看,都要求在塔内有足够的时间和足够的空间进行接触,同时为提高传质效果,必须使物料的接触尽可能的密切,接触面积尽可能大。为此常在塔内设置各种结构形式的内件,以把气体和液体物料分散成许多细小的气泡和液滴。根据塔内的内件的不同,可将塔设备分为填料塔和板式塔。 在板式塔中,塔内装有一定数量的塔盘,气体自塔底向上以鼓泡喷射的形式穿过塔盘上的液层,使两相密切接触,进行传质。两相的组分浓度沿塔高呈阶梯式变化。 不论是填料塔还是板式塔,从设备设计角度看,其基本结构可以概括为: (1)塔体,包括圆筒、端盖和联接法兰等; (2)内件,指塔盘或填料及其支承装置; (3)支座,一般为裙式支座; (4)附件,包括人孔、进出料接管、各类仪表接管、液

体和气体的分配装置,以及塔外的扶梯、平台、保温层等。 塔体是塔设备的外壳。常见的塔体是由等直径、等壁厚的圆筒及上、下椭圆形封头所组成。随着装置的大型化,为了节省材料,也有用不等直径、不等壁厚的塔体。塔体除应满足工艺条件下的强度要求外,还应校核风力、地震、偏心等载荷作用下的强度和刚度,以及水压试验、吊装、运输、开停车情况下的强度和刚度。另外对塔体安装的不垂直度和弯曲度也有一定的要求。 支座是塔体的支承并与基础连接的部分,一般采用裙座。其高度视附属设备(如再沸器、泵等)及管道布置而定。它承受各种情况下的全塔重量,以及风力、地震等载荷,因此,应有足够的强度和刚度。 塔设备强度计算的主要的内容是塔体和支座的强度和刚度计算。 化工生产对塔设备的基本要求 塔设备设计除应满足工艺要求外,尚需考虑下列基本要求:(1)气、液处理量大,接触充分,效率高,流体流动阻力小。 (2)操作弹性大,即当塔的负荷变动大时,塔的操作仍然稳定,效率变化不大,且塔设备能长期稳定运行。 (3)结构简单可靠,制造安装容易,成本低。 (4)不易堵塞,易于操作、调试及检修。 1.2板式塔 板式塔具有物料处理量大,重量轻,清理检修方便,操作稳定性好等优点,且便于满足工艺上的特殊要求,如中间加热或或冷却、多段取出不同馏分、“液化气”较大等。但板式塔的结构复杂,成本较高。由于板式塔良好的操作的性能和成熟的使用经验,目前在化工生产的塔设备中,占有很大比例,广泛用于蒸馏、吸收等传质过程。 板式塔内部装有塔盘,塔体上有进料口、产品抽出口以及回流口等。此外,还有很多附属装置,如除沫器、入手孔、支座、

板式塔发展现状

一、板式塔的发展历程与研究方向 蒸馏是一种量大而面广的工业分离混合物的方法,广泛应用于化工、炼油、食品、轻工业等许多工业部门,在国民经济中占有很大的比重。据统计,塔设备的投资费用占化工和石化过程共投资费用的25%,占总能耗的40%。此外,塔设备性能的好坏对产品质量和产量起着十分重要的作用,对降低能耗、降低生产成本和提高企业竞争实力有着重大的意义。 近年来,尽管涌现出很多新的分离技术,在实际生产过程中,蒸馏操作仍占据这很重要的地位。虽然从20世纪80年代开始,高效规整填料在工业塔中的成功应用改变了工业蒸馏设备长期以来已板式塔为主的的局面,但板式塔因其设备造价低廉、操作范围广、对各种物系适应强、易于清理和检修等优点,在蒸馏操作中仍占有不可替代的地位。特别是高压、高粘度等特殊工况条件下,板式塔仍占有优势。由于板式塔在蒸馏设备中占有重要地位,所以各国研究者对塔板性能的研究和新型塔板的开发与应用方面做了大量的工作,其中一个重要的方面就是对塔板的流体力学性能和塔板上流体流动状况的研究,另外就是开发高效、节能、结构简单和的新型塔设备。板式塔作为完成蒸馏操作的过程的一个主要设备,得到了广泛深入的研究。 二、板式塔发展历史 早在1813年Cellier就提出了泡罩塔,筛板塔也早在1832年开始用于生产。19世纪初,新的炼油工艺又推动了塔设备的发展。进入20世纪后,石油成为主要能源和石油化学工业的原料,早期的塔设备已不能满足这些不断更新的工艺过程需要,这就促进了精馏技术和塔设备有了新的发展。塔设备的发展大致可分为四个阶段:

(1)第二次世界大战结束前,塔设备主要用于炼油工业,塔型中以泡罩塔为主,而在无机酸工业中则多用于填料塔。 (2)第二次世界大战结束后,炼油和石油化学工业有了较大的发展,促使塔设备不断增加,除了对筛板、泡罩等原有塔型进行改进外,也出现了一些新型塔板。(3)进入60年代以后,炼厂生产能力不断增大,使设备向大型化方向发展,与此同时,石油化工凶猛发展,提出了对塔型的某些特殊要求,因此出现了一些具有相应性能的塔板,适应高压、减压、高效、大液负荷、高弹性等要求。 (4)70年代后,塔板研究逐年减少。据报道,欧美等国大学中研究新塔板的课题为数不多,其原因是他们认为现有的各类塔板性能颇为接近,基本上可以满足所有蒸馏操作的要求。有人预言,除“并流”塔以外,近期内不会有彻底革新的新型踏板问世。但是由于能源愈益紧张而昂贵,使得能耗巨大的蒸馏过程与设备的研究开发工作仍在持续进行,新型塔板不断仍不断出现,尤其是那些大通量、低压降和高效率的塔板,更受人们欢迎。 三、塔板的发展概况 板式塔的种类繁多,根据其板内件的结构不同可分为泡罩型塔板、浮阀型塔板和筛孔型塔板等。 1.泡罩型塔板 泡罩塔是最早的典型的板式塔,自从1813年Cellier提出泡罩塔,并在化学工业生产上采用以来,泡罩塔在蒸馏、吸收等两相传质设备中曾占主导地位。泡罩塔在1920年被引入炼油工业,但是直到1924年在克劳斯过程中获得成功,泡罩塔才被广泛应用。近二三十年来,出现了许多新型塔板和高效填料。与泡罩塔相比,具有处理能力大、压降低、结构简单、制造方便和费用低廉的优点,因此,泡罩塔已

板式塔介绍

塔设备是化工、石油等工业中广泛使用的重要生产设备。塔设备的基本功能在于提供气、液两相以充分接触的机会,使质、热两种传递过程能够迅速有效地进行;还要能使接触之后的气、液两相及时分开,互不夹带。因此,蒸馏和吸收操作可在同样的设备中进行。 根据塔内气液接触部件的结构型式,塔设备可分为板式塔与填料塔两大类。 板式塔内沿塔高装有若干层塔板(或称塔盘),液体靠重力作用由顶部逐板流向塔底,并在各块板面上形成流动的液层;气体则靠压强差推动,由塔底向上依次穿过各塔板上的液层而流向塔顶。气、液两相在塔内进行逐级接触,两相的组成沿塔高呈阶梯式变化。 填料塔内装有各种形式的固体填充物,即填料。液相由塔顶喷淋装置分布于填料层上,靠重力作用沿填料表面流下;气相则在压强差推动下穿过填料的间隙,由塔的一端流向另一端。气、液在填料的润湿表面上进行接触,其组成沿塔高连续地变化。 目前在工业生产中,当处理量大时多采用板式塔,而当处理量较小时多采用填料塔。蒸馏操作的规模往往较大,所需塔径常达一米以上,故采用板式塔较多;吸收操作的规模一般较小,故采用填料塔较多。 本章重点介绍板式塔的塔板类型,分析操作特点并讨论浮阀塔的设计,同时还介绍各种类型填料塔的流体流体力学特性和计算。 第1节板式塔 板式塔为逐级接触式气液传质设备。在一个圆筒形的壳体内装有若干层按一定间距放置的水平塔板,塔板上开有很多筛孔,每层塔板靠塔壁处设有降液管。气液两相在塔板内进行逐级接触,两相的组成沿塔高呈阶梯式变化。板式塔的空塔气速很高,因而生产能力较大,塔板效率稳定,造价低,检修、清理方便 3.1.1塔板类型 按照塔内气液流动的方式,可将塔板分为错流塔板与逆流塔板两类。 错流塔板:塔内气液两相成错流流动,即流体横向流过塔板,而气体垂直穿过液层,但对整个塔来说,两相基本上成逆流流动。错流塔板降液管的设置方式及堰高可以控制板上液体流径与液层厚度,以期获得较高的效率。但是降液管占去一部分塔板面积,影响塔的生产能力;而且,流体横过塔板时要克服各种阻力,因而使板上液层出现位差,此位差称之为液面落差。液面落差大时,能引起板上气体分布不均,降低分离效率。错流塔板广泛用于蒸馏、吸收等传质操作中。 逆流塔板亦称穿流板,板间不设降液管,气液两相同时由板上孔道逆向穿流而过。栅板、淋降筛板等都属于逆流塔板。这种塔板结构虽简单,板面利用率也高,但需要较高的气速才能维持板上液层,操作范围较小,分离效率也低,工业上应用较少。 本教材只介绍错流塔板。

板式塔设备机械设计

板式塔设备机械设计

————————————————————————————————作者:————————————————————————————————日期:

1 板式塔设备机械设计任务书 1.1 设计任务及操作条件 试进行一蒸馏塔与裙座的机械设计 已知条件为:塔体内径mm D i 2000=,塔高m 30,工作压力为MPa 2.1,设计温度为300℃,介质为原油,安装在广州郊区,地震强度为7度,塔内安装55层浮阀塔板,塔体材料选用16MnR ,裙座选用A Q -235。 1.2 设计内容 (1)根据设计条件选材; (2)按设计压力计算塔体和封头壁厚; (3)塔设备质量载荷计算; (4)风载荷与风弯矩计算; (5)地震载荷与地震弯矩计算; (6)偏心载荷与偏心弯矩计算; (7)各种载荷引起的轴向应力; (8)塔体和裙座危险截面的强度与稳定校核; (9)塔体水压试验和吊装时的应力校核; (10)基础环设计; (11)地脚螺栓计算; (12)板式塔结构设计。 1.3.设计要求: (1)进行塔体和裙座的机械设计计算; (2)进行裙式支座校核计算; (3)进行地脚螺栓座校核计算; (4)绘制装备图(A3图纸)

2 塔设备已知条件及分段示意图 已知设计条件 分段示意图 塔体内径i D 2000mm 塔体高度H 30000mm 设计压力P 1.2MPa 设计温度t 300℃ 塔 体 材料 16MnR 许用应力 [σ] 170MPa [σ]t 144MPa 设计温度下弹性模量E MPa 51086.1? 常温屈服点s σ 345MPa 厚度附加量C 2mm 塔体焊接接头系数φ 0.85 介质密度ρ 3/800m kg 塔盘数N 55 每块塔盘存留介质层高度w h 100mm 基本风压值0q 500N/㎡ 地震设防烈度 7度 场地土类别 II 类 地面粗糙度 B 类 偏心质量e m 4000kg 偏心距e 2000mm 塔外保温层厚度s δ 100mm 保温材料密度2ρ 3/300m kg 材料 Q235-A 裙 座 许用应力t s ][σ 86MPa 常温屈服点s σ 235MPa 设计温度下弹性模量s E

精馏塔机械设计方案

精馏塔机械设计方案 1.1 塔设备概论 塔设备是化工、石油化工和炼油、医药、环境保护等工业部门的一种重要的单元操作设备。它的作用是实现气(汽)——液相或液——液相之间充分的接触,从而达到相际间进行传质及传热的目的。可在塔设备中完成的常见的单元操作有:精馏、吸收、解吸和萃取等。此外,工业气体的冷却与回收、气体的湿法净制和干燥,以及兼有气液两相传质和传热的增湿、减湿等。 塔设备应用面广、量大,其设备投资费用占整个工艺设备费用较大的比例。在化工或炼油厂中,塔设备的性能对整个装置的产品产量、质量、生产能力和消耗定额以及三废处理和环境保护等各个方面都有着重大影响。因此,塔设备的设计和研究受到化工、炼油行业的极大重视。 为了使塔设备能更有效、更经济地运行,除了要求它满足特定的工艺条件外,还应满足以下要求: (1)气(汽)液两相充分接触,相际间的传热面积大; (2)生产能力大,即气液处理量大; (3)操作稳定,操作弹性大; (4)流体流动的阻力小,即流体通过塔设备的压力降小。这将大大减少生产中的动力消耗,以降低操作的费用; (5)结构简单,制造、安装、维修方便,并且设备的投资及操作费用低; (6)耐腐蚀,不易堵塞。方便操作、调节和检修。 塔设备的分类: (1)按操作压力可分有加压塔、常压塔以及减压塔;

(2)按单元操作可分有精馏塔、吸收塔、介吸塔、萃取塔、反应塔、干燥塔等; (3)按件结构可分有填料塔、板式塔; (4)按形成相际接触界面的方式可分为具有固定相界面的塔和流动过程中形成相界面的塔。 1.2 常压塔的主要结构 在塔设备的类别中,由于目前工业上应用最广泛的是填料塔以及板式塔,所以主要考虑这两种类别。 考虑到设计条件,成分复杂,并且板式塔和填料塔相比效率更高一些,更稳定,液——气比适用围大,持液量较大,安装、检修更容易,造价更低,故选用板式塔更为合理。 板式塔是一种逐级(板)接触的气液传质设备。塔使用塔板作为基本构件,气体自塔底向上以鼓泡或喷射的形式穿过塔板上的液层,使气——液相密切接触而进行传质与传热,并且两相的组分浓度呈阶梯式变化。 塔盘采用浮阀型式。因为浮阀塔在石油、化工、等工业部门应用最为广泛,并具备优异的综合性能,在设计和选用时经常作为首选的板式塔型式。 板式初馏塔的总体结构见装配草图。板式塔除了各种件之外,主要由塔体、支座、人孔或手孔、除沫器、接管、吊柱及扶梯、操作平台组成。 (1) 塔体 塔体即塔设备的外壳,常见的塔体由等直径、等厚度的圆筒和上下封头组成。对于大型塔设备,为了节省材料偶尔采用不等直径、不等厚度的塔体。塔设备一般情况下安装在室外,因而塔体除了承受一定的操作压力(压或外压)、温度外,还要考虑到风载荷、地震载荷、偏心载荷等。此外还要满足在试压、运输及吊装时的强度、刚度及稳定性要求。本设计中精馏塔为常压0.11MPa,采用等直径等厚度型式。 (2) 支座

板式塔

板式塔主要类型的结构和特点 工业上常用的板式塔有: 泡罩塔、浮阀塔、筛板塔、穿流栅孔板塔 浮阀塔具有的优点: 生产能力大,塔板效率高,操作弹性大,结构简单,安装方便。 二、板式塔的流体力学特性 1、塔内气、液两相的流动 A 使气液两相在塔板上进行充分接触以增强传质效果 B 使气液两相在塔内保持逆流,并在塔板上使气液量相保持均匀的错流接触,以获得较大的传质推动力。 2、气泡夹带: 液体在下降过程中,有一部分该层板上面的气体被带到下层板上去,这种现象称为气泡夹带。 3、液(雾)沫夹带: 气体离开液层时带上一些小液滴,其中一部分可能随气流进入上一层塔板,这种现象称为液(雾)沫夹带。 4、液面落差 液体从降液管流出的横跨塔板流动时,必须克服阻力,故进口一侧的液面将比出口这一侧的高。此高度差称为液面落差。 液面落差过大,可使气体向上流动不均,板效率下降。 5、气体通过塔板的压力降 压力降的影响: A 气体通过塔板的压力降直接影响到塔低的操作压力,故此压力降数据是决定蒸馏塔塔底温度的主要依据。 B 压力降过大,会使塔的操作压力改变很大。 C 压力降过大,对塔内气液两相的正常流动有影响。

压力降:ΔP P =ΔP C +ΔP L +ΔP δ 塔板本身的干板阻力ΔP C 板上充气液层的静压力ΔP L 液体的表面张力ΔP δ 折合成塔内液体的液柱高度M,则 ΔP P/ρL g=ΔP C/ρL g +ΔP L /ρL g +ΔPδ/ρL g 即h p =h c +h L +h δ 浮阀塔的压力降一般比泡罩塔板的小,比筛板塔的大。在正常操作情况,塔板的压力降以290—490 N/m2 .在减压塔中为了减少塔的真空度损失,一般约为98—245Pa 通常应在保证较高塔板效率的前提下,力求减少塔板压力降,以降低能耗及改善塔的操作性能。 6、液泛(淹塔) 汽液量相中之一的流量增大到某一数值,上、下两层板间的压力降便会增大到使降液管内的液体不能畅顺地下流。当降液管内的液体满到上一层塔板溢流堰顶之后,便漫但上层塔板上去,这种现象,称为液泛(淹塔) 如气速过大,便有大量液滴从泡沫层中喷出,被气体带到上一层塔板,或有大量泡沫生成。 如当液体流量过大时,降液管的截面便不足以使液体及时通过,于是管内液面即行升高。 上述两种情况导致液泛的情况中,比较常遇到的气体流量过大,故设计时均先以不发生过量液沫夹带为原则,定出气速的上限,在此限度内再选定一个合理的操作气速。 当气速增大到液滴所受阻力恰等于其净重时,液滴便在上升气流中处于稳定的悬浮状态。 因为d、ζ不易准确求得,

板式塔发展现状资料讲解

板式塔发展现状

一、板式塔的发展历程与研究方向 蒸馏是一种量大而面广的工业分离混合物的方法,广泛应用于化工、炼油、食品、轻工业等许多工业部门,在国民经济中占有很大的比重。据统计,塔设备的投资费用占化工和石化过程共投资费用的25%,占总能耗的40%。此外,塔设备性能的好坏对产品质量和产量起着十分重要的作用,对降低能耗、降低生产成本和提高企业竞争实力有着重大的意义。 近年来,尽管涌现出很多新的分离技术,在实际生产过程中,蒸馏操作仍占据这很重要的地位。虽然从20世纪80年代开始,高效规整填料在工业塔中的成功应用改变了工业蒸馏设备长期以来已板式塔为主的的局面,但板式塔因其设备造价低廉、操作范围广、对各种物系适应强、易于清理和检修等优点,在蒸馏操作中仍占有不可替代的地位。特别是高压、高粘度等特殊工况条件下,板式塔仍占有优势。由于板式塔在蒸馏设备中占有重要地位,所以各国研究者对塔板性能的研究和新型塔板的开发与应用方面做了大量的工作,其中一个重要的方面就是对塔板的流体力学性能和塔板上流体流动状况的研究,另外就是开发高效、节能、结构简单和的新型塔设备。板式塔作为完成蒸馏操作的过程的一个主要设备,得到了广泛深入的研究。 二、板式塔发展历史 早在1813年Cellier就提出了泡罩塔,筛板塔也早在1832年开始用于生产。19世纪初,新的炼油工艺又推动了塔设备的发展。进入20世纪后,石油成为主要能源和石油化学工业的原料,早期的塔设备已不能满足这些不断更新的工艺过程需要,这就促进了精馏技术和塔设备有了新的发展。塔设备的发展大致可分为四个阶段:

(1)第二次世界大战结束前,塔设备主要用于炼油工业,塔型中以泡罩塔为主,而在无机酸工业中则多用于填料塔。 (2)第二次世界大战结束后,炼油和石油化学工业有了较大的发展,促使塔设备不断增加,除了对筛板、泡罩等原有塔型进行改进外,也出现了一些新型塔板。 (3)进入60年代以后,炼厂生产能力不断增大,使设备向大型化方向发展,与此同时,石油化工凶猛发展,提出了对塔型的某些特殊要求,因此出现了一些具有相应性能的塔板,适应高压、减压、高效、大液负荷、高弹性等要求。 (4)70年代后,塔板研究逐年减少。据报道,欧美等国大学中研究新塔板的课题为数不多,其原因是他们认为现有的各类塔板性能颇为接近,基本上可以满足所有蒸馏操作的要求。有人预言,除“并流”塔以外,近期内不会有彻底革新的新型踏板问世。但是由于能源愈益紧张而昂贵,使得能耗巨大的蒸馏过程与设备的研究开发工作仍在持续进行,新型塔板不断仍不断出现,尤其是那些大通量、低压降和高效率的塔板,更受人们欢迎。 三、塔板的发展概况 板式塔的种类繁多,根据其板内件的结构不同可分为泡罩型塔板、浮阀型塔板和筛孔型塔板等。 1.泡罩型塔板 泡罩塔是最早的典型的板式塔,自从1813年Cellier提出泡罩塔,并在化学工业生产上采用以来,泡罩塔在蒸馏、吸收等两相传质设备中曾占主导地位。泡罩塔在1920年被引入炼油工业,但是直到1924年在克劳斯过程中获得成功,泡罩塔才被广泛应用。近二三十年来,出现了许多新型塔板和高效填料。与泡罩塔相

塔设备

目录 一、塔设备的应用 (2) 二、塔设备的分类 (2) 2.1 填料塔 (3) 2.2板式塔 (4) 三、塔的强度设计 (5) 3.1塔的强度设计的基本步骤 (5) 3.2 塔设备的强度设计 (6) 3.2.1 塔的固有周期 (6) 3.2.2 塔的载荷分析 (10) 四、塔的强度校核和稳定性计算 (14) 4.1筒体的强度及稳定性校核 (14) 4.2 裙座的强度及稳定性校核 (15) 五、学习体会 (17)

一、塔设备的应用 塔设备是石油化工、化学工业、石油工业等生产中最重要的设备之一。它可使气(汽)液或液液相之间进行充分接触,达到相际传热及传质的目的。在塔设备中能进行的单元操作有:精馏、吸收、解吸,气体的增湿及冷却等。表1中所示为几个典型的实例。 表1 塔设备的投资及重量在过程设备中所占的比例 实现气(汽)—液相或液—液相之间的充分接触,从而达到相际传质和传热的目的。塔设备广泛用于蒸馏、吸收、介吸、萃取、气体的洗涤、增湿及冷却等单元操作中,它的操作性能好坏,对整个装置性能好坏、对整个装置的生产,产品产量、质量、成本以及环境保护、“三废”处理等都有较大的影响。因此对设备的研究一直是工程界所关注的热点。随着石油、化工的发展,塔设备的合理造型及设计将越来越受到关注和重视。 为了使塔设备能更有效、更经济的运行,除了要求它满足特定的工艺条件,还应满足以下基本要求。 ①满足特定的工艺条件; ②气—液两相能充分接触,相际传热面积大; ③生产能力大,即气、液处理量大; ④操作稳定,操作弹性大,对工作负荷的波动不敏感; ⑤结构简单、制造、安装、维修方便,设备投资及操作成本低; ⑥耐腐蚀,不易堵塞。 二、塔设备的分类 塔设备的种类很多,为了便于比较和选型,必须对塔设备进行分类,常见的分类方法有: ①按操作压力分有加压塔、常压塔及减压塔;

化工机械设备程设计(板式塔)副本

目 录 第1章 绪 论 .................................................................................................................. 4 1.1 课程设计的目的 ................................................................................................... 4 1.2 课程设计的要求 ................................................................................................... 4 1.3 课程设计的内容 ................................................................................................... 4 1.4 课程设计的步骤 ................................................................................................... 4 第2章 塔体的机械计算 ................................................................................................ 6 2.1 按计算压力计算塔体和封头厚度 ....................................................................... 6 2.1.1 塔体厚度的计算 ............................................................................................ 6 2.1.2 封头厚度计算 ................................................................................................ 6 2.2 塔设备质量载荷计算 ........................................................................................... 6 2.2.1 筒体圆筒、封头、裙座质量 m 01 ................................................................. 6 2.2.2 塔内构件质量 m 02 ......................................................................................... 7 2.2.3 保温层质量 m 03 ............................................................................................. 7 2.2.5 操作时物料质量 ............................................................................................ 7 2.2.6 附件质量 a m ............................................................................................... 8 2.2.7 充水质量w m .................................................................................................. 8 2.2.8 各种载荷质量汇总 ...................................................................................... 8 2.3 风载荷与风弯矩的计算 ....................................................................................... 9 2.3.1 风载荷计算 .................................................................................................... 9 2.3.2 风弯矩的计算 .............................................................................................. 10 2.4 地震弯矩计算 ..................................................................................................... 11 2.5 偏心弯矩的计算 ................................................................................................. 12 偏心弯矩 mm N ge m M e e ??=??==81057.1200081.98000 ............................ 12 2.6 各种载荷引起的轴向应力 ................................................................................. 12 2.6.1 计算压力引起的轴向应力 .......................................................................... 12 2.6.2 操作质量引起的轴向压应力2δ .................................................................. 12 2.6.3 最大弯矩引起的轴向应力3δ ...................................................................... 13 2.7 塔体和裙座危险截面的强度与稳定校核 ......................................................... 14 2.7.1 截面的最大组合轴向拉应力校核 .............................................................. 14 2.7.2 塔体与裙座的稳定性校核 .. (14)

化工机械设备程设计(板式塔)副本

目录 第1章绪论 (3) 1.1 课程设计的目的 (3) 1.2 课程设计的要求 (3) 1.3 课程设计的内容 (3) 1.4 课程设计的步骤 (3) 第2章塔体的机械计算 (5) 2.1 按计算压力计算塔体和封头厚度 (5) 2.1.1 塔体厚度的计算 (5) 2.1.2 封头厚度计算 (5) 2.2 塔设备质量载荷计算 (5) 2.2.1 筒体圆筒、封头、裙座质量 (5) 2.2.2 塔内构件质量 (6) 2.2.3 保温层质量 (6) 2.2.5 操作时物料质量 (6) 2.2.6 附件质量 (7) 2.2.7 充水质量 (7) 2.2.8 各种载荷质量汇总 (7) 2.3 风载荷与风弯矩的计算 (8) 2.3.1 风载荷计算 (8) 2.3.2 风弯矩的计算 (9) 2.4 地震弯矩计算 (10) 2.5 偏心弯矩的计算 (11) 2.6 各种载荷引起的轴向应力 (11) 2.6.1 计算压力引起的轴向应力 (11) 2.6.2 操作质量引起的轴向压应力 (11) 2.6.3 最大弯矩引起的轴向应力 (12) 2.7 塔体和裙座危险截面的强度与稳定校核 (13) 2.7.1 截面的最大组合轴向拉应力校核 (13) 2.7.2 塔体与裙座的稳定性校核 (13) 2.8 塔体水压试验和吊装时代应力校核 (16)

2.8.1 水压试验时各种载荷引起的应力 (16) 2.8.2 水压试验时应力校核 (16) 2.9 基础环设计 (17) 2.9.1 基础环尺寸 (17) 2.9.2 基础环的应力校核 (17) 2.9.3 基础环的厚度 (18) 2.10 地脚螺栓计算 (18) 2.10.1地脚螺栓承受的最大拉应力 (18) 2.10.2 地脚螺栓的螺纹小径 (19) 第3章塔结构设计 (20) 3.1 塔盘结构 (20) 3.2塔盘的支承 (20) 参考文献 (20) 自我总结 (20)

塔设备机械计算

第四章塔设备机械设计 塔设备设计包括工艺设计和机械设计两方面。机械设计是把工艺参数、尺寸作为已知条件,在满足工艺条件的前提下,对塔设备进行强度、刚度和稳定性计算,并从制造、安装、检修、使用等方面出发进行机构设计。 4.1设计条件 由塔设备工艺设计设计结果,并查相关资料[1],[9]知设计条件如下表。 表4-1 设计条件表

4.2设计计算 4.2.1全塔计算的分段

图4-1 全塔分段示意图 塔的计算截面应包括所有危险截面,将全塔分成5段,其计算截面分别为:0-0、1-1、2-2、3-3、4-4。分段示意图如图4-1。

4.2.2 塔体和封头厚度 塔内液柱高度:34.23.15.004.05.0=+++=h (m ) 液柱静压力:018.034.281.992.783101066=???==--gh p H ρ(MPa ) 计算压力:1=+=H c p p p MPa (液柱压力可忽略) 圆筒计算厚度:[]94.60 .185.017022000 0.12=-???=-= c i c p D p φσδ(mm ) 圆筒设计厚度:94.8294.6=+=+=C c δδ(mm ) 圆筒名义厚度:108.094.81=?++=?++=C c n δδ(mm ) 圆筒有效厚度:8210=-==-=C n e δδ(mm ) 封头计算厚度:[]93.60 .15.085.017022000 0.15.02=?-???=-= c i c h p D p φσδ(mm ) 封头设计厚度:93.8293.6=+=+=C h hc δδ(mm ) 封头名义厚度:108.093.81=?++=?++=C hc hn δδ(mm ) 封头有效厚度:8210=-==-=C hn he δδ(mm ) 4.2.3 塔设备质量载荷 1. 塔体质量 查资料[1],[8]得内径为2000mm ,厚度为10mm 时,单位筒体质量为495kg/m ,单个封头质量为364kg 。 通体质量:5.121275.244951=?=m (kg ) 封头质量:72823642=?=m (kg ) 裙座质量:14850.34953=?=m (kg ) 塔体质量:5.1434014857285.1212732101=++=++=m m m m (kg ) 0-1段:49514951-0,01=?=m (kg )

塔器及塔内件介绍要点

塔器及塔内件介绍 一、塔器 1.塔器:是进行气相和液相或液相和液相间物质传递的设备。 2.塔器的分类:按结构分板式塔和填料塔两大类。 3.板式塔:内设有一定数量的塔板,气体以鼓泡或喷射形式与塔板上液层相接触进行物质传递。可根据气液操作状态分为鼓泡式塔板,如浮阀、泡帽、筛板等塔板和喷射式,如网孔、舌形等塔板。又可以根据有无降液管分为溢流式塔板(泡帽等)和穿流式(穿流式栅板和穿流式筛板等)。 4.填料塔:内装有一定高度的填料,液体沿填料自上向下流动,气体由下向上同液膜逆流接触,进行物质传递。常应用于蒸馏、吸水、萃取等操作中。根据结构特点分为乱堆填料(阶梯环、鲍尔环等颗粒填料)和规则填料(网波纹填料和波板纹填料) 5.填料塔的结构特点 填料塔是以塔内的填料作为气液两相间接触构件的传质设备。填料塔的塔身是一直立式圆筒,底部装有填料支承板,填料以乱堆或整砌的方式放置在支承板上。填料的上方安装填料压板,以防被上升气流吹动。液体从塔顶经液体分布器喷淋到填料上,并沿填料表面流下。气体从塔底送入,经气体分布装置(小直径塔一般不设气体分布装置)分布后,与液体呈逆流连续通过填料层的空隙,在填料表面上,气液两相密切接触进行传质。填料塔属于连续接触式气液传质设备,两相组成沿塔高连续变化,在正常操作状态下,气相为连续相,液相为分散相。 当液体沿填料层向下流动时,有逐渐向塔壁集中的趋势,使得塔壁附近的液流量逐渐增大,这种现象称为壁流。壁流效应造成气液两相在填料层中分布不均,从而使传质效率下降。因此,当填料层较高时,需要进行分段,中间设置再分布装置。液体再分布装置包括液体收集器和液体再分布器两部分,上层填料流下的液体经液体收集器收集后,送到液体再分布器,经重新分布后喷淋到下层填料上。填料塔具有生产能力大,分离效率高,压降小,持液量小,操作弹性大等优点。填料塔也有一些不足之处,如填料造价高;当液体负荷较小时不能有效地润湿填料表面,使传质效率降低;不能直接用于有悬浮物或容易聚合的物料;对侧线进料和出料等复杂精馏不太适合等。 塔设备有许多种类型,塔设备是化工、石油化工和炼油生产中最重要的设备之一。它可使气液或液液两相之间进行紧密接触,达到相际传质及传热的目的。可在塔设备中

塔设备选型

塔设备选型 1、1 设计标准 1、2 塔设备设计原则 塔设备设计应满足以下原则: (1) 生产能力大。在较大的气(汽)液流速下,仍不致发生大量的雾沫夹带、拦液或液泛等破坏正常操作的现象。 (2) 操作稳定、弹性大。当塔设备的气(汽)液负荷量有较大的波动时,仍能在较高的传质效率下进行稳定的操作,并且塔设备应保证能长期连续操作。 (3) 流体流动阻力小,即流体透过塔设备的压力降小。这将大大节省生产中的动力消耗,以降低操作费用。对于减压蒸馏操作,较大的压力降还将使系统无法维持必要的真空度。 (4) 结构简单、材料耗用量小、制造与安装容易。这可以减少基建过程中的投资费用。 (5) 耐腐蚀与不易堵塞,方便操作、调节与检修。 1、3 塔型的选择 1、3、1 板式塔与填料塔的比较 精馏塔按传质元件区别可分为两大类,即板式精馏塔与填料精馏塔。根据上述要求,可对板式塔与填料塔的性能作一简要的比较,详见表1-1所示。 表1-1 板式塔与填料塔的对比

选择塔型时应考虑的因素有很多,主要有:物料性质、操作条件、塔设备的性能,以及塔设备的制造、安装、运输与维修等,具体如下: ?与物性有关的因素 a)易起泡的物系,如处理量不大时,以选择填料塔为宜。因为填料能使泡沫破裂,在板式塔中则易引起液泛。 b)具有腐蚀性的介质,可选用填料塔,如必须用板式塔,宜选用结构简单、造价便宜的筛板塔、穿流式塔盘或舌形塔盘,以便及时更换。 c)具有热敏性的物料需减压操作,以防过热引起分解或聚合时,应选用压力降较小的塔型,如可采用装填规整填料的塔、湿壁塔等,当要求真空度较低时,宜用筛板塔与浮阀塔。 d)粘性较大的物系,可以选用大尺寸填料。板式塔的传质效率太差。 含有悬浮物的物料,应选择液流通道较大的塔型,以板式塔为宜。可选用泡罩塔、浮阀塔、栅板塔、舌形塔与孔径较大的筛板塔等。不宜使用小填料。 e)操作过程中有热效应的系统,用板式塔为宜。因塔盘上有液层,可在其中安放换热管,进行有效的加热或冷却。 ?与操作条件有关的因素 a)若气相传质阻力大(即气相控制系统,如低粘度液体的蒸馏,空气增湿等),宜采用填料塔,因填料层中气相呈湍流,液相为膜状流。反之,受液相控制的系统,宜采用板式塔,因为板式塔中液相呈湍流,用气体在液层中鼓泡。 b)大的液体负荷,可选用填料塔,若用板式塔时,宜选用气液并流的塔型(如喷射型塔盘)或选用板上液流阻力较小的塔型(如筛板与浮阀)。此外,导向筛板塔盘与多降液管筛板塔盘都能承受较大的液体负荷。 c)低的液体负荷,一般不宜采用填料塔。因为填料塔要求一定数量的喷淋密度,但网体填料能用于低液体负荷的场合。

板式塔知识

浮阀塔F-型(国外通称V-型)是用钢板冲压而成的圆形阀片,浮阀塔F-型下面有三条阀腿,把三条阀腿装入塔板的阀孔之后,用工具将腿下的阀脚扭转90°,则浮阀就被限制在浮孔内只能上下运动而不能脱离塔板。当气速较大时,浮阀塔F-型浮阀被吹起,达到最大开度;当气速较小时,气体的动压头小于浮阀自重,于是浮阀塔F-型浮阀下落,浮阀周边上三个朝下倾斜的定距片与塔板接触,此时开度最小。定距片的作用是保证最小气速时还有一定的开度,使气体与浮阀塔F-型塔板上液体能均匀地鼓泡,避免浮阀与塔板粘住。浮阀塔F-型浮阀的开度随塔内气相负荷大小自动调节,可以增大传质的效果,减少雾沫夹带。 10.2.8浮阀塔的设计 1.浮阀塔型式 前已提及,浮阀的型式有很多,国内采用的多为F-1型浮阀,这种浮阀的结构简单、制造方便、省材料,对其性能已有所掌握。F-1型浮阀分轻阀和重阀良种,轻阀约25g,重阀约33。已有部颁标准(JB1118-81),其结构尺寸见图10-26和表10-6。 图10-26 F-1型浮阀

2.阀的排列 浮阀一般按正三角形排列,也有采用等腰三角形排列的(例如分块式塔板中)。在正三角形排列中分顺派和叉排,见图10-27(a)、(b)。叉排时从相邻两阀吹出气流搅动液层的作用较显著,使相邻两阀容易吹开,液面落差较小,鼓泡均匀。 (a )顺排 图10-27 浮阀的排列 浮阀中心距可取75、100、125、150mm 等几种。现国内浮阀中心距推荐为75mm(见浮阀塔盘系列JB1206-91)。当用钻孔法加工时,中心距可不受此限制。排与排间距t 推荐为65、80、100mm 三种,必要时可以适当调整。塔板上阀控开孔率按阀数而定,一般为4%5% 左右。 3.阀数确定 一般在正常负荷下,希望浮阀刚好在全开时操作,根据试验表明,此时阀孔动能因数 08~11F =,一般按此确定所需阀数,对不同工艺情况,可适当调整。如要求操作下限大 时可采取较大的0F 。选定0F 值后,由下式确定孔速: 0u = (10—31) 式中,0u —孔速,m/s ; 0F —阀孔动能因素; G ρ—气体密度,kg/m 3; F-1型浮阀的孔径为39mm ,故浮阀个数n 为 20008370.232 0.785(0.039)s s V V V n u u u = ==? (10—32) 式中,s V —气体流量,m 3/s ; V —气体流量,m 3/h 。

化工设备简介——塔设备.

?化工行业设备大体分为动设备和静设备 静设备包括塔器、换热器、反应器、工业管式炉、气柜、储罐等,又称“化工设备”。 ?动设备是指有驱动机带动的转动设备(亦即有能源消耗的设备),如压缩机、风机、离心机、泵等。即“三机一泵”。又称 “化工机器”。 塔设备通过其内部构件使气(汽)-液相或液-液相之间的充分接触,从而使不同相之间进行质量传递和热量传递。 塔设备完成的单元操作通常有:精馏、吸收、解吸、萃取等,也可以进行介质冷却,气体的净制与干燥以及增湿等。是化工、石油、生物、制药等生产过程中广泛采用的设备。 化工生产对塔设备提出的要求: ?①工艺性能好——塔设备要使气、液两相尽可能充分接触,具有较大的接触面积和分离空间,以获得较高的传质效率。 ?②生产能力大——在满足工艺要求的前提下,要使塔截面上单位时间内物料的处理量大。 ?③操作稳定性好——当气液负荷产生波动时,仍能维持稳定、连续操作,且操作弹性好。 化工生产对塔设备提出的要求: ?④能量消耗小——要使流体通过塔设备时产生的阻力小、压降小,热量损失少,以降低塔设备的操作费用。

?⑤结构合理——塔设备内部结构既要满足生产的工艺要求,又要结构简单、便于制造、检修和日常维护。 ?⑥选材要合理——塔设备材料要根据介质特性和操作条件进行选择,既要满足使用要求,又要节省材料,减少设备投资费 用。 ?⑦安全可靠——在操作条件下,塔设备各受力构件均应具有足够的强度、刚度和稳定性,以确保生产的安全运行。 ?上述各项指标的重要性因不同设备而异,要同时满足所有要求很困难。因此,要根据传质种类、介质的物化性质和操作条件 的具体情况具体分析,抓住主要矛盾,合理确定塔设备的类型 和内部构件的结构形式,以满足不同的生产要求。 ?塔设备的种类很多,常见的分类: ⑴按操作压力分为加压塔、常压塔及减压塔 ⑵按单元操作分为精馏塔、吸收塔、萃取塔、反应塔等。 ⑶按塔内气、液接触构件的结构分为板式塔和填料塔。 ?目前工业生产中应用最广泛的是填料塔和板式塔。 填料塔是一种常用的气、液传质设备。它结构简单,塔内装有填料,其作用是使向下流动的液体与向上逆流的气体在填料层中充分接触达到传质的目的。填料塔造价低,阻力小,具有良好的耐腐蚀性能。 ?在生产中,当生产量较大时,一般采用板式塔。在板式塔中,塔内设有许多块塔盘,相邻两块塔盘有一定的距离,气、液两

相关主题
文本预览
相关文档 最新文档