功能材料概论5(储氢材料)
- 格式:ppt
- 大小:3.01 MB
- 文档页数:43
储氢材料详细资料大全储氢材料(hydrogen storage material)一类能可逆地吸收和释放氢气的材料。
最早发现的是金属钯,1体积钯能溶解几百体积的氢气,但钯很贵,缺少实用价值。
基本介绍•中文名:储氢材料•外文名:hydrogen storage material•时间:20世纪70年代以后•不同储氢方式:气态、固态、液态•常见材料:合金、有机液体以及纳米储氢材料•要求:安全、成本低、容量大、使用方便储氢材料简介,储氢方式,气态储氢,液态储氢,固态储氢,存在问题,常见储氢材料,储氢材料简介储氢材料(hydrogen storage material)随着工业的发展和人们物质生活水平的提高,能源的需求也与日俱增。
由于近几十年来使用的能源主要来自化石燃料(如煤、石油和天然气等),而其使用不可避免地污染环境,再加上其储量有限,所以寻找可再生的绿色能源迫在眉睫。
氢能作为一种储量丰富、来源广泛、能量密度高的绿色能源及能源载体,正引起人们的广泛关注。
氢能的开发和利用受到美、日、德、中、加等国家的高度重视,以期在21世纪中叶进入“氢能经济(hydrogen economy)”时代。
氢能利用需要解决以下 3 个问题:氢的制取、储运和套用 ,而氢能的储运则是氢能套用的关键。
氢在通常条件下以气态形式存在, 且易燃、易爆、易扩散,使得人们在实际套用中要优先考虑氢储存和运输中的安全、高效和无泄漏损失,这就给储存和运输带来很大的困难。
储氢方式气态储氢气态存储是对氢气加压,减小体积,以气体形式储存于特定容器中,根据压力大小的不同,气态储存又可分为低压储存和高压储存。
氢气可以像天然气一样用低压储存,使用巨大的水密封储槽。
该 ... 适合大规模储存气体时使用。
由于氢的密度太低,套用不多。
气态高压储存是最普通和最直接的储存方式,通过高压阀的调节就可以直接将氢气释放出来。
普通高压气态储氢是一种套用广泛、简便易行的储氢方式 ,而且成本低, 充放气速度快 , 且在常温下就可进行。
储氢材料概述范文储氢材料是指能够储存和释放氢气的物质。
随着氢能源的广泛应用,储氢材料的研究和开发已经成为一个热门领域。
本文将对目前常见的几种储氢材料进行概述,并探讨其优缺点及应用前景。
1.吸附储氢材料:吸附储氢材料是将氢气吸附在其表面上的材料。
常见的吸附储氢材料包括活性炭、金属有机框架(MOF)和多孔有机聚合物(POPs)。
吸附储氢材料的优点是具有较高的氢气储存密度和良好的可逆性,但其缺点是在吸附和释放过程中需要较高的温度和压力。
2.吸氢合金材料:吸氢合金材料是由金属和氢气形成化合物所构成的材料。
吸氢合金材料具有很高的氢气质量分数,能够在相对较低的温度和压力下吸附和释放氢气。
其中,铁、镁和钛等金属是常用的吸氢合金材料。
然而,吸氢合金材料的缺点是储氢量较低,且氢气的吸附和释放速度较慢。
3.化学储氢材料:化学储氢材料是通过在材料中形成化学键来储存氢气的。
常见的化学储氢材料包括金属氢化物、氮化物和储氢合金。
这些材料具有较高的储氢密度,但释放氢气时需要较高的温度和压力。
此外,化学储氢材料在储氢和释放过程中会有副产物生成的问题,需要进一步处理。
4.硼类材料:硼类材料包括硼氢化物和硼氮化物等。
这些材料具有很高的储氢密度,可以在相对较低的温度和压力下吸附和释放氢气。
硼类材料作为一种储氢材料具有潜在的应用前景,但其储氢和释放速率以及可逆性仍然需要进一步改进。
总结来说,吸附储氢材料、吸氢合金材料、化学储氢材料和硼类材料是目前常见的储氢材料。
各种储氢材料具有不同的特点和应用场景,在氢能源的开发和应用中有着重要的地位。
未来的研究还需要进一步提高储氢密度、降低储氢和释放的温度/压力要求,并解决副产物生成等问题,以实现储氢材料的可持续发展。
储氢材料简介范文引言:随着能源消耗的不断增加和环境污染的加剧,寻找一种高效、环保的能源储存技术变得越来越重要。
氢能作为一种清洁、可再生的能源,正在受到广泛的关注。
然而,氢气的储存一直是一个技术难题。
寻找一种合适的储氢材料是实现氢能利用的关键之一、本文将介绍几种常见的储氢材料,并对其特点和应用进行分析。
一、金属储氢材料金属储氢材料是最传统的一种储氢材料。
常见的金属储氢材料包括钛合金、镁合金、锆合金等。
这些材料具有储氢容量高、反应速率快等特点。
但是,金属储氢材料存在工艺复杂、储氢温度较高等问题,限制了其在实际应用中的推广。
二、吸附材料吸附材料是一种将氢气物理吸附在材料表面的方法。
常见的吸附材料包括活性炭、金属有机骨架、多孔有机聚合物等。
这些材料具有表面积大、容易制备等特点,但是吸附材料的储氢容量和吸附/释放速率较低,对性能的要求较高。
三、化学储氢材料化学储氢材料是将氢气以化学形式储存在材料中,并通过化学反应进行储氢和释放氢的过程。
常见的化学储氢材料包括氢化物、金属氢化物、有机液体等。
这些材料具有储氢容量高、储氢密度大等优点,但是存在反应速率慢、反应温度高等问题,对材料的选择和设计提出了挑战。
四、固态氢储存体系固态氢储存体系是一种结合了吸附和化学储氢方法的新型储氢技术。
其基本原理是将金属氢化物储氢剂与载体进行结合,通过吸附和化学反应双重方式来储存和释放氢气。
常见的固态氢储存体系包括氢化物储氢剂/多孔材料、氢化物储氢剂/焊接材料等。
这些储氢体系克服了传统储氢材料的缺点,具有储氢性能稳定、循环寿命长等优点。
结尾:综上所述,储氢材料是实现氢能利用的关键之一、金属储氢材料、吸附材料、化学储氢材料和固态氢储存体系都是常见的储氢材料。
每种材料都有其独特的优点和局限性。
未来的研究应该注重提高储氢容量、改善储氢速率、降低储氢温度等方面的性能。
随着技术的不断发展,相信储氢材料的性能将得到显著的改善,为氢能的广泛应用提供更加可靠的支持。
功能材料课程报告储氢材料院(系)专业学生学号班号XXXXX大学年月储氢材料人类历史的发展伴随着能源的不断发展。
人类社会经历了薪柴、煤炭和石油3个能源阶段后,面临着一个严峻的挑战。
一方面煤炭、石油等化石燃料的长期大量消耗,其资源逐渐枯竭;另一方面化石燃料的大量使用造成了全球环境的严重污染。
氢能正是基于能源持续发展和环境保护的要求而发展起来的理想清洁能源。
氢来源丰富广泛,且燃烧能量密度值高,燃烧后生成水,具有零污染的特点,因此对氢能源的开发利用已成为世界性的重要课题。
氢能体系主要技术环节包括氢的生产、储存、输送和使用等,其中氢气的储存是最关键的环节之一。
储氢方法有高压气态储存、低温液态储存和固态储存等3种。
其中,高压气态储氢在技术上相对成熟,工业界制定了耐受70MPa压力、质量储氢密度为6%的预期目标,但高压气态储氢存在安全问题,且压缩过程的能耗较大。
低温液态储氢的体积能量密度高,但液化过程所需的能耗约是储存氢气热值的50%,且自挥发问题难以避免;另外,这种方法的绝热系统技术复杂,成本高。
固态储氢材料储氢是通过化学反应或物理吸附将氢气储存于固态材料中,其能量密度高且安全性好,被认为是最有发展前景的一种氢气储存方式。
固态储氢材料包括可充氢化物(如金属氢化-镍电池)、化学氢化物(如水解或热解储氢)、碳和其他高比表面积材料(主要以物理吸附为主)。
表1列出了一些固态材料的理论储氢能力。
表1 一些固体物质理论储氢能力储氢材料的研究始于上世纪60年代末,由美国Brookhaven国家实验室和荷兰Philips公司分别报道发现Mg2Ni和LaNi5可吸收大量的氢,并伴随产生很大的热效应,这种特性使之有可能应用于储氢、热泵、氢分离等技术领域,引起了学术界和工业界的广泛兴趣,并很快在上述领域得到成功应用。
尤其是上世纪 80年代,储氢合金在镍-金属氢化物(Ni-MH)可充电池技术上的成功应用,在全球范围掀起了储氢材料的研究热潮。
功能材料—— 储氢材料PCMP 1前言:当前最关注的三大问题:资源、能源与环境都与材料有 密切关系。
材料是人类社会进步和人民生活水平提高不可或缺的物 质基础。
生产材料是消耗资源与能源的大户,也是造成环 境污染的主要源头,但是材料又是开发能源和治理环境污 染的重要保障。
土木工程在社会发展中十分重要,2004年GDP13万亿 元,51.3%为全社会固定资产投资拉动的,其中60-65%是 土木工程。
PCMP 21材料在人类社会发展中的作用以材料划分人类发展的历程 材料与文明石器时代 青铜时代 铁器时代 电子材料 时代(Si)中国 中东 欧美9000 7000 6000 2000 3000 4000 5000 1000 500 1000 1500 1800 1900 1950公元前公元PCMP 3材料在开发过程中所遇到的问题及对策环境资源+能源科学 工程技术材料+废物 应用循环经济(4R)废品污染物ReduceReuseRecycle RemanufacturePCMP 41990200050002 能源现代能源主要出自化石能源(>80%),一直到本世纪中 叶,化石能源仍占主导地位,因此提高燃烧效率,减少污染 仍为最主要课题。
从长远看UNDP估计到本世纪末有两个可 能结构变化。
能源形势: UNDP估计的能源两种可能的变化PCMP 5氢能氢有三个问题需要解决:氢源:电解水,热化工转化 细菌分解水等 储氢与氢的运输不同储氢材料能量密度与汽油的对比最近美国研制出锂 硼氢化物有可能满 足要求PCMP 6不同储氢材料的能量密度3燃料电池:效率高,无污染,用于汽车,但 质子交换膜与催化剂太贵,目前为$125/kw, 内燃机为$30/kw。
今后可能会便宜,因无转动 部件,构造简单。
但可用于电网的大型装置, 还有不少问题。
PCMP 7光伏转换电能价高,约10倍于火电。
另外一种是用聚焦技术的太阳加热炉,用以加热 水或气体来发电,其电价每度5-13美分,接近火力 发电。
目录前言 (2)1.储氢材料分类 (3)1.1储氢合金 (3)1.1.1稀土系储氢合金 (3)1.1.2镁系储氢合金 (3)1.1.3钛系储氢合金 (3)1.2络合物储氢材料 (4)1.3纳米材料 (4)1.4玻璃微球储氢 (4)2.储氢材料的制备方法 (5)2.2机械合金化法 (5)2.3氢化燃烧合成法 (5)2.4化学合成法 (6)2.5烧结法 (6)3.储氢材料的应用 (6)3.1 氢气的“固态化”储存与运输 (6)3.2氢气的超纯净化 (7)3.3 氢气的压缩 (7)3.4 空调制冷与热泵 (7)3.6 真空技术 (7)3.7 氢化物-镍电池 (8)4.结语与展望 (8)参考文献 (9)前言随着石油资源的日渐匮乏和生态环境的不断恶化,氢能被公认为人类未来的理想能源。
这是因为:a.氢燃烧释能后的产物是水,是清洁能源;b.氢可通过太阳能、风能等自然能分解水而再生,是可再生能源;c.氢能具有较高的热值,燃烧1 kg氢气可产生1.25×106kJ 的热量,相当于3kg汽油或4.5 kg 焦炭完全燃烧所产生的热量;d.氢资源丰富,氢可以通过分解水制得。
另外,在化工与炼油等领域副产大量氢气,尚未充分利用。
可以预见,未来世界将从以碳为基础的能源经济形态转变为以氢为基础的能源经济形态(简称“氢经济”)。
氢能的开发和利用涉及氢气的制备、储存、运输和应用4大关键技术。
本文讨论氢气的储存技术。
[1]其中能量的储存和转换一直是能量有效利用的关键所在。
传统的储氢手段主要是用钢瓶来储存氢气,其缺点是效率低,同时需要钢瓶具有耐高压、防泄漏的特性,比较苛刻。
储氢材料由于其具有很高的氢气存储密度而受到人类的瞩目因此成为材料科学中研究的重点功能材料之一。
储氢材料就作为一种极其重要的功能材料,在二次能源领域内具有不可替代的作用,特别是在燃料电池、可充电电池研究中,具有举足轻重的地位。
储氢材料的研究直接关系着电动汽车的应用,也同样对潜艇、航天器等领域有着重要的影响。