功能材料概论论文
- 格式:doc
- 大小:36.45 KB
- 文档页数:5
功能材料论文
功能材料是指具有一定性能和特性,能够满足特定需求的材料。
在现代科技发展的大背景下,功能材料得到了广泛的应用和研究。
本文将从功能材料的定义、分类、应用以及发展前景等方面进行阐述。
首先,功能材料是指具有特殊功能和性能的材料。
功能材料可以根据其性能和用途分类,常见的功能材料包括光电材料、磁性材料、超导材料、催化材料等。
这些材料在光电器件、磁性存储、超导电性、催化反应等方面都有广泛的应用。
其次,功能材料在各个领域有着重要的应用。
例如,光电材料广泛应用于太阳能电池、光电二极管、液晶显示器等;磁性材料在信号处理、磁存储、传感器等方面有着重要的应用;超导材料在电能传输、磁共振成像、能源储存等方面有着巨大的潜力;催化材料可以加速化学反应速率,广泛应用于催化剂、汽车尾气净化等领域。
这些功能材料的应用对于提高能源利用效率、改善环境、推动科技进步都具有重要意义。
最后,功能材料具有广阔的发展前景。
随着科技的不断进步和需求的增长,对于功能材料的研究和应用也将不断提高和扩展。
例如,新型光电材料的研发将有助于提高光电器件的效率和稳定性,推动太阳能行业的发展;磁性材料在数据存储、信息通信等领域的需求不断增长,对材料性能的要求也越来越高;超导材料的应用前景非常广阔,可以推动能源领域的革命性变革;催化材料的研究和应用也有着巨大的潜力,在化学工业、环境治理等方面发挥更大的作用。
总之,功能材料具有特殊功能和性能,在各个领域有广泛的应用和重要的意义。
随着科技的不断进步和需求的增长,功能材料的研究和应用也将不断提高和扩展。
相信在未来的发展中,功能材料将为人类社会的发展做出更大的贡献。
功能材料——蚕丝蛋白蚕丝蛋白(Fibroin)又名:丝素蛋白。
丝素蛋白,是从蚕丝中提取的天然高分子纤维蛋白,含量约占蚕丝的70%~80%,含有18种氨基酸,其中甘氨酸(gly)、丙氨酸(ala)和丝氨酸(ser)约占总组成的80%以上。
丝素本身具有良好的机械性能和理化性质,如良好的柔韧性和抗拉伸强度、透气透湿性、缓释性等,而且经过不同处理可以得到不同的形态,如纤维、溶液、粉、膜以及凝胶等。
蚕丝蛋白纤维是一种新型的功能性纤维,具有其它纤维及加工品无生物可替代的独特性能和无可比拟的旺盛生命力。
经过染织而成的各种色彩绚丽的蚕丝蛋白面料,更易缝制加工成各类高级成衣及运用于高档家纺市场。
蚕丝蛋白纤维所具有的特别功效有以下五点:第一,舒适感。
蚕丝蛋白纤维与人体有极好的生物相容性,加之表面光滑,手感柔软,其对人体的摩擦刺激系数较其他各类纤维要低的多。
因此,当我们的娇嫩肌肤与滑爽细腻的蚕丝蛋白纤维邂逅时,它以其特有的柔顺质感,依着人体的曲线,体贴而又安全地呵护着我们的每一寸肌肤。
第二,吸、放湿性好。
蚕丝蛋白纤维富集了许多胺基(-CHNH)、氨基(-NH2)等亲水性基团,又由于其多孔性,易于水分子扩散,所以它能在空气中吸收水分或散发水分,并保持一定的水分。
在正常气温下,它可以帮助皮肤保有一定的水分,不使皮肤过于干燥;在夏季穿着,又可将人体排出的汗水及热量迅速散发,使人感到凉爽无比。
正是由于这种性能,使蚕丝蛋白纤维更适合于与人体皮肤直接接触。
第三,光泽度好。
蚕丝蛋白纤维中含有的蚕丝蛋白,是从蚕儿吐出的雪白的蚕丝中提取,为纯天然产品,织成的面料含有丝般光泽,穿上之后光彩照人。
第四,抗紫外线,热晒牢度好。
蚕丝蛋白中的色氨酸、酪氨酸能吸收紫外线,因此蚕丝蛋白纤维具有较好的抗紫外线功能。
而由于载体是粘胶纤维,以及研发过程中的采用的一些高新技术使得蚕丝蛋白纤维在抗紫外线的前提下,热晒牢度较好,不会因为热晒而掉色,使面料颜色发生改变,从而降低美观效果。
功能材料简述范文功能材料是指通过添加特定的功能元素或处理方式来赋予材料独特的性能和功能的一类材料。
它们主要包括功能陶瓷材料、功能高分子材料、功能金属材料和功能复合材料等。
这些材料在目前的工业与科研领域有着广泛的应用和发展。
本文将从这四个方面对功能材料进行简述。
功能陶瓷材料是指具有一些特殊的物理、化学或电学性能的陶瓷材料。
例如,采用氧化铝陶瓷制成的陶瓷刀具,具有硬度高、耐磨性好、抗氧化性能强等特点,因此在医疗领域和刀具制造行业有着广泛的应用。
此外,具有超导性的高温超导体陶瓷材料也是功能陶瓷材料的一种研究热点。
这些材料在能源传输和磁学领域有着重要的应用前景。
功能高分子材料是指在常规高分子材料(如塑料、橡胶等)基础上,通过改变其结构、添加特定的功能单体或经过特殊的处理工艺,使得材料具有新的性能和功能。
例如,将碳纳米管添加到聚合物基体中,可以显著提高材料的导电性能,从而扩展了高分子材料的应用范围。
另外,具有形状记忆功能的高分子材料也是一种功能高分子材料的代表。
这些材料可以根据外界刺激或温度变化改变其形状,具有广泛的应用前景,例如在医学领域可以用于制作微型手术器械。
功能金属材料是指在传统金属材料的基础上通过调整材料的组织结构、添加特殊元素或通过表面处理等方法,使得材料具有特定的性能和功能。
例如,具有记忆效应的镍钛合金是一种功能金属材料,在温度变化下可以恢复其原始形状,因此在弹簧和阀门等领域有重要的应用。
另外,具有超高强度和轻质化的镁合金也是一种功能金属材料的研究热点。
这些材料在航空航天领域有着广泛的应用前景。
功能复合材料是指由两种或多种不同种类的材料组成的材料体系,通过材料间的相互作用和结合,使得材料具有特定的性能和功能。
例如,纳米复合材料是一种研究热点,其通过添加纳米颗粒到基体材料中,可以显著提高材料的力学性能和导电性能。
此外,具有磁性的复合材料也是一种功能复合材料的代表,可以用于制备具有磁性的传感器和电子器件。
功能材料论文传统材料在功能材料领域中起着重要作用。
功能材料指的是具有特殊功能的材料,比如具有导电、发光、吸附等性质的材料。
传统材料在功能材料领域中的应用主要有两个方面的意义。
首先,传统材料是功能材料的重要基础。
许多功能材料的研制都需要依赖传统材料的基础。
例如,导电材料的研发离不开金属和导电聚合物材料的支撑。
发光材料的研究也需要传统材料来实现。
另外,许多功能材料的性能也需要传统材料来进行改进。
例如,通过改变传统材料的结构和组分,可以改变其导电性能、热传导性能等。
因此,传统材料在功能材料领域中起着不可替代的作用。
其次,传统材料在功能材料应用中具有很大的潜力。
传统材料具有成熟的制备工艺和丰富的应用经验,这使得其在功能材料领域中具有广泛的应用前景。
例如,金属材料具有良好的导电性能和机械性能,可以用于制备导电材料和传感器。
聚合物材料具有良好的可塑性和化学稳定性,可以用于制备各种功能材料,如吸附材料、膜材料等。
陶瓷材料具有优异的耐高温性能和化学稳定性,可以用于制备高温材料和催化剂等。
需要注意的是,传统材料在功能材料领域中的应用还存在一些问题。
一方面,传统材料的性能可能无法满足功能材料的要求。
例如,金属材料的导电性能可能无法满足高频电子器件的需求。
因此,研究人员需要对传统材料进行改进和优化,以提高其性能。
另一方面,传统材料的制备技术可能无法满足功能材料的需求。
例如,传统陶瓷制备工艺可能无法制备具有特殊孔结构的陶瓷材料。
因此,研究人员需要开发新的制备方法,以满足功能材料的特殊需求。
总之,传统材料在功能材料领域中具有重要的作用和潜力。
传统材料是功能材料的基础,也是功能材料的重要组成部分。
通过改进和优化传统材料的性能和制备技术,可以进一步拓展功能材料的应用领域,推动功能材料的发展和应用。
Z09016237 韩兴泉复合材料加工及应用技术功能材料的研究进展随着经济的迅速发展,人们对材料的需求日益增加。
为了满足这些现代技术对材料的需求,世界各国都非常重视功能材料的研究和开发。
功能材料作为现代技术的标志,引起了各国的关注,已经成为材料科学中的一个分支学科,并在不同程度上推动或加速了各种现代技术的进一步发展。
本篇综述简单介绍了功能材料的基本性能、特点和分类及其发展现状和发展趋势。
1. 前言材料是现代科技和国民经济的物质基础。
一个国家生产材料的品种、数量和质量是衡量其科技和经济发展水平的重要标志。
因此,现在称材料、信息和能源为现代文明的三大支柱,又把新材料、信息和生物技术作为新技术革命的主要标志。
材料的发展虽然历史悠久,但作为一门独立的学科始于20世纪60年代。
材料的研究和制造开始从经验的、定性的和宏观的向理论的、定量的和微观的发展。
20世纪70年代,美国学者首先提出材料科学与工程这个学科全称。
1975年美国科学院发表的《材料与人类》专著中[1],对材料科学与工程定义为:探索和应用材料的成分、结构、加工和其性质与应用之间关系的一门学科。
功能材料的概念是美国 Morton J A于1965年首先提出来的。
功能材料是指具有一种或几种特定功能的材料,如磁性材料、光学材料等,它具有优良的物理、化学和生物功能,在物件中起着“功能”的作用[2]。
20世纪60年代以来,各种现代技术的兴起,强烈刺激了功能材料的发展。
为了满足这些现代技术对材料的需求,世界各国都非常重视功能材料的研究和开发。
同时,由于固体物理、固体化学、量子理论、结构化学、生物物理和生物化学等学科的飞速发展以及各种制备功能材料的新技术和现代分析测试技术在功能材料研究和生产中的实际应用,许多新功能材料不仅已经在实验室中研制出来,而且已经批量生产和得到应用,并在不同程度上推动或加速了各种现代技术的进一步发展。
因此,功能材料学科已经成为材料科学中的一个分支学科。
功能材料论文功能材料是一类具有特殊功能或性能的材料,它们可以在各种领域发挥重要作用。
本文将就功能材料的定义、分类、应用以及未来发展方向进行探讨。
首先,功能材料是指具有特殊功能或性能的材料,它们可以通过特定的制备工艺和结构设计实现对光、电、磁、声、热等能量的转换、传感、存储和控制。
功能材料的研究和开发已成为当今材料科学与工程领域的热点之一。
其次,功能材料可以根据其功能特性进行分类,包括光学材料、电子材料、磁性材料、传感材料、储能材料等。
光学材料主要用于光学器件、显示器件和光学通信领域;电子材料主要用于电子器件、集成电路和电子元件领域;磁性材料主要用于磁记录、磁传感和磁存储领域;传感材料主要用于生物传感、化学传感和环境传感领域;储能材料主要用于电池、超级电容和储能器件领域。
再者,功能材料在各个领域都有着广泛的应用。
例如,光学材料在激光器、光纤通信和光学传感器中发挥着重要作用;电子材料在集成电路、半导体器件和电子元件中具有重要地位;磁性材料在磁记录、磁传感和磁存储领域有着广泛的应用;传感材料在生物传感、化学传感和环境传感领域发挥着重要作用;储能材料在电池、超级电容和储能器件中具有重要地位。
最后,功能材料的研究和开发具有重要的意义,未来的发展方向主要包括新型功能材料的设计与制备、功能材料的性能优化与调控、功能材料的应用拓展与产业化等方面。
随着科学技术的不断进步和社会需求的不断增长,功能材料必将在未来发挥着更加重要的作用。
综上所述,功能材料作为一类具有特殊功能或性能的材料,在当今社会发展中具有重要地位。
它们的研究和应用将为各个领域的发展提供重要支撑,未来的发展前景十分广阔。
希望本文能够对功能材料的研究和应用有所启发,推动功能材料领域的进一步发展。
生活中的功能材料——单晶硅太阳能电池研究及发展一、引言随着人类社会的不断发展,人与自然的矛盾也愈来愈突出。
目前全世界范围面临的最为突出的问题是环境与能源.即环境恶化和能源短缺。
人类的主要传统能源( 石油、煤炭、天然气) 的储存量是有限的,且对环境有污染,所以节能环保型能源的开发和利用迫在眉睫。
这个问题当然要通过各国政府采取正确的对策来处理。
发展新能源材料及相应的技术,将是解决这一些问题最为有效的方法之一。
太阳能是人类取之不尽,用之不竭的可再生能源,也是清洁能源,不产生任何的环境污染。
事实上近年来人们对太阳能材料的研制和利用,已显示了积极有效的作用。
这一新型能源材料的发展.既可解块人类面临的能源短缺问题,又不造成环境的污染。
从50年代的硅电池,60年代的G a A s 电池,70年代的非晶硅电池,80年代的铸造多晶硅电池,到90年代的I I一Ⅵ化合物电池的开发和应用,到现今有机聚合物太阳电池和纳米结构太阳电池的研究开发,构成了太阳能光电材料和器发展的历史脚印。
目前太阳能电池材料主要是单晶硅、多晶硅和非晶硅电池。
硅太阳能电池中以单晶硅太阳能电池转换效率最高,技术也最为成熟。
二、单晶硅太阳电池的生产制备工艺(一)、基本结构(二)、太阳能电池片的化学清洗工艺切片要求:①切割精度高、表面平行度高、翘曲度和厚度公差小。
②断面完整性好,消除拉丝、刀痕和微裂纹。
③提高成品率,缩小刀(钢丝)切缝,降低原材料损耗。
④提高切割速度,实现自动化切割。
具体来说太阳能硅片表面沾污大致可分为三类:1、有机杂质沾污:可通过有机试剂的溶解作用,结合兆声波清洗技术来去除。
2、颗粒沾污:运用物理的方法可采机械擦洗或兆声波清洗技术来去除粒径≥ 0.4 μm颗粒,利用兆声波可去除≥ 0.2 μm颗粒。
3、金属离子沾污:该污染必须采用化学的方法才能将其清洗掉。
硅片表面金属杂质沾污又可分为两大类:(1)、沾污离子或原子通过吸附分散附着在硅片表面。
建筑功能材料材料课程论文《建筑功能材料课程论文》建筑行业的蓬勃发展离不开各种材料的支撑,而建筑功能材料作为其中的重要组成部分,在提升建筑质量、改善使用体验、实现节能环保等方面发挥着关键作用。
建筑功能材料具有多种特性和功能,满足了现代建筑日益多样化的需求。
保温隔热材料就是其中一类重要的功能材料。
在寒冷的冬季,良好的保温材料能够有效减少室内热量的散失,保持温暖舒适的环境;而在炎热的夏季,它又能阻挡外部热量的传入,降低空调的能耗。
常见的保温隔热材料如聚苯乙烯泡沫板、岩棉等,它们的保温性能取决于材料的导热系数、孔隙率等特性。
防水材料也是建筑中不可或缺的功能材料。
建筑物长期暴露在外界环境中,受到雨水、地下水等的侵蚀,如果防水处理不当,容易出现渗漏问题,影响建筑的结构安全和使用寿命。
新型的防水材料如高分子防水卷材、防水涂料等,具有更好的防水性能和耐久性。
这些材料的防水原理通常是通过形成连续的防水层,阻止水分的渗透。
隔音材料对于营造安静舒适的室内环境至关重要。
城市中的噪音污染日益严重,有效的隔音材料能够减少外界噪音的传入,同时也能降低室内声音的传播,保护居民的隐私。
隔音材料的隔音效果与其密度、厚度、孔隙结构等因素有关。
例如,隔音棉通过内部的多孔结构吸收声音能量,从而达到隔音的目的。
除了上述几种常见的建筑功能材料,还有防火材料、采光材料等。
防火材料能够在火灾发生时延缓火势的蔓延,为人员疏散和消防救援争取时间。
采光材料则能够充分利用自然光线,减少人工照明的需求,实现节能减排。
在建筑功能材料的选择和应用中,需要综合考虑多方面的因素。
首先是建筑的使用功能和环境要求。
例如,对于住宅建筑,保温隔热和隔音性能是重点考虑的因素;而对于工业厂房,可能更关注防火和耐腐蚀性能。
其次是材料的性能和质量。
要选择符合国家标准和规范的材料,并确保其质量稳定可靠。
此外,成本也是一个重要的考量因素。
在满足功能要求的前提下,应选择性价比高的材料,以控制建筑成本。
《功能材料概论》期末小论文电致变色玻璃学院:电子信息学院专业:集成电路设计与集成系统班级:08042211 学号:08042211 姓名:俞涛本实用新型的电致变色玻璃属于建材领域,由上下二层主副玻璃基板组成,主副玻璃相对的一面上分别涂有透明导电涂层以及连接该涂层的印刷电源线,玻璃层间加入液晶涂层,玻璃二外层面上分别贴有偏振光轴交错为90°的偏光片基。
玻璃基板的四周镶有铝塑保护框,在该框内设有玻璃基板控制器以及连接电极的电源线和电源插头。
电源控制器同时连接一个或多个玻璃基板。
电致变色玻璃可随时根据人的意愿改变颜色的深浅,也可根据室内外光照强度、环境温度的变化自动控制玻璃的颜色深浅,减少室内热能损失,实现节能。
用于建筑物玻璃幕墙可形成运动的图像、字幕等。
用于汽车,可使行车安全,并具防盗作用。
电致变色玻璃是一种新型的功能玻璃。
近几年来,电致变色玻璃在智能窗的应用开发研究方面开展得非常活跃,这种由基础玻璃和电致变色系统组成的装置利用电致变色材料在电场作用下而引起的透光(或吸收)性能的可调性,可实现由人的意愿调节光照度的目的,同时,电致变色系统通过选择性地吸收或反射外界热辐射和阻止内部热扩散,可减少办公大楼和居民住宅等建筑物在夏季保持凉爽和冬季保持温暖而必须耗费的大量能源。
一种电致变色玻璃器件,涉及特殊玻璃技术领域,所解决的是现有技术的各玻璃单元之间拼接不易的技术问题。
该器件由至少两个电致变色玻璃单元拼接而成,每个电致变色玻璃单元包括两块叠合的玻璃基板,两块玻璃基板之间设有能随电能变化变换颜色的电致变色物,每块玻璃基板的内表面均附有透明电极膜,其特征在于:每个电致变色玻璃单元的边角中有至少两个边角设有连接其内部透明电极膜的供电管脚,且至少有一个具有供电管脚的边角与相邻单元具有供电管脚的边角对应拼接,并以导线连接该拼接点的各供电管脚。
本实用新型提供的电致变色玻璃器件,拼接作业非常容易,能提高生产效率。
软磁材料概述摘要软磁材料如今已广泛的应用于我们的生活之中,如20世纪推进电力工业迅速发展的硅钢和在电子技术领域的应用是随处可见的。
人类使用人工生产的软磁材料是从100多年前开始的,软磁材料的发展经历了从金属及合金到纯铁软磁材料再到Si-Fe合金、又到铁系合金、而后又发展了非晶态和纳米晶软磁合金的过程。
目前,使用量最大的是Si-Fe合金。
软磁材料的种类繁多,应用广泛。
本文主要讲了用量最大的铁基软磁合金和非晶态及纳米晶软磁合金合金中比较常用的软磁材料以及他们的一些特性。
关键字:软磁材料、铁基软磁合金、非晶态及纳米晶软磁合金合金。
1.磁功能材料磁功能材料是指那些利用材料的磁性能和磁效应来实现对能量和信息的传递、转换、调制、存储和检测等功能作用的材料。
随着科学技术的发展,磁性材料也得到了迅速的发展和广泛的应用,目前,磁性材料已经用于机械、电子、电力、通宵和仪器仪表登领域。
磁性材料的种类繁多,按材料的磁特性和磁效应功能以及用途,将磁功能材料分为软磁材料、硬磁材料、半硬磁材料、磁记录材料、磁致伸缩材料、磁控形状记忆合金、磁电阻材料、巨磁阻抗材料、磁光材料、磁卡效应材料、微波磁性材料、磁流体以及复合磁性材料。
2.软磁材料的一般特性及分类软磁材料为磁功能材料中使用的较早的一种,一般是强磁性的铁磁性或亚铁磁性物质,其的总体特点是:它的磁滞回线细长,磁导率很高,对于外加磁场具有具有很高的灵敏度;矫顽力低,一般低于100A/m,容易被反复磁化。
性能优异的软磁材料,具有低的矫顽力、高的饱和磁感应强度、高的起始磁导率、高的电阻率与低损耗等特点。
以下两张表分别是一些典型的软磁性材料的矫顽力和起始磁导率:表2.1 典型软磁材料的矫顽力表2.2 典型软磁材料的起始磁导率从表2.1和表2.2可以看出,目前磁性能最佳的是Co基非晶合金。
工程上广泛使用的软磁材料分为软磁合金和软磁铁氧体。
软磁合金的生产较早,始于19世纪,而软磁体的发现是在20世纪30年代。
【摘要】碳纤维的出现是材料史上的一次革命。
碳纤维是目前世界首选的高性能材料,具有高强度、高模量、耐高温、抗疲劳、导电、质轻、易加工等多种优异性能,正逐步征服和取代传统材料。
现已广泛应用于航天、航空和军事领域。
世界各国均把发展高性能碳纤维产业放在极其重要的位置。
碳纤维除了在军事领域上的重要应用外,在民品的发展上有着更加广阔的空间,并已经开始深入到国计民生的各个领域。
在机械电子、建筑材料、文体、化工、医疗等各个领域碳纤维有着无可比拟的应用优势。
我国对碳纤维的研究由于起步较晚,技术力量薄弱,虽然碳纤维及其复合材料在我国已被纳入国家“863”和“973”计划,但总体情况不尽理想,我国仍不具备成熟的碳纤维工业化生产技术,国防和民用碳纤维产品基本依赖进口。
【关键词】碳纤维、性能、技术碳纤维主要是由碳元素组成的一种特种纤维,是由含碳量较高、在热处理过程中不熔融的人造化学纤维经热稳定氧化处理、碳化处理及石墨化等工艺制成的。
其含碳量随种类不同而异,一般90以上。
碳纤维具有一般碳素材料的特性,如耐高温、耐磨擦、导电、导热及耐腐蚀等,但与一般碳素材料不同的是,其外形有显著的各向异性、柔软、可加工性好,沿纤维轴方向表现出很高的度,且碳纤维比重小。
1、碳纤维的化学性能碳纤维是一种纤维状的碳素材料。
我们知道碳素材料是化学性能稳定性极好的物质之一。
这是历史上最早就被人类认识的碳素材料的特征之一。
除强氧化性酸等特殊物质外,在常温常压附近,几乎为化学惰性。
可以认为在普通的工作温度≤250℃环境下使用,很难观察到碳纤维发生化学变化。
根据有关资料介绍,从碳素材料的化学性质分析,在≤250℃环境下,碳素材料既没有明显的氧化发生,也没有生成碳化物和层间化合物生成。
由于碳素材料具有气孔结构,因此气孔率高达25%左右,在加热过程易产生吸附气体脱气情况,这样的过程更有利于我们稳定电气性能和在电热领域的应用。
2、碳纤维的物理性能(a)热学性质:碳素材料因石墨晶体的高度各向异性,而不同于一般固体物质与温度的依存性,从工业的应用角度来看,碳素材料比热大体上是恒定的。
材料科学中的功能材料合成与应用毕业论文(正文)在材料科学领域,功能材料合成与应用一直是一个备受关注的研究领域。
功能材料通过合成与应用的方式,可以赋予材料以特定的性能和功能,从而满足不同领域的需求。
本篇毕业论文将重点探讨功能材料合成与应用在材料科学中的重要性和应用领域。
一、功能材料合成方法的研究合成是功能材料研究的重要一环,不同的合成方法可以得到具有不同性能和功能的材料。
目前,常用的功能材料合成方法包括溶液法、气相法、凝胶法等。
其中,溶液法是最为常见和常用的一种方法,通过控制反应条件和物质配比,可以合成出具有特定结构和性能的材料。
气相法则是利用气相反应来合成材料,该方法通常能得到高纯度和高度结晶的材料。
凝胶法则是通过溶胶和凝胶的转化来获得材料,该方法适用于复杂结构和多孔材料的合成。
二、功能材料在电子领域的应用功能材料的合成与应用在电子领域具有广泛的应用前景。
以半导体材料为例,通过合成和控制材料的结构,可以使其具有优异的导电性和光电性能,从而应用于电子器件的制造过程中。
例如,通过控制溶液中物质的浓度和反应温度,在材料表面形成钽铁矿结构的功能材料,可以作为高效的光电转换材料,应用于太阳能电池中。
此外,功能材料合成与应用还可以用于研究基于新型材料的电子器件,如柔性显示屏、光电存储器等。
三、功能材料在能源领域的应用功能材料在能源领域也有重要的应用价值。
例如,合成和应用纳米复合材料可以提高材料的储能性能和循环寿命,用于制造高性能的锂电池和超级电容器。
此外,功能材料还可以被应用于燃料电池、光电催化等能源转换和储存系统中,提高能源利用效率和增强能源转化能力。
四、功能材料在医学领域的应用在医学领域,功能材料合成与应用也具有广泛的应用前景。
例如,合成具有生物相容性的功能材料,可以作为人工组织和器官的替代品,用于修复和重建人体组织。
同时,功能材料的应用还可以用于药物传递系统,通过控制材料的结构和性能,提高药物的稳定性和释放效率,从而实现定向、可控的药物传递。
西南科技大学课程论文报告论文题目:碳纤维增强环氧树脂基复合材料的研究课程:新型功能材料姓名:陈永乐学号:2012010005专业:材料工程二〇一三年七月碳纤维增强环氧树脂基复合材料的研究摘要:碳纤维增强聚合物基复合材料一直以来都是研究的热点,作为所有基体材料中应用得最广泛的环氧树脂,也是研究得最多的。
本文简述了TDE-85环氧树脂的改性研究,固化剂的固化特性和预浸料的制备方法,综述了近几年国内外碳纤维增强环氧树脂基复合材料的研究进展和应用,并作了碳纤维/环氧树脂复合材料在汽车燃料电池方面的应用展望。
关键词:碳纤维,环氧树脂,基体,复合材料,预浸料Abstract:Carbon fiber reinforced polymer matrix composites has always been a hot research, epoxy resin which is not only the most widely used of all the matrix materials, but also the most studied. This paper describes the Modification of TDE-85 epoxy,characteristics of curing agents and the preparation of prepreg, reviewing carbon fiber reinforced epoxy resin composites research and applications in civil and abroad in recent years, and made of carbon fiber / epoxy composites in the automotive fuel cell in the application prospectKeywords:Carbon fiber,epoxy resin,substrate,composite,prepreg0前言在众多复合材料(金属基复合材料、陶瓷基复合材料和碳基复合材料)中,碳纤维增强聚合物复合材料(Carbon Fiber Reinforced Polymer Composite,简称CFRP)以其较高比强度、比刚度、抗疲劳、尺寸稳定性和耐腐蚀好等优异性能,在航空航天、国防军工、建筑材料、汽车工业以及体育运动休闲器材等领域均得到了广泛的应用[1]。
功能材料概论功能材料是指具有特定功能、性能和用途的材料,它们可以在各种工程领域中发挥重要作用。
功能材料的研究和应用已经成为当今材料科学领域的热点之一。
本文将从功能材料的定义、分类、特点和应用等方面进行介绍和概述。
一、功能材料的定义。
功能材料是指具有特定功能和性能的材料,它们可以通过调控结构和成分,实现对光、电、磁、声、热、力等各种外界刺激的敏感性和响应性。
功能材料具有智能化、多功能化和高性能化的特点,可以被广泛应用于信息技术、生物医学、环境保护、新能源等领域。
二、功能材料的分类。
根据功能材料的性能和用途,可以将其分为光学材料、电子材料、磁性材料、光电材料、传感材料、催化材料等多个类别。
光学材料主要用于光学器件和光学通信领域,如光纤、激光器等;电子材料主要用于电子器件和集成电路领域,如半导体材料、导电聚合物等;磁性材料主要用于磁记录和磁传感领域,如磁记录介质、磁传感器等;光电材料主要用于光电器件和太阳能领域,如光伏材料、光电探测器等;传感材料主要用于传感器和检测领域,如温度传感器、湿度传感器等;催化材料主要用于催化剂和能源转换领域,如催化剂、燃料电池等。
三、功能材料的特点。
功能材料具有多种特点,主要包括高灵敏度、高响应速度、多功能性、智能化、可控性和可重复性等。
这些特点使得功能材料在各种工程应用中具有广泛的用途和重要的意义。
例如,具有高灵敏度的传感材料可以用于环境监测和生物医学诊断;具有高响应速度的光电材料可以用于光通信和光存储;具有多功能性的催化材料可以用于能源转换和环境净化。
四、功能材料的应用。
功能材料在各种工程领域中都有重要的应用价值。
在信息技术领域,功能材料可以用于光学器件、半导体器件和存储介质等;在生物医学领域,功能材料可以用于生物传感器、医疗影像和组织工程等;在环境保护领域,功能材料可以用于污染治理、清洁能源和节能材料等;在新能源领域,功能材料可以用于太阳能电池、燃料电池和储能材料等。
功能材料(论文)题目稀土磁性材料研究现状学院材料科学与工程专业高分子材料班级姓名学号指导教师贾晓林2010年11月8日稀土磁性材料研究现状摘要:材料是社会技术进步的物质基础与先导。
现代高技术的发展,更是紧密依赖与材料的发展。
稀土元素因其独特的电、光、磁、热性能而被人们称为新材料的“宝库”,是国内外科学家,尤其是材料专家最关注的一组元素。
目前,稀土磁性材料作为一组重要的稀土新材料,在国内外的研究已初具规模,这些新材料的应用不仅极大地改造和提升了传统产业,而且构成了当今世界先导型、知识型产业的核心竞争力。
为此,加强稀土磁性材料的研发,大力扶持国内稀土产业将变得尤为重要。
关键词:稀土、磁性材料、研究现状、发展趋势一、各种稀土磁性材料的简单论述1.1、稀土永磁材料稀土由于其独特的4f电子层结构,可以在一些与3d元素化合物组合成的晶体结构中形成单轴磁各向异性,而具有十分优异的超常磁性能。
表1列出了各类稀土永磁体与传统的铁氧体、铝镍钴永磁体的磁性能,显然稀土永磁体比传统永磁体具有高得多的磁性能。
稀土永磁体中,钕铁硼的磁能积最高,但它的居里温度低,工作温度低,温度系数高。
虽然现在已开发出工作温度达到200℃的钕铁硼,但在许多地方还是不能替代工作温度高,温度系数低的钐钴永磁。
现已开发出工作温度可达400℃、500℃的Sm2(Co,Cu,Fe,Er)17磁体[3]。
10年前发明的稀土—铁—氮永磁材料,理论磁能积与钕铁硼接近,但居里温度高,温度系数小,耐腐蚀性能好,与粘结磁体中使用的快淬钕铁硼相比,具有很强的竞争力。
其中的NdFe12N x永磁是我国科学家杨应昌院士发明的[4],其NdFe12N x实验室样品的磁能积已达到22MGOe,超过MQ-2钕铁硼磁粉。
纳米晶双相交换耦合稀土永磁材料是高磁晶各向异性的稀土永磁相与高饱和磁化强度的软磁相在纳米尺度内交换耦合而获得兼具二者优点的复合永磁材料,理论计算表明,纳米稀土复合永磁体的最大磁能积远远超过钕铁硼。
功能材料的发展现状以及应用前景摘要功能材料是指具有特定光,电,磁,声,热,湿,气,生物等特性的各类材料。
这些材料在能源,通信,电子,激光,医药等方面都具有广泛的应用,但它们的发展现状以及应用前景究竟怎么样呢?通过查找一些基本的书籍及文献,本文将简单介绍纳米材料,高分子材料,光学材料的发展现状以及应用前景。
关键词:纳米材料光学材料高分子材料发展现状应用前景第一章引言纳米材料是指在三维空间中至少有一维处于纳米尺度范围(1-100nm)或由它们作为基本单元构成的材料。
其应用于电声器件,陶瓷,传感器,半导体器件,催化剂,医疗,加点,环保,计算机等。
纳米技术在世界各国尚处于萌芽阶段,美、日、德等少数国家,虽然已经初具基础,但是尚在研究之中,新理论和技术的出现仍然方兴未艾。
我国已努力赶上先进国家水平,研究队伍也在日渐壮大。
高分子材料是由相对分子质量较高的化合物构成的材料,通常分子量大于10000。
高分子材料按来源分为天然、半合成(改性天然高分子材料)和合成高分子材料,按特性分为橡胶、纤维、塑料、高分子胶粘剂、高分子涂料和高分子基复合材料等,是生命起源和进化的基础。
而其在我们的日常生活更是起着非常重要的作用。
光学材料是指近l0年来,随着现代光学、光电子及信息技术的发展而兴起的光电数码产品和信息产品所应用的技术含量高、制作难度大、光学性能优越的光学材料,一般是指镧系光学玻璃、环保系列光学玻璃、低熔点及磷酸盐光学玻璃等。
由于光电信息产品的信息采集、传输、存储、转换和显示都与光学材料密切相关,使光学材料的功能得到了迅速开发,在高科技领域得到了日益广泛的应用。
纳米材料,高分子材料,光学材料现已广泛应用于计算机,医学,航空航天,能源,环境以及我们的日常生活,并在其中起着举足轻重的作用,而当今社会对这些材料的研究层出不穷,但究竟研究到了什么样的地步呢?本文将通过查找资料的形式总结了这些材料的发展现状以及应用前景。
第二章光、纳米、高分子材料的发展现状及应用前景2.1 纳米材料2.1.1 纳米材料的应用前景纳米材料的物化性能与微米多晶材料有着巨大的差异,具有奇特的力学、电学、瓷学、光学、热学及化学等多方面的性能,从而使其作为一种新型材料在电子、冶金、宇航、化工、生物和医学等领域起着重要的作用,其应用前景不可估量。
功能材料概论功能材料是一种具有特定功能和性能的材料,它在各种领域都有着重要的应用价值。
功能材料包括但不限于传感材料、光电材料、催化材料、磁性材料、超导材料等。
这些材料在电子、信息、能源、环境等领域都有着广泛的应用,对于推动科技进步和社会发展起着重要作用。
传感材料是一种能够感知外部环境并将感知信号转化为可识别信号的材料。
传感材料的应用范围非常广泛,比如在环境监测、医疗诊断、智能家居等领域都有着重要的应用。
光电材料是一种能够将光能转化为电能或者将电能转化为光能的材料,它在光伏发电、光纤通信、显示器件等方面都有着重要的应用。
催化材料是一种能够促进化学反应速率的材料,它在化工生产、环境保护、能源转化等方面都有着重要的应用。
磁性材料是一种能够产生磁场或者对磁场有特殊响应的材料,它在电子器件、磁存储、医疗诊断等方面都有着重要的应用。
超导材料是一种在低温下能够表现出完全零电阻和完全抗磁性的材料,它在超导电磁体、超导电力设备、超导电子器件等方面都有着重要的应用。
功能材料的研究和开发是当今材料科学领域的热点之一。
随着科技的不断进步和社会的不断发展,人们对功能材料的需求也在不断增加。
因此,功能材料的研究和开发具有非常重要的意义。
在功能材料的研究和开发过程中,需要深入理解材料的结构与性能之间的关系,探索新的功能材料设计和合成方法,开发具有特定功能和性能的新型材料。
同时,还需要加强功能材料的性能表征和测试技术,为功能材料的应用提供可靠的技术支撑。
总的来说,功能材料是当今材料科学领域的重要组成部分,它在各种领域都有着重要的应用价值。
功能材料的研究和开发是当今材料科学领域的热点之一,对于推动科技进步和社会发展具有重要意义。
希望未来能够有更多的科研人员投入到功能材料的研究和开发中,为人类社会的可持续发展做出更大的贡献。
院系:XXX 姓名:XXX 学号:XXX1.摘要智能混凝土是现代建筑材料与现代科技相结合的产物,是传统混凝土材料发展的高级阶段。
回顾了智能混凝土的发展历史和研究现状,展望了智能混凝土的发展趋势和应用前景,阐述了研究中应注意的问题。
2.简介智能材料,指的是“能感知环境条件,做出相应行动”的材料。
它能模仿生命系统,同时具有感知和激励双重功能,能对外界环境变化因素产生感知,自动作出适时。
灵敏和恰当的响应,并具有自我诊断、自我调节、自我修复和预报寿命等功能。
智能混凝土是在混凝土原有组分基础上复合智能型组分,使混凝土具有自感知和记忆,自适应,自修复特性的多功能材料。
根据这些特性可以有效地预报混凝土材料内部的损伤,满足结构自我安全检测需要,防止混凝土结构潜在脆性破坏,并能根据检测结果自动进行修复,显著提高混凝土结构的安全性和耐久性。
正如上面所述,智能混凝士是自感知和记忆、自适应。
自修复等多种功能的综合,缺一不可,以目前的科技水平制备完善的智能混凝土材料还相当困难。
但近年来损伤自诊断混凝土、温度自调节混凝土。
仿生自愈合混凝土等一系列智能混凝土的相继出现;为智能混凝土的研究打下了坚实的基础。
3.内容3.1分类3.1.1损伤自诊断混凝土自诊断混凝土具有压敏性和温敏性等自感应功能其中最常用的是碳类、金属类和光纤。
下面主要介绍碳纤维智能混凝土。
碳纤维是一种高强度、高弹性且导电性能良好的材料。
在水泥基材料中掺入适量碳纤维不仅可以显著提高强度和韧性,而且其物理性能,尤其是电学性能也有明显的改善,可以作为传感器并以电信号输出的形式反映自身受力状况和内部的损伤程度。
在入碳纤维的损伤自诊断混凝土中,碳纤维混凝土本身就是传感器,可对混凝土内部在拉、压、弯静荷载和动荷载等外因作用下的弹性变形和塑性变形以及损伤开裂进行监测。
试验发现,在水泥浆中掺加适量的碳纤维作为应变传感器,它的灵敏度远远高于一般的电阻应变片。
在疲劳试验中还发现,无论在拉伸或是压缩状态下,碳纤维混凝土材料的体积电导率会随疲劳次数发生不可逆的降低。
功能高分子材料论文功能高分子材料综述功能性高分子材料,一般是指具有某种特别的功能或者是能在某种特殊环境下使用的高分子材料,但这是相对于一般用途的通用高分子材料而言。
这一定义只是一个概括,不一定很确切,较多的人认为所谓功能性高分子材料是指具有物质能量和信息的传递、转换和贮存作用的高分子材料及其复合材料。
功能高分子材料是研究功能高分子材料规律的科学,是高分子材料科学领域发展最为迅速,与其他科学领域交叉度最高的一个研究领域。
它是建立在高分子化学、高分子物理等相关学科的基础之上,并与物理学、医学、甚至生物学密切联系的一门学科。
由于涉及面广,因此给人的感觉是资料零散,规律性不强。
但是任何一门科学总有其自身的发展现律,随着功能高分子材料科学研究的深入,有关信息的日趋丰富,为功能高分子材料学科在摸清自身发展规律以及完善其理论提供了有利条件。
功能高分子材料是高分子学科中的一个重要分支,它的重要性在于所包含的每一类高分子都具有特殊的功能。
功能高分子材料按照功能特性通常可分成以下几类:(1)分离材料和化学功能材料;主要包括高分子催化剂, 高分子试剂, 高吸水性树脂, 高分子絮凝剂, 螯合树脂, 离子交换树脂, 分离膜材料等。
功能高分子材料包括光功能高分子材料、光磁( 电) 功能高分子材料、生物医用( 机体外与机体内) 功能高分子材料[7],生功能高分子材料等。
分子中具有亲水基与疏水基,能富集(吸附)于界面,使界面性质发生显著改变而出现界面活性的物质称为表面活性剂。
而高分子表面活性剂是指相对分子质量在数千以上,具有表面活性功能的高分子化合物。
随着科学研究和生产技术的不断发展,吸附性高分子材料正迅速进入人们的生产和生活领域中,目前已经成为重要的有机功能材料之一. 吸附性高分子材料主要是指那些对某些特定离子或分子有选择性亲和作用的高分子材料。
具有特殊结构的功能材料包括:纳米结构材料、贮氢材料、薄膜功能材料、形状记忆材料、智能材料与结构、减震材料、生物医学材料等。
功能材料论文功能材料,是指在特定的条件下,通过其特殊的结构与组成所具有的特殊性能和功能的材料。
它们在各个领域都扮演着重要的角色,如电子、光电、催化、能源等。
本论文将对功能材料的概念、分类和应用进行详细的探讨,并介绍一些具有代表性的功能材料。
一、功能材料概念功能材料主要指具有特殊性能和功能的材料,它们在特定条件下可以实现特定的物理、化学或生物作用。
与传统结构材料不同,功能材料的性能主要来自于其特殊的结构和组成。
功能材料的发展,旨在满足人们对新型材料的需求,并推动科学技术的进步和产业的发展。
二、功能材料分类功能材料根据其性能和功能可以分为多个类别。
以下是几种常见的功能材料及其主要特性:1. 光电材料:光电材料是指对光与电的能量转换和传输过程具有特殊性能的材料,包括光电导体、光电半导体和光电绝缘体等。
它们在太阳能电池、光传感器等领域具有广泛的应用。
2. 催化材料:催化材料是指在化学反应过程中,通过其特殊的结构和组成,能够加速反应速率或降低反应温度的材料。
催化材料广泛应用于催化剂、汽车尾气净化等领域,具有重要的经济和环保意义。
3. 磁性材料:磁性材料是指在外磁场作用下,具有特殊的磁性行为和性质的材料。
它们广泛应用于电子设备、磁记录材料等领域,对推动信息技术发展起到了重要作用。
4. 超导材料:超导材料是指在特定的温度下,电阻为零,电流可以无损耗地通过的材料。
超导材料在能源传输和磁共振等领域具有广泛的应用前景。
5. 电池材料:电池材料是指用于储能和能量转换的材料,包括锂离子电池材料、燃料电池材料等。
随着电动汽车和可再生能源的发展,电池材料将发挥越来越重要的作用。
三、功能材料应用功能材料在各个领域都有重要的应用。
以下是几个典型的功能材料应用举例:1. 功能材料在电子领域的应用:光电材料在光电器件中的应用,如太阳能电池、光传感器等;磁性材料在硬盘、磁记录材料中的应用;二维材料在柔性显示、传感器等领域的应用。
2. 功能材料在能源领域的应用:锂离子电池材料、燃料电池材料在新能源储存和转换中的应用;光催化材料在光能利用和水分解中的应用;超导材料在能源传输和磁共振成像中的应用。
【摘要】碳纤维的出现是材料史上的一次革命。
碳纤维是目前世界首选的高性能材料,具有高强度、高模量、耐高温、抗疲劳、导电、质轻、易加工等多种优异性能,正逐步征服和取代传统材料。
现已广泛应用于航天、航空和军事领域。
世界各国均把发展高性能碳纤维产业放在极其重要的位置。
碳纤维除了在军事领域上的重要应用外,在民品的发展上有着更加广阔的空间,并已经开始深入到国计民生的各个领域。
在机械电子、建筑材料、文体、化工、医疗等各个领域碳纤维有着无可比拟的应用优势。
我国对碳纤维的研究由于起步较晚,技术力量薄弱,虽然碳纤维及其复合材料在我国已被纳入国家“863”和“973”计划,但总体情况不尽理想,我国仍不具备成熟的碳纤维工业化生产技术,国防和民用碳纤维产品基本依赖进口。
【关键词】碳纤维、性能、技术碳纤维主要是由碳元素组成的一种特种纤维,是由含碳量较高、在热处理过程中不熔融的人造化学纤维经热稳定氧化处理、碳化处理及石墨化等工艺制成的。
其含碳量随种类不同而异,一般90以上。
碳纤维具有一般碳素材料的特性,如耐高温、耐磨擦、导电、导热及耐腐蚀等,但与一般碳素材料不同的是,其外形有显著的各向异性、柔软、可加工性好,沿纤维轴方向表现出很高的度,且碳纤维比重小。
1、碳纤维的化学性能碳纤维是一种纤维状的碳素材料。
我们知道碳素材料是化学性能稳定性极好的物质之一。
这是历史上最早就被人类认识的碳素材料的特征之一。
除强氧化性酸等特殊物质外,在常温常压附近,几乎为化学惰性。
可以认为在普通的工作温度≤250℃环境下使用,很难观察到碳纤维发生化学变化。
根据有关资料介绍,从碳素材料的化学性质分析,在≤250℃环境下,碳素材料既没有明显的氧化发生,也没有生成碳化物和层间化合物生成。
由于碳素材料具有气孔结构,因此气孔率高达25%左右,在加热过程易产生吸附气体脱气情况,这样的过程更有利于我们稳定电气性能和在电热领域的应用。
2、碳纤维的物理性能(a)热学性质:碳素材料因石墨晶体的高度各向异性,而不同于一般固体物质与温度的依存性,从工业的应用角度来看,碳素材料比热大体上是恒定的。
几乎不随石墨化度和碳素材料的种类而化(b)导热性质:碳素材料热传导机理并不依赖于电子,而是依靠晶格振动导热,因此,不符合金属所遵循的维德曼—夫兰兹定律。
根据有关资料介绍,普通的碳素材料导热系数极高,平行于晶粒方向的导热系数可与黄铜媲美。
(c)电学性质:碳素材料电学性质主要与石墨晶体的电子行为和不同的处理温度有关,石墨的电子能带结构和载流子的种类及其扩散机理决定了上述性质。
碳素材料这类电学性质具有本征半导体所具备的特征,电阻率变化主要与载流子的数量变化有关。
3、碳纤维的主要用途与树脂、金属、陶瓷等基体复合,做成结构材料。
碳纤维增强环氧树脂复合材料,其比强度、比模量综合指标,在现有结构材料中是最高的。
在刚度、重量、疲劳特性等有严格要求的领域,在要求高温、化学稳定性高的场合,碳纤维复合材料都颇具优势。
由碳纤维和环氧树脂结合而成的复合材料,由于其比重小、刚性好和强度高而成为一种先进的航空航天材料。
最神奇的应用是采用长碳纤维制成的“纳米绳”可以将“太空电梯”由理想变为现实,太空电梯将可以将乘客和各种货物运送到空间轨道站上,也可以用这种“纳米绳”将太空中发射平台与地面固定在一起,在这样的发射平台上发射人造卫星和太空探测器就可以大大降低发射成本。
总结碳纤维复合材料的现实应用有以下几个方面:(1)宇航工业用作导弹防热及结构材料如火箭喷管、鼻锥、大面积防热层;卫星构架、天线、太阳能翼片底板、卫星-火箭结合部件;航天飞机机头,机翼前缘和舱门等制件;哈勃太空望远镜的测量构架,太阳能电池板和无线电天线。
(2)航空工业用作主承力结构材料,如主翼、尾翼和机体;次承力构件,如方向舵、起落架、副翼、扰流板、发动机舱、整流罩及座板等,此外还有c/c刹车片。
(3)交通运输用作汽车传动轴、板簧、构架和刹车片等制件;船舶和海洋工程用作制造渔船、鱼雷快艇、快艇巡逻艇,以及赛艇的桅杆、航杆、壳体及划水浆;海底电缆、潜水艇、雷达罩、深海油田的升降器和管道。
(4)运动器材用作网球、羽毛球、和壁球拍及杆、棒球、曲棍球和高尔夫球杆、自行车、赛艇、钓杆、滑雪板、雪车等。
(5)土木建筑幕墙、嵌板、间隔壁板、桥梁、架设跨度大的管线、海水和水轮结构的增强筋、地板、窗框、管道、海洋浮杆、面状发热嵌板、抗震救灾用补强材料。
(6)其它工业化工用的防腐泵、阀、槽、罐;催化剂,吸附剂和密封制品等。
生体和医疗器材如人造骨骼、牙齿、韧带、x光机的床板和胶卷盒。
编织机用的剑竿头和剑竿防静电刷。
其它还有电磁屏蔽、电极度、音响、减磨、储能及防静电等材料也已获得广泛应用。
三、碳纤维复合材料在电线电缆中的应用碳纤维以其固有的特性赋予了其复合材料优异的性能,它具有高比强度、高比模量、耐高温、耐腐蚀、耐疲劳、抗蠕变、导电、传热和热膨胀系数小等一系列优异性能,从而为其在电线电缆行业中的应用提供了可能和必然。
(一)碳纤维加热电缆的开发和应用人们早就知道,以金属材料为发热体的电加热技术已在各个领域得到了广泛的应用。
但是金属丝在高温状态下表面易氧化,由于氧化层不断的增厚,造成了有效通过电流的面积减小,增大了电流的负荷,因此易烧断。
在相同的允许的电流负荷面积下,金属丝的强度比碳纤维低6-10倍,在使用过程中易折断。
碳纤维是一种石墨的六方晶格层状结构组成,是一种全黑体材料,因此在电热应用中,表现出来的电热转换效率高。
在特定的条件下,高温不氧化,单位面积的电流的负荷强度和机械强度不发生改变。
目前碳纤维加热电缆的应用如下:低温辐射发热电缆地板采暖系统。
恒温育雏箱、花房、苗圃、蔬菜大棚等保温采暖。
道路化雪、机场跑道化雪:用于混凝土结构中楼面加热的理想产品,也可以用在融雪装置中,对屋面雨水和排水管进行防霜,还可以用于土壤加热。
管道、罐体保温防冻:电伴热产品近几年在中国得到了大力的推广和广泛的应用。
其应用领域主要集中在石油、化工、电力、铁路和民用或商业建筑等。
随着中国电力工业的发展,以清洁、无二次污染的电能为主要能源的电伴热产品市场前景非常广阔,同时,也为电伴热产品的性能提出了更高的要求。
足球场草坪、公共绿地土壤保温:太阳能热水器电能补充加热器,主要用于在长期阴雨天或寒冬季节,因光照不足而导致太阳能热水器水温不能满足生活、工程需要时,为补充热能而设计的。
它具有较强的耐酷暑、严寒和高温潮湿环境的性能,并具有防干烧的功能。
即使偶尔水箱缺水误通电,也不至于烧坏电加热器和水箱,故能确保安全使用。
(二)碳纤维复合芯导线的开发和应用我国是个缺电的国家,不仅发电业的发展滞后,输电业的弊端也凸现出来,输电线路已不堪承受传输容量快速扩容的需求,由于过负荷造成的停电、断电故障频频发生,电力传输成为电力工业发展的“瓶颈”,各国均在研究新型架空输电路用导线,以取代传统的钢芯铝绞线,碳纤维复合芯导线由此应运而生。
与钢芯铝绞线相比,碳纤维复合芯导线具有以下优点:1、和同样直径的acsr电缆相比,可以提供双倍的载流容量。
2、有效解决电缆下垂问题。
3、可以在更高的温度下工作,最高可达200摄氏度。
4、线芯可以抗腐蚀,而且没有双金属间腐蚀问题。
5、因为可以提供更高的载流容量,所以同时也有效的降低了工程成本。
6、与相同直径传统电缆相比可以多容纳28%的导体。
7、高强度线芯可以有效减少电缆架的数量,或降低电缆架的高度。
8、有效减少电缆下垂,使地面生物更加安全。
除了上述提及的优点外,还可减少传输中电力的损耗,减少20%的塔杆,节省用地,减少有色金属资源消耗,有助于构造安全、环保、高效节约型输电网络。
目前世界上只有美国和日本开发出这种新型导线,他们还达成默契:不向第三国输出,日本一家碳纤维导线企业的产量就占到世界40%左右。
目前我国电线电缆研究所、电力建筑研究院以及国家电网有限公司都已经开始了对accc导线的试验研究工作。
国内电缆厂家也加大与外方合作,将这种新型电缆引进到中国生产,积极推动我国架空输电线路的技术革命。
最近福建电网已经将该新型导线架设运行。
(三)在高低温、腐蚀等苛刻环境应用的可能碳纤维细如蛛丝,三型碳纤维比强度是钢的62倍以上,成形工艺性好,是一代新型工程材料,其弹性量高,抗变性能力比钢大2倍多,抗拉强度30~40t/cm2pa,而比重还不到钢的四分之一,是铝合金的二分之一,高弹模量比钢铁大16倍,比铝合金大12倍。
且碳纤维比钢等柔软。
因此,碳纤维可用于要求能承重、不易损伤内部元件的电缆的加强芯,如海底光缆等。
碳纤维可以耐-180℃的低温,在此条件下,许多材料都变的很脆,连坚固的钢铁也变的比玻璃还容易碎,而碳纤维在此条件下依旧很柔软。
因此,碳纤维复合芯可用于极地(如南极考察研究等)条件下输电载体的设计和制造。
碳纤维又可以耐3000℃~3500℃的高温,在此高温下最好的耐热钢也变成钢水,但在没有氧气的情况下,碳纤维没有变化。
碳纤维即使从3000℃的高温快速冷却到室温也不会炸裂,因而可在急冷急热的环境中工作。
这为钢铁、冶金、锅炉等行业中高温特高温场合电缆的设计提供了可能。
此外,碳纤维纱、碳纤维绳、碳纤维布都可用于消防电缆产品的设计选用。
碳纤维有超强的耐腐蚀性。
金属中耐腐蚀性最强的是黄金和铂,在一份硝酸(浓%)和三份硫酸(浓度39%)配成的称“王水”的溶液中黄金、铂会被腐蚀的千疮百孔,而“王水”中的碳纤维却安然无恙。
为各种化学环境下轻型耐化学腐蚀电缆的设计提供了新的思路。
四、发展建议碳纤维材料的产业化是实现碳纤维导线在国内输电行业的产业化的前提和保证。
碳纤维材料价格则是制约产业化应用的关键。
我国从八十年代初期开始起步,加大了对碳纤维材料的研究和开发力度,并也着力于碳纤维材料产业化基地的建设,但由于国外设备、技术封锁,至今未见重大突破,产品质量不稳定性,预计今后每年至少一万吨的缺口。
2000年前碳纤维材料的价格水平为5万美圆/吨左右,比铝的价格要高20倍多。
但是近两年,由于国际政治形势和军事格局的变化,碳纤维材料价格受其影响,大幅度上升。
这无疑都将对我国现代化的建设成本形成巨大的压力和负担。
最近,我国福建电网从美国复合材料工程公司(ctc)购置了60公里accc导线(铝导体复合芯架空导线)应用在福建省厦门和福州电网中,其价格水平为15万元人民币/公里。
这比我们一直使用的钢芯铝绞线的价格要高几倍。
各科研院所应进一步加大碳纤维材料的基础应用研究和开发,建立我国自主知识产权,实现碳纤维材料的质量稳定,降低成本。
同时要采用国家投入和民间投入相结合的方式,加大碳纤维在航天和军工以外的民品应用,有助于碳纤维产业的健康持续发展。
最近,我国国内碳纤维产业发展面临重大机遇。
辽宁圣华科技有限公司落户抚顺经济开发区后,可以把现有抚顺部分企业培育成碳纤维及复合材料的龙头企业,发挥其带动和辐射功能,把抚顺建设成为全国碳纤维研发基地和产业基地。