功能材料概论7(超导材料)
- 格式:ppt
- 大小:1.84 MB
- 文档页数:42
一、超导材料有些材料当温度下降至某一临界温度时,其电阻完全消失,这种现象称为超导电性,具有这种现象的材料称为超导材料。
超导体的另外一个特征是:当电阻消失时,磁感应线将不能通过超导体,这种现象称为抗磁性。
一般金属(例如:铜)的电阻率随温度的下降而逐渐减小,当温度接近于0K时,其电阻达到某一值。
而1919年荷兰科学家昂内斯用液氦冷却水银,当温度下降到4.2K(即-269℃)时,发现水银的电阻完全消失,超导电性和抗磁性是超导体的两个重要特性。
使超导体电阻为零的温度称为临界温度(TC)。
超导材料研究的难题是突破“温度障碍”,即寻找高温超导材料。
以NbTi、Nb3Sn为代表的实用超导材料已实现了商品化,在核磁共振人体成像(NMRI)、超导磁体及大型加速器磁体等多个领域获得了应用;SQUID作为超导体弱电应用的典范已在微弱电磁信号测量方面起到了重要作用,其灵敏度是其它任何非超导的装置无法达到的。
但是,由于常规低温超导体的临界温度太低,必须在昂贵复杂的液氦(4.2K)系统中使用,因而严重地限制了低温超导应用的发展。
高温氧化物超导体的出现,突破了温度壁垒,把超导应用温度从液氦(4.2K)提高到液氮(77K)温区。
同液氦相比,液氮是一种非常经济的冷媒,并且具有较高的热容量,给工程应用带来了极大的方便。
另外,高温超导体都具有相当高的磁性能,能够用来产生20T以上的强磁场。
超导材料最诱人的应用是发电、输电和储能。
利用超导材料制作超导发电机的线圈磁体制成的超导发电机,可以将发电机的磁场强度提高到5~6万高斯,而且几乎没有能量损失,与常规发电机相比,超导发电机的单机容量提高5~10倍,发电效率提高50%;超导输电线和超导变压器可以把电力几乎无损耗地输送给用户,据统计,目前的铜或铝导线输电,约有15%的电能损耗在输电线上,在中国每年的电力损失达1000多亿度,若改为超导输电,节省的电能相当于新建数十个大型发电厂;超导磁悬浮列车的工作原理是利用超导材料的抗磁性,将超导材料置于永久磁体(或磁场)的上方,由于超导的抗磁性,磁体的磁力线不能穿过超导体,磁体(或磁场)和超导体之间会产生排斥力,使超导体悬浮在上方。
电性材料—超导材料学院班级:姓名:组号:学号:一.引言电性材料的分类,按电性性能可分为导体、半导体、超导体和绝缘材料等四类;从应用角度可分为导电材料、电阻材料、电热材料和绝缘材料等。
电性材料性能的差异与其成分、组织、结构、以及外界环境(如温度、压力、磁场)都密切相关。
电性材料在日常的生活中应用十分广泛,再此主要介绍一下超导材料。
二.超导材料(Superconductor Materials )1.绪论超导材料是近40年发展起来的高科技技术,它在电工、交通、医疗、工业、国防和科学实验等高科技领域都有着重要的现实意义和巨大的发展前景。
许多科学家认为超导技术将是21世纪具有经济战略意义的高新技术,极具发展潜力和市场前景。
是本世纪高新技术发展的一个重要方向。
我国自20世纪60年代末即开始超导技术的研究,经30多年的努力,在超导磁体技术及其应用、超导材料研究、超导电子学以及超导基础研究方面都取得很大成绩。
2.超导材料的发展历程⑴1908年荷兰莱顿(Leiden )大学的卡末林·昂尼斯(Kamerlingh Onnes )教授成功地将氦气液化,达到4.2K 的低温。
1911年,昂尼斯发现,水银(Hg )的电阻在液氦低温条件下(4.15K )突然降为零。
随后的持续电流实验证实,此时的电阻率约为10-23Ω·cm 。
而良导体铜在4.2K 以下时的电阻率约为10-9Ω·cm 。
可以认为水银的电阻突然消失了。
这一发现标志着人类对超导研究的开始。
低温条件下物质电阻突然消失的现象,称为超导电性的零电阻现象。
这是人类第一次发现超导现象。
⑵1911~1932年纯元素超导体的发现,例如Pb 、Sn 、In、Ta 、Nb 等。
⑶1933年,迈斯纳(W ·Meissner )和奥森菲尔德(R ·Ochsenfeld)发现超导体具有完全抗磁性,又称为迈斯纳效应。
⑷1933 ~ 1953年发现了合金、过渡金属碳化物和氮化物的超导体。
超导材料基础知识介绍超导材料具有在一定的低温条件下呈现出电阻等于零以及排斥磁力线的性质的材料。
现已发现有28种元素和几千种合金和化合物可以成为超导体。
特性超导材料和常规导电材料的性能有很大的不同。
主要有以下性能。
①零电阻性:超导材料处于超导态时电阻为零,能够无损耗地传输电能。
如果用磁场在超导环中引发感生电流,这一电流可以毫不衰减地维持下去。
这种“持续电流”已多次在实验中观察到。
②完全抗磁性:超导材料处于超导态时,只要外加磁场不超过一定值,磁力线不能透入,超导材料内的磁场恒为零。
③约瑟夫森效应:两超导材料之间有一薄绝缘层(厚度约1nm)而形成低电阻连接时,会有电子对穿过绝缘层形成电流,而绝缘层两侧没有电压,即绝缘层也成了超导体。
当电流超过一定值后,绝缘层两侧出现电压U(也可加一电压U),同时,直流电流变成高频交流电,并向外辐射电磁波,其频率为,其中h为普朗克常数,e为电子电荷。
这些特性构成了超导材料在科学技术领域越来越引人注目的各类应用的依据。
基本临界参量有以下 3个基本临界参量。
①临界温度:外磁场为零时超导材料由正常态转变为超导态(或相反)的温度,以Tc表示。
Tc值因材料不同而异。
已测得超导材料的最低Tc是钨,为0.012K。
到1987年,临界温度最高值已提高到100K左右。
②临界磁场:使超导材料的超导态破坏而转变到正常态所需的磁场强度,以Hc表示。
Hc与温度T 的关系为Hc=H0[1-(T/Tc)2],式中H0为0K时的临界磁场。
③临界电流和临界电流密度:通过超导材料的电流达到一定数值时也会使超导态破态而转变为正常态,以Ic表示。
Ic一般随温度和外磁场的增加而减少。
单位截面积所承载的Ic 称为临界电流密度,以Jc表示。
超导材料的这些参量限定了应用材料的条件,因而寻找高参量的新型超导材料成了人们研究的重要课题。
以Tc为例,从1911年荷兰物理学家H.开默林-昂内斯发现超导电性(Hg,Tc=4.2K)起,直到1986年以前,人们发现的最高的 Tc才达到23.2K(Nb3Ge,1973)。
超导材料摘要:超导是金属或合金在较低温度下电阻变为零的性质。
超导材料是当代材料科学领域一个十分活跃的重要前沿,其发展将推动功能材料科学的深入发展。
高温超导材料经过近20年的研发,已经初步进入了大规模实际应用和产业化。
随着超导材料临界温度的提高和材料加工技术的发展,它将会在许多高科技领域获得重要应用。
关键词:超导超导材料临界温度进展超导现象的发现,引起各国科学家的极大兴趣。
但直到1986年以前,已知超导材料的最高临界温度只有23.2K,大多数超导材料的临街温度还要低得多,这样低的温度基本只有液氦才能到,因此,尽管超导材料具有革命性的潜力,但由于很难制造工程用的材料,又难以保持很低的温度,所以几十年来超导技术的实际应用一直受到严重限制。
另外,相当长的一段时间内,人们对超导的机制不太清楚,直到1957年提出了BCS理论,才真正弄清楚了超导的本质。
当前氧化物高温超导的发现与研究,为超导技术进一步走向实用化提供了前提条件。
超导是超导电性的简称,是指某些物体当温度下降至一定温度时,电阻突然趋近于零的现象。
具有这种特性的材料称为超导材料。
超导材料最独特的性能是电能在输送过程中几乎不会损失。
超导体另外一个性质是宏观的量子现象。
这两个特点,就是超导体最基本的性质。
自超导发现至今,超导的研究和超导材料的研制已迅速发展,超导的临界温度已从开始的几开升至几十开甚至一百多开;而且超导材料的物质结构及性质已逐渐研究清楚。
近年来,随着材料科学的发展,超导材料的性能不断优化,实现超导的临界温度也越来越高。
高温超导材料的发现,是最近几十年来物理学及材料科学领域中的重大突破之一,已引起全世界的广泛关注。
一旦室温超导体达到实用化、工业化,将对现代文明社会中的科学技术产生深刻的影响。
超导材料技术是21世纪具有战略意义的高新技术,极具发展潜力和市场前景。
世界各主要国家政府纷纷制订相关计划和加大研发投资,推动基础研究和产业化发展,竞争十分激烈。
功能材料概论复习资料第三章超导材料一。
概念1.超过临界磁场便立即转变为正常态的超导体,称为第一类超导体.2.在绝对零度下,处于能隙下边缘以下的各能态全被占据,而能隙上边缘以上的各能态全空着。
这种状态就是超导基态。
3.引进声子的概念后,可将声子看成一种准粒子,它像真实粒子一样和电子发生相互作用。
通常把电子与晶格点阵的相互作用,称为电子-声子相互作用.4.产生临界磁场的电流,即超导态允许流动的最大电流,称为临界电流。
5.在处理与热振动能量相关的一类问题时,往往把晶格点阵的集体振动,等效成若干个不同频率的互相独立的简正振动的叠加。
而每一种频率的简正振动的能量都是量子化的,其能量量子 (q)就称为声子。
6.只要两个电子之间有净的吸引作用,不管这种作用多么微弱,它们都能形成束缚态,两个电子的总能量将低于2E F。
此时,这种吸引作用有可能超过电子之间的库仑排斥作用,而表现为净的相互吸引作用,这样的两个电子被称为库柏电子对。
7.库柏对有一定的尺寸,反映了组成库柏对的两个电子,不像两个正常电于那样,完全互不相关的独立运动,而是存在着一种关联性.库柏对的尺寸正是这种关联效应的空间尺度.称为BCS相于长度。
8.对处于超导态的超导体施加一个磁场,当磁场强度高于H C时,磁力线将穿人超导体,超导态被破坏。
一般把可以破坏超导态的最小磁场强度称为临界磁场。
二 .填空1.(电子)与(晶格点阵之间)的相互作用,可能是导致超导电性产生的根源。
2.超导体的三个临界参数为:(临界温度)、(临界磁场)(临界电流)。
3.超导材料按其化学组成可分为:(元素超导体)、(合金超导体)、(化合物超导体)。
三。
简答1.请简述第一类超导体与第二类超导体的区别H C0为0K时的临界磁场.当T=T C时,=0;随温度的降低,H C增加,至0K时达到最大值H C0。
H C与材料性质也有关系,上述在临界磁场以下显示超导性,超过临界磁场便立即转变为正常态的超导体,称为第一类超导体。
超导材料的种类及应用篇一:超导材料特性与应用功能材料概论——论超导材料特性与应用摘要:材料是一切技术发展的物质基础。
在功能材料中,超导材料具有优越的物理、化学性质,目前已被广泛接受和认同,具有良好的发展前景。
关键词:超导材料特性前景能源、信息和材料是现代文明的三大支柱,而材料又是一切技术发展的物质基础。
其中功能材料是新材料领域的核心,是国民经济、社会发展及国防建设的基础和先导。
功能材料是指那些具有优良的电学、磁学、光学、热学、声学、力学、化学、生物医学功能,特殊的物理、化学、生物学效应,能完成功能相互转化,主要用来制造各种功能元器件而被广泛应用于各类高科技领域的高新技术材料。
功能材料不仅对高新技术的发展起着重要的推动和支撑作用,还对我国相关传统产业的改造和升级,实现跨越式发展起着重要的促进作用。
功能材料种类繁多,用途广泛,正在形成一个规模宏大的高技术产业群,有着十分广阔的市场前景和极为重要的战略意义。
世界各国均十分重视功能材料的研发与应用,它已成为世界各国新材料研究发展的热点和重点,也是世界各国高技术发展中战略竞争的热点。
一、超导材料的发现 1911年,荷兰物理学家翁奈在研究水银低温电阻时,首先发现了超导现象。
后来又陆续发现了一些金属、合金和化合物在低温时电阻也变为零,即具有超导现象。
物质在超低温下,失去电阻的性质称为超导电性,相应的具有这种性质的物质就称为超导体。
超导材料具有的优异特性使它从被发现之日起,就向人类展示了诱人的应用前景。
目前,超导材料已被广泛接受和认同,具有良好的发展前景。
二、超导材料的分类 1、超导元素在常压下有28种元素具超导电性,其中铌(Nb)的Tc最高,为9.26K。
电工中实际应用的主要是铌和铅(Pb),已用于制造超导交流电力电缆、高Q值谐振腔等。
2、合金材料超导元素加入某些其他元素作合金成分,可以使超导材料的全部性能提高。
如最先应用的铌锆合金(Nb-75Zr),其Tc为10.8K,Hc为8.7特。
超导材料摘要:人类的发展是一个开发和运用新材料的过程,随着上个世纪超导现象被发现以来超导现象一直为人所关注。
关于超导材料的研究也是屡见不鲜,但是如何才能提高材料的临界超导温度,如何把超导材料产业化和生活化都是现在面临的重大问题。
在电力、通信、国防、医疗等方面的发展急需利用超导技术解决现有的关键技术问题;超导储能、电缆、限流器、电机等超导电力技术,如果能应用将带来电力工业的重大变革;在国防工业方面,由于超导技术不可代替的特殊性和优越性,将在扫雷艇、超导电机、电磁武器、传感器、舰船用防弹及导航用高精度超导陀螺仪等领域被广泛应用。
所以提高临界转变温度、临界电流密度和改良其加工性能,制造出理想的更低价格的新一代超导材料就成为超导的发展趋势。
这就要求我们综合考虑超导材料的组成成分、制备工艺以改善它的性能,逐步提高材料的临界温度,使材料更具有实用意义。
关键词:材料科学功能材料超导材料高温超导前言一、材料与材料科学材料是人类用来制造机器、构件、器件和其他产品的物质。
但并不是所有物质都可称为材料,如燃料和化工原料、工业化学品、食物和药品等,一般都不算作材料。
材料可按多种方法进行分类。
按物理化学属性分为金属材料、无机非金属材料、有机高分子材料和复合材料。
按用途分为电子材料、宇航材料、建筑材料、能源材料、生物材料等。
实际应用中又常分为结构材料和功能材料。
结构材料是以力学性质为基础,用以制造以受力为主的构件。
结构材料也有物理性质或化学性质的要求,如光泽、热导率、抗辐照能力、抗氧化、抗腐蚀能力等,根据材料用途不同,对性能的要求也不一样。
功能材料主要是利用物质的物理、化学性质或生物现象等对外界变化产生的不同反应而制成的一类材料。
如半导体材料、超导材料、光电子材料、磁性材料等。
材料是人类赖以生存和发展的物质基础。
20世纪70年代,人们把信息、材料和能源作为社会文明的支柱。
80年代,随着高技术群的兴起,又把新材料与信息技术、生物技术并列作为新技术革命的重要标志。