广东中考数学模拟题及答案
- 格式:docx
- 大小:236.05 KB
- 文档页数:10
2024年广东省广州市中考模拟数学试题一、单选题1.2024的相反数是( )A .2024B .2024-C .12024D .12024- 2.我国新能源汽车发展迅猛,下列新能源汽车标志既是轴对称图形,又是中心对称图形的是( )A .B .C .D . 3.2024年全国高考报名人数约为13530000人,数13530000用科学记数法表示为( ) A .80.135310⨯ B .71.35310⨯ C .81.35310⨯ D .713.5310⨯4.不等式组212x x -+⎧⎨<⎩…的解集在数轴上可以表示为( ) A . B .C .D .5.如图为商场某品牌椅子的侧面图,120DEF ∠=︒,DE 与地面平行,50ABD ∠=︒,则ACB =∠( )A .70°B .65°C .60°D .50°6.在一次献爱心的捐款活动中,八(2)班50名同学捐款金额如图所示,则在这次捐款活动中,该班同学捐款金额的众数和中位数分别是( )A .20,10B .10,20C .10,10D .10,157.港珠澳大桥是世界上最长的跨海大桥,被誉为“现代世界七大奇迹”的超级工程,它是我国从桥梁大国走向桥梁强国的里程碑之作.港珠澳大桥主桥为三座大跨度钢结构斜拉桥,其中九洲航道桥主塔造型取自“风帆”,寓意“扬帆起航”.某校九年学生为了测量该主塔的高度,站在B 处看塔顶A ,仰角为60︒,然后向后走160米(160BC =米),到达C 处,此时看塔顶A ,仰角为30︒,则该主塔的高度是( )A .80米B .C .160米D .8.如图,四边形ABCD 内接于⊙O ,E 为DC 延长线上一点.若∠BCE =105°,则∠BOD 的度数是( )A .150°B .105°C .75°D .165°9.已知:ABC V 中,AD 是中线,点E 在AD 上,且,CE CD BAD ACE =∠=∠.则CE AC 的值为( )A B C .23 D10.如图,已知四边形ABCD 为正方形,AB =E 为对角线AC 上一点,连接DE ,过点E 作EF DE ⊥,交BC 的延长线于点F ,以DE ,EF 为邻边作矩形DEFG ,连接CG .下列结论:①矩形DEFG 是正方形;②CE CF =;③AE CG =;④6CE CG +=.其中结论正确的序号有( )A .①②③④B .①③④C .①③D .②④二、填空题11.甲、乙两人在100米短跑训练中,记录了5次测试的成绩:两人的平均成绩相等,甲的方差是0.14,乙的方差是0.06,这5次短跑测试的成绩较稳定的是. (填“甲”或“乙”) 12.在一个不透明的布袋中装有2个白球和n 个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,摸到黄球的概率是45,则n =. 13.因式分解:222x -=.14.如图,圆锥的侧面展开图是一个圆心角为120°圆锥的母线l =.15.如图,在平行四边形ABCD 中,AB =4,BC =6,以点B 为圆心,以任意长为半径作弧,分别交BA 、BC 于点P 、Q ,再分别以P 、Q 为圆心,以大于12PQ 的长为半径作弧,两弧在∠ABC 内交于点M ,连接BM 并延长交AD 于点E ,则DE 的长为.16.如图,在平面直角坐标系中,四边形ABOC 是正方形,点A 的坐标为()1,1,弧1AA 是以点B 为圆心,BA 为半径的圆弧;弧12A A 是以点O 为圆心,1OA 为半径的圆弧,弧23A A 是以点C 为圆心,2CA 为半径的圆弧,弧34A A 是以点A 为圆心,3AA 为半径的圆弧.继续以点B ,O ,C ,A 为圆心按上述作法得到的曲线12345AA A A A A …称为正方形的“渐开线”,则点2022A 的坐标是三、解答题17.(1112sin 303-⎛⎫-︒ ⎪⎝⎭; (2)解方程组:6936x y x y +=⎧⎨-=-⎩.18.先化简,再求值:22111x x x x x ++⎛⎫-⋅ ⎪-⎝⎭,其中1x . 19.中华文化源远流长,文学方面,《西游记》、《三国演义》、《水浒传》、《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”.某中学为了了解学生对四大古典名著的阅读情况,就“四大古典名著你读完了几部”的问题在全校学生中进行了抽样调查,根据调查结果绘制成如下尚不完整的统计图.请根据以上信息,解决下列问题:(1)本次调查所得数据的众数是________部,中位数是________部;(2)扇形统计图中“4部”所在扇形的圆心角为________度;(3)请将条形统计图补充完整;(4)没有读过四大古典名著的两名学生准备从中各自随机选择一部来阅读,请用列表或画树状图的方法求他们恰好选中同一名著的概率.20.如图,一次函数5y x =-+与反比例函数()40y x x=≠的图象交于点A 、B .(1)求点A 、B 的坐标;(2)观察图象写出不等式45x x-+>的解集; (3)若位于第三象限的点M 在反比例函数()40y x x=≠的图象上,且MAB △是以AB 为底的等腰三角形,请直接写出点M 的坐标和MAB △的面积;21.有甲、乙两种客车,2辆甲种客车与3辆乙种客车的总载客量为170人,1辆甲种客车与2辆乙种客车的总载客量为100人.(1)请问1辆甲种客车与1辆乙种客车的载客量分别为多少人?(2)某单位组织180名员工到某革命家传统教育基地开展“纪念建党100周年”活动,拟租用甲、乙两种客车共5辆,总费用在1950元的限额内,一次将全部员工送到指定地点.若每辆甲种客车的租金为400元,每辆乙种客车的租金为320元,有哪几种租车方案,最少租车费用是多少?22.综合应用:测旗杆高度小明和小红是学校的升旗手,两人想一同测出学校旗杆的高度.为了解决这个问题,他们向数学王老师请教,王老师给他们提供了测倾器和皮尺工具.经过两人的思考,他们决定利用如下的图示进行测量.【测量图示】【测量方法】在阳光下,小红站在旗杆影子的顶端F 处,此刻量出小红的影长FG ;然后小明在旗杆落在地面的影子上的某点D 处,安装测倾器CD ,测出旗杆顶端A 的仰角.【测量数据】小红影长2m FG =,身高 1.6m EF =,旗杆顶端A 的仰角为49︒,侧倾器CD 高0.6m ,6m DF =,旗台高 1.2m BP =.若已知点B 、D 、F 、G 在同一水平直线上,点A 、P 、B 在同一条直线上,AB 、CD 、EF 均垂直于BG .你能帮小明和小红两人测出旗杆AP 的高度吗?(参考数据:sin 490.8︒≈,cos490.7︒≈,tan 49 1.2︒≈)23.如图,在Rt ABC △中,90ACB ∠=︒,O 为AC 边上一点,连结OB ,以OC 为半径的半圆与AB 边相切于点D ,交AC 边于点E .(1)求证:BC BD =;(2)若OB OA =,2AE =,①求半圆O 的半径;②求图中阴影部分的面积.24.某个农场有一个花卉大棚,是利用部分墙体建造的.其横截面顶部为抛物线型,大棚的一端固定在墙体OA 上,另一端固定在墙体BC 上,其横截面有2根支架DE ,FG ,相关数据如图1所示,其中支架DE BC =,OF DF BD ==,这个大棚用了400根支架.为增加棚内空间,农场决定将图1中棚顶向上调整,支架总数不变,对应支架的长度变化,如图2所示,调整后C 与E 上升相同的高度,增加的支架单价为60元/米(接口忽略不计),需要增加经费32000元.(1)分别以OB 和OA 所在的直线为x 轴和y 轴建立平面直角坐标系.①求出改造前的函数解析式.②当1CC '=米,求GG '的长度.(2)只考虑经费情况下,求出CC '的最大值.25.【问题情境】(1)如图1,在正方形ABCD 中,E ,F ,G 分别是BC ,AB ,CD 上的点,FG ⊥AE 于点Q .求证:AE =FG .【尝试应用】(2)如图2,正方形网格中,点A,B,C,D为格点,AB交CD于点O.求tan∠AOC的值;【拓展提升】(3)如图3,点P是线段AB上的动点,分别以AP,BP为边在AB的同侧作正方形APCD与正方形PBEF,连接DE分别交线段BC,PC于点M,N.①求∠DMC的度数;②连接AC交DE于点H,直接写出DHBC的值.。
2024年广东省广州市中考模拟数学试题一、单选题1.如图,几何体由5个相同的小正方体搭成.它的主视图是( )A .B .C .D .2.下列各式中运算正确的是( ) A .321a a -= B .()11a a --+=- C .()22330-+-=D .()3326a a -=3.石墨烯堪称目前世界上最薄的材料,约为0.3纳米(1纳米0.000000001=米).与此同时,石墨烯比金刚石更硬,是世界上最坚硬又最薄的纳米材料.0.3纳米用科学记数法可以表示为( )米. A .8310-⨯B .90.310-⨯C .9310-⨯D .10310-⨯4.不透明的盒子放有三张大小、形状及质地相同的卡片,卡片上分别写有李白《峨眉山月歌》,李白《渡荆门送别》和王维《寄荆州张丞相》三首诗,小明从盒子中随机抽取两张卡片,卡片上诗的作者都是李白的概率( ) A .13B .14C .15D .165.端午节,赛龙舟,小亮在点P 处观看400米直道竞速赛,如图所示,赛道AB 为东西方向,赛道起点A 位于点P 的北偏西30︒方向上,终点B 位于点P 的北偏东60︒方向上,400AB =米,则点P 到赛道AB 的距离为( )米.A .B .C .87D .1736.已知关于x 的一元二次方程()22110k k x x -++=有两个实数根1x ,2x ,且满足()()12112x x ++=,则k 的值是( )A .1k =-B .1k =C .2k =-D .1k =或2k =-7.若关于x 的一元一次不等式结3132x x x a-⎧≤+⎪⎨⎪≤⎩的解集为x a ≤;且关于y 的分式方程34122y a y y y --+=--有正整数解,则所有满足条件的整数a 的值之积是( ) A .7 B .-14 C .28 D .-568.如图,在等边ABC V 中,D 是边AC 上一点,连接BD ,将BCD △绕点B 按逆时针方向旋转60︒,得到BAE V ,连接ED ,若10BC =,9BD =,则四边形ADBE 的周长是( )A .19B .20C .28D .299.如图,四边形ABCD 内接于O e ,AB 为直径,AD CD =,过点D 作DE AB ⊥于点E ,连接AC 交DE 于点F .若3sin 5CAB ∠=,5DF =,则BC 的长为( )A .8B .10C .12D .1610.如图,正方形ABCD 的边长为4,点E ,F 分别在边DC BC ,上,且BF CE =,AE 平分CAD ∠,连接DF ,分别交AE AC ,于点G ,M ,P 是线段AG 上的一个动点,过点P 作PN AC ⊥,垂足为N ,连接PM ,有下列四个结论:①AE 垂直平分DM ;②PM PN +的最小值为③2CF GE AE =⋅;④ADM S =△ )A .1B .2C .3D .4二、填空题11.因式分解:29x y y -=.12.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=55°,则∠3=.13.如图,圆锥的侧面展开图是一个圆心角为120︒的扇形,若圆锥的底面圆半径是5,则圆锥的母线l 为.14.若关于x 的一元二次方程210(0)4ax x a --=≠有两个不相等的实数根,则点(1, 3 )P a a +--在第象限.15.如图,在平面直角坐标系xOy 中,反比例函数(0)k y x x=>的图象与半径为10的O e 交于,A B 两点,若60AOB ∠=︒,则k 的值是.16.如图,已知正方形ABCD 的边长为2,E 为AB 的中点,F 是AD 边上的一个动点,连接EF ,将AEF △沿EF 折叠得HEF V ,若延长FH 交边BC 于点M ,则DH 的取值范围是.三、解答题17.计算:()11113tan303π-⎛⎫-+--︒ ⎪⎝⎭18.先化简,再求值:222211121x x x x x ++⎛⎫+÷ ⎪--+⎝⎭,其中4x =.19.为打造书香文化,培养阅读习惯,某中学计划在各班建设图书角,并开展主题为“我最喜欢阅读的书篇”的调查活动,学生根据自己的爱好选择一类书籍(A :科技类,B :文学类,C :政史类,D :艺术类,E :其他类).张老师组织数学兴趣小组对学校部分同学进行了问卷调查.根据收集到的数据,绘制了两幅不完整的统计图(如图所示).根据图中信息,请回答下列问题:(1)填空:参与本次问卷调查活动的学生人数是______;(2)甲同学从A ,B ,C 三类书籍中随机选择一种,乙同学从B ,C ,D 三类书籍中随机选择一种,请用画树状图或者列表法求甲乙两位同学选择相同类别书籍的概率.20.某文具店准备购进甲、乙两种圆规,若购进甲种圆规10个,乙种圆规30个,需要340元;若购进甲种圆规30个,乙种圆规50个,需要700元. (1)求购进甲、乙两种圆规的单价各是多少元;(2)文具店购进甲、乙两种圆规共100个,每个甲种圆规的售价为15元,每个乙种圆规的售价为12元,销售这两种圆规的总利润不低于480元,那么这个文具店至少购进甲种圆规多少个?21.如图,四边形ABCD 为正方形,点A 在y 轴上,点B 在x 轴上,且4OA =,2OB =,反比例函数()0ky k x=≠在第一象限的图象经过正方形的顶点C .(1)求点C 的坐标和反比例函数的解析式;(2)若点N 为直线OD 上的一动点(不与点O 重合),在y 轴上是否存在点M ,使以点A 、M 、C 、N 为顶点的四边形是平行四边形?若存在,求出点M 的坐标;若不存在,请说明理由.22.如图是一个山坡的纵向剖面图,坡面DE 的延长线交地面AC 于点B ,点E 恰好在BD 的中点处,60CBD ∠=︒,坡面AE 的坡角为45°,山坡顶点D 与水平线AC 的距离,即CD 的长为.(1)求BE 的长度;(2)求AB 的长度.(结果保留根号)23.如图,在Rt ABC △中,90ABC ∠=︒,点P 是斜边AC 上一个动点,以BP 为直径作O e ,交BC 于点D ,与AC 的另一个交点为E ,连接DE ,BE .(1)当»»DPEP =时,求证:AB AP =; (2)当3AB =,4BC =时.①是否存在点P ,使得BDE V 是等腰三角形,若存在,求出所有符合条件的CP 的长;若不存在,请说明理由;②连接DP ,点H 在DP 的延长线上,若点O 关于DE 的对称点Q 恰好落在CPH ∠内,求CP 的取值范围.24.已知抛物线22y x mx n =-++经过点(2,23)m -. (1)用含m 的式子表示n ;(2)当0m <时,设该抛物线与x 轴交于点A ,B (点A 在点B 的左侧),与y 轴交于点C ,ABC V 的外接圆与y 轴交于另一点D (点D 与点C 不重合),求点D 的坐标;(3)若点()13,E y -,()2,F t y ,()31,G m y -在该抛物线上,且当34t <≤时,总有123y y y <<,求3y 的取值范围.25.如图,在四边形ABCD 中,点N ,M 分别在边BC ,CD 上.连接AM ,AN ,MN ,45MAN ∠=︒.(1)【实践探究】如图①,四边形ABCD 是正方形. (ⅰ)若6CN =,10MN =,求CMN ∠的余弦值; (ⅱ)若1an 3t BAN =∠,求证:M 是CD 的中点;(2)【拓展】如图②,四边形ABCD 是直角梯形,AD BC ∥,90C ∠=︒,12CD =,16AD =,12CN =,求DM 的长.。
2024年广东省广州市中考数学三模训练试卷试卷满分120分.考试时间120分钟注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑. 如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答填空题时,请将每小题的答案直接填写在答题卡中对应横线上.写在本试卷上无效.4.回答解答题时,每题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.写在本试卷上无效.5.考试结束后,将本试卷和答题卡一并交回.第一部分选择题(共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题的四个选项中,只有一项符合题目要求)1. 2025的相反数是( )A. 2025−B. 12025−C. 2025D. 12025 2. 5G 是第五代移动通信技术,5G 网络理论下载速度可以达到每秒1300000KB 以上.用科学记数法表示1300000是( )A 51310× B. 51.310× C. 61.310× D. 71.310× 3. 中国“二十四节气”已被正式列入联合国教科文组织人类非物质文化遗产代表作品录,下列四幅作品分别代表“立春”“谷雨”“白露”“大雪”,其中是中心对称图形是( )A. B.C. D..的4. 下列运算,与()43a 计算结果相同的是( ) A. 52a a +B. 26a a ⋅C. ()2420a a a ÷≠D. ()244a a 5. 方程3111x x x −=−+的解是( ) A. 2x =B. 2x =−C. 3x =−D. 3x = 6. 关于一次函数24y x =−+,下列说法不正确的是( ) A. 图象不经过第三象限B. y 随着x 的增大而减小 C 图象与x 轴交于()2,0− D. 图象与y 轴交于()0,47. 如图为商场某品牌椅子的侧面图,120DEF ∠=°,DE 与地面平行,50ABD ∠=°,则ACB =∠( )A. 70°B. 65°C. 60°D. 50°8. 港珠澳大桥是世界上最长跨海大桥,被誉为“现代世界七大奇迹”的超级工程,它是我国从桥梁大国走向桥梁强国的里程碑之作.港珠澳大桥主桥为三座大跨度钢结构斜拉桥,其中九洲航道桥主塔造型取自“风帆”,寓意“扬帆起航”.某校九年学生为了测量该主塔的高度,站在B 处看塔顶A ,仰角为60°,然后向后走160米(160BC =米),到达C 处,此时看塔顶A ,仰角为30°,则该主塔的高度是( )A. 80米B. 米C. 160米D.9. 如图,在四边形ABCD 中,90A ∠=°,4AB =,M ,N 分别是边BC ,AB 上的动点(含端点,但点M 不与点B 重合)点E ,F 分别是线段DM ,MN 的中点,若线段EF 的最大值为2.5,则AD 的长为( ).的A 5B. C. 2.5 D. 310. 已知:ABC 中,AD 是中线,点E 在AD 上,且,CE CD BAD ACE =∠=∠.则CE AC的值为( )A.B. C. 23D. 第二部分非选择题(共90分)二、填空题(本题有6个小题,每小题3分,共18分)11. 因式分解:34a a −=_______________________. 12. 一个袋子中装有4个黑球和n 个白球,这些球除颜色外其余完全相同,摇匀后随机摸出一个,摸到白球的概率为35,则白球的个数n 为_______. 13. 若二次函数2y x k =+的图像经过点()11,y −,()23,y ,则1y __________2y (选填:﹥,﹤,=) 14. 如图,正六边形ABCDEF 的边长为2,以顶点A 为圆心,AB 的长为半径画圆,则图中阴影部分的面积为______.15. 某市为提倡居民节约用水,自今年1月1日起调整居民用水价格.图中1l 、2l分别表示去年、今年水.费y (元)与用水量x (3m )之间的关系.小雨家去年用水量为1503m ,若今年用水量与去年相同,水费将比去年多_____元.16. 数学课上,老师让同学们以“矩形的折叠”为主题开展数学活动.如图,小明把矩形ABCD 沿DE 折叠,使点C 落在AB 边的点F处,其中DE =,且4sin 5DFA ∠=,则矩形ABCD 的面积为______.三.解答题(共9小题,满分72分)17. 解不等式组12(23)5133x x x x −<+ + ≥+ ,并写出满足条件的正整数解. 18. 如图,在ABCD 中,点E ,F 在对角线BD 上,BE DF =,求证:AE CF =.19. 近几年中学生近视的现象越来越严重,为响应国家的号召,某公司推出了如图1所示的护眼灯,其侧面示意图(台灯底座高度忽略不计)如图2所示,其中灯柱BC =18cm ,灯臂CD =33cm ,灯罩DE =20cm ,BC ⊥AB ,CD ,DE 分别可以绕点C ,D 上下调节一定的角度.经使用发现:当∠DCB =140°,且ED ∥AB 时,台灯光线最佳.求此时点D 到桌面AB 的距离.(精确到0.1cm ,参考数值:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)20. 先化简,再求值:22111x x x x x +− −÷ − ,其中1x =.21. 中华文化源远流长,文学方面,《西游记》、《三国演义》、《水浒传》、《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”.某中学为了了解学生对四大古典名著的阅读情况,就“四大古典名著你读完了几部”的问题在全校学生中进行了抽样调查,根据调查结果绘制成如下尚不完整的统计图.请根据以上信息,解决下列问题:(1)本次调查所得数据的众数是________部,中位数是________部;(2)扇形统计图中“4部”所在扇形的圆心角为________度;(3)请将条形统计图补充完整;(4)没有读过四大古典名著的两名学生准备从中各自随机选择一部来阅读,请用列表或画树状图的方法求他们恰好选中同一名著的概率.22. 已知A (﹣4,2)、B (n ,﹣4)两点是一次函数y=kx+b 和反比例函数y=m x图象的两个交点. (1)求一次函数和反比例函数的解析式;(2)求△AOB 的面积;(3)观察图象,直接写出不等式kx+b ﹣m x>0的解集.23. 如图,在单位长度为1的网格中,点O ,A ,B 均在格点上,3OA =,2AB =,以O 为圆心,OA 为半径画圆,请按下列步骤完成作图,并回答问题:①过点A 作切线AC ,且4AC =(点C 在A 的上方);②连接OC ,交O 于点D ;③连接BD ,与AC 交于点E .(1)求证:BD 为O 的切线;(2)求AE 的长度.24. 已知二次函数2y ax bx c ++的图像经过()()2,1,2,3−−两点.(1)求b 的值.(2)当1c >−时,该函数的图像的顶点的纵坐标的最小值是________.(3)设()0m ,是该函数的图像与x 轴的一个公共点,当13m −<<时,结合函数的图像,直接写出a 的取值范围.25. 如图(1),已知点G 在正方形ABCD 的对角线AC 上,GE ⊥BC ,垂足为点E ,GF ⊥CD ,垂足为点F .(1)证明与推断:①求证:四边形CEGF 是正方形; ②推断:AG BE 的值为 : (2)探究与证明:将正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图(2)所示,试探究线段AG与BE之间的数量关系,并说明理由:(3)拓展与运用:正方形CEGF在旋转过程中,当B,E,F三点在一条直线上时,如图(3)所示,延长CG交AD于点H.若AG=6,GH,则BC=.2024年广东省广州市中考数学三模训练试卷试卷满分120分.考试时间120分钟注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答填空题时,请将每小题的答案直接填写在答题卡中对应横线上.写在本试卷上无效.4.回答解答题时,每题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.写在本试卷上无效.5.考试结束后,将本试卷和答题卡一并交回.第一部分选择题(共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题的四个选项中,只有一项符合题目要求)1. 2025的相反数是()A. 2025− B.12025− C. 2025 D.12025【答案】A【解析】【分析】根据相反数的定义进行求解即可.【详解】解:2025的相反数是2025−,故选A.【点睛】本题主要考查了求一个数的相反数,熟知只有符号不同的两个数互为相反数,0的相反数是0是解题的关键.2. 5G是第五代移动通信技术,5G网络理论下载速度可以达到每秒1300000KB以上.用科学记数法表示1300000是()A. 51310× B. 51.310× C. 61.310× D. 71.310×【答案】C【解析】【分析】此题考查了科学记数法的表示方法,科学记数法的表示形式为10n a ×的形式,其中1||10a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正整数;当原数的绝对值1<时,n 是负整数.详解】解:61300000 1.310=×,故选:C .3. 中国“二十四节气”已被正式列入联合国教科文组织人类非物质文化遗产代表作品录,下列四幅作品分别代表“立春”“谷雨”“白露”“大雪”,其中是中心对称图形的是( )A. B.C. D.【答案】D【解析】【分析】本题考查了中心对称图形的知识,把一个图形绕某一点旋转180°后,能够与原图形重合,那么这个图形就叫做中心对称图形,熟练掌握中心对称图形的概念,是解题的关键.【详解】解:A 、绕某一点旋转180°后,不能够与原图形重合,故不是中心对称图形,故不符合题意; B 、绕某一点旋转180°后,不能够与原图形重合,故不是中心对称图形,故不符合题意;C 、绕某一点旋转180°后,不能够与原图形重合,故不是中心对称图形,故不符合题意;D 、绕某一点旋转180°后,能够与原图形重合,故是中心对称图形,故符合题意;故选:D .4. 下列运算,与()43a 计算结果相同的是( ) A. 52a a +B. 26a a ⋅C. ()2420a a a ÷≠D. ()244a a 【答案】D【解析】【分析】本题考查同底数幂相乘除、幂的乘方等幂的有关运算及合并同类项.根据同底数幂相乘除、幂的乘方等幂的有关运算及合并同类项分别计算各式子,即可解答.【【详解】解:()4312a a =,A 选项:5a 与2a 不是同类项,无法合并,故计算结果与()43a 不相同; B 选项:268a a a ⋅=,故计算结果与()43a 不相同;C 选项:24222a a a ÷=,故计算结果与()43a 不相同; D 选项:()2444812a a a a a =⋅=故计算结果与()43a 相同. 故选:D5. 方程3111x x x −=−+的解是( ) A. 2x =B. 2x =−C. 3x =−D. 3x = 【答案】A【解析】【分析】两边都乘以()()11x x −+,化整式方程求解,然后检验即可. 【详解】3111x x x −=−+, 两边都乘以()()11x x −+,得()()()()13111x x x x x +−−=+−,整理,得24x −=−,∴2x =.检验:当2x =时,()()110x x −+≠,∴原方程的解为2x =.故选A .【点睛】本题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出未知数的值后不要忘记检验.6. 关于一次函数24y x =−+,下列说法不正确的是( ) A. 图象不经过第三象限B. y 随着x 的增大而减小C. 图象与x 轴交于()2,0−D. 图象与y 轴交于()0,4 【答案】C 为【解析】【分析】由20k =−<,40b =>,可得图象经过一、二、四象限,y 随x 的增大而减小,再分别求解一次函数与坐标轴的交点坐标,从而可得答案.【详解】解:∵24y x =−+,20k =−<,4>0b =,∴图象经过一、二、四象限,y 随x 的增大而减小,故A ,B 不符合题意;当0y =时,240x −+=,解得2x =,∴图象与x 轴交于()2,0,故C 符合题意;当0x =时,4y =,∴图象与y 轴交于()0,4,故D 不符合题意;故选C .【点睛】本题考查的是一次函数的图象与增减性,一次函数与坐标轴的交点坐标,熟记一次函数的性质是解本题的关键.7. 如图为商场某品牌椅子的侧面图,120DEF ∠=°,DE 与地面平行,50ABD ∠=°,则ACB =∠( )A. 70°B. 65°C. 60°D. 50°【答案】A【解析】 【分析】根据平行得到50ABD EDC ∠=∠=°,再利用外角的性质和对顶角相等,进行求解即可.【详解】解:由题意,得:DE AB ∥,∴50ABD EDC ∠=∠=°,∵120DEF EDC DCE ∠=∠+∠=°,∴70DCE ∠=°,∴70ACB DCE ∠∠°==; 故选A .【点睛】本题考查平行线的性质,三角形外角的性质,对顶角.熟练掌握相关性质,是解题的关键. 8. 港珠澳大桥是世界上最长的跨海大桥,被誉为“现代世界七大奇迹”的超级工程,它是我国从桥梁大国走向桥梁强国的里程碑之作.港珠澳大桥主桥为三座大跨度钢结构斜拉桥,其中九洲航道桥主塔造型取自“风帆”,寓意“扬帆起航”.某校九年学生为了测量该主塔的高度,站在B 处看塔顶A ,仰角为60°,然后向后走160米(160BC =米),到达C 处,此时看塔顶A ,仰角为30°,则该主塔的高度是( )A. 80米B. 米C. 160米D.【答案】B【解析】 【分析】过点A 作AD CB ⊥于点D ,先根据三角形的外角性质可得A ACB ∠=∠,从而可得160AB BC ==米,然后在Rt △ABD 中,利用锐角三角函数的定义求出AD 的长,即可解答.【详解】解:如图,过点A 作AD CB ⊥于点D ,根据题意得:60,30ABD ACB ∠=°∠=°,∵ABD A ACB ∠=∠+∠,∴30A ∠=°,∴A ACB ∠=∠,∴160AB BC ==米,在Rt △ABD 中,sin 60160AD AB =⋅°=即该主塔的高度是米. 故选:B【点睛】本题考查了解直角三角形的应用——仰角俯角问题,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.9. 如图,在四边形ABCD 中,90A ∠=°,4AB =,M ,N 分别是边BC ,AB 上的动点(含端点,但点M 不与点B 重合)点E ,F 分别是线段DM ,MN 的中点,若线段EF 的最大值为2.5,则AD 的长为( )A. 5B.C. 2.5D. 3【答案】D【解析】 【分析】根据三角形的中位线定理,可得EF =12 DN ,DN =2EF =5,利用勾股定理求出AD 的长,即得结论.【详解】解:∵点E 、F 分别为DM 、MN 的中点,∴EF =12 DN ,∵EF 最大值为2.5,∴当DN 最大,即当N 与B 重合时,有DN =2EF =5,∴5DN =,∴解得AD =3,故选:D .【点睛】本题考查三角形中位线定理、勾股定理等知识,解题的关键是中位线定理的灵活应用,学会转化的思想.10. 已知:ABC 中,AD 是中线,点E 在AD 上,且,CE CD BAD ACE =∠=∠.则CE AC的值为( )A. B. C. 23 D. 【答案】B【解析】【分析】本题主要考查了相似三角形、等腰三角形的性质、三角形外角与内角的关系等知识点,先利用等腰三角形的性质及外角与内角的关系说明B DAC ∠=∠,再判断ABC DAC △∽△,利用相似三角形的性质用CE 表示出AC ,最后代入比例可得结论.【详解】解: AD 是ABC 的中线,∴BC CD =,CE CD =,∴CED ADC ∠=∠,∴DAC ACE B BAD ∠+∠=∠+∠,ACE BAD ∠=∠,∴DAC B ∠=∠,又 ACD BCA ∠=∠,∴ABC DAC △∽△, ∴BC AC AC CD=, ∴22222AC BC CD CD CE =⋅==, ∴AC =,∴CE AC = 故选B .第二部分非选择题(共90分)二、填空题(本题有6个小题,每小题3分,共18分)11. 因式分解:34a a −=_______________________.【答案】(2)(2)a a a +−【解析】【分析】先提公因式,再用平方差公式分解.【详解】解:()3244(2)(2)a a a a a a a −−+−【点睛】本题考查因式分解,掌握因式分解方法是关键.12. 一个袋子中装有4个黑球和n 个白球,这些球除颜色外其余完全相同,摇匀后随机摸出一个,摸到白球的概率为35,则白球的个数n 为_______. 【答案】6【解析】【分析】本题考查利用概率求个数,根据白球概率求出黑球概率,黑球共有4个,就可以求出球的总数,再减去黑球个数即可解答,熟练掌握简单概率公式是解决问题的关键. 【详解】解:∵摇匀后随机摸出一个,摸到白球的概率为35, ∴摸到黑球的概率为25, ∵袋子中有4个黑球和n 个白球, ∴由简单概率公式可得4245n =+,解得6n =, ∴白球有6个,故答案为:6.13. 若二次函数2y x k =+的图像经过点()11,y −,()23,y ,则1y __________2y (选填:﹥,﹤,=)【答案】<【解析】【分析】本题考查了二次函数的图象与性质,根据二次函数的对称轴和开口方向,判断所给点到对称轴的距离大小即可求解.【详解】解:∵二次函数2y x k =+的对称轴为直线0x =,且图象开口向上,又()011−−=,303−=,13<,∴1y 2y <故答案为:<14. 如图,正六边形ABCDEF 的边长为2,以顶点A 为圆心,AB 的长为半径画圆,则图中阴影部分的面积为______.【答案】43π##43π 【解析】【分析】延长F A 交⊙A 于G ,如图所示:根据六边形ABCDEF 是正六边形,AB =2,利用外角和求得∠GAB =360606°=°,再求出正六边形内角∠F AB =180°-∠GAB =180°-60°=120°, 利用扇形面积公式代入数值计算即可.【详解】解:延长F A 交⊙A 于G ,如图所示:∵六边形ABCDEF 是正六边形,AB =2,∴∠GAB =360606°=°, ∠F AB =180°-∠GAB =180°-60°=120°, ∴2120443603603FAB n r S πππ××===扇形, 故答案为43π. 【点睛】本题主要考查扇形面积计算及正多边形的性质,熟练掌握扇形面积计算及正多边形的性质是解题的关键.15. 某市为提倡居民节约用水,自今年1月1日起调整居民用水价格.图中1l 、2l 分别表示去年、今年水费y (元)与用水量x (3m )之间的关系.小雨家去年用水量为1503m ,若今年用水量与去年相同,水费将比去年多_____元.【答案】210.【解析】【分析】根据函数图象中的数据可以求得120x >时,2l 对应的函数解析式,从而可以求得150x =时对应的函数值,由1l 的的图象可以求得150x =时对应的函数值,从而可以计算出题目中所求问题的答案,本题得以解决.【详解】设当120x >时,2l 对应的函数解析式为y kx b =+, 120480160720k b k b += +=,得6240k b = =− , 即当120x >时,2l 对应的函数解析式为6240y x =−, 当150x =时,6150240660y =×−=, 由图象可知,去年的水价是4801603÷=(元/3m ),故小雨家去年用水量为1503m ,需要缴费:1503450×=(元), 660450210−=(元), 即小雨家去年用水量为1503m ,若今年用水量与去年相同,水费将比去年多210元,故答案为210.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.16. 数学课上,老师让同学们以“矩形的折叠”为主题开展数学活动.如图,小明把矩形ABCD 沿DE 折叠,使点C 落在AB 边的点F 处,其中DE =,且4sin 5DFA ∠=,则矩形ABCD 的面积为______.【答案】80【解析】【分析】首先根据折叠的性质得到90DFC C ∠=∠=°,然后根据同角的余角相等得到DFA BEF ∠=∠,进而得到4sin sin 5BEF DFA ∠=∠=,设4BF x =,5EF x =,则3BE x =,5CE FE x ==,根据定理求出88AD x ==,1010DC DF x ===,最后利用矩形面积公式求解即可.【详解】解:∵矩形ABCD 沿DE 折叠,使点C 落在AB 边的点F 处,∴90DFC C ∠=∠=°,∴90DFA BFE ∠+∠=°,∵四边形ABCD 是矩形,∴90A B ∠=∠=°,∴90BEF BFE∠+∠=°, ∴DFA BEF ∠=∠, ∴4sin sin 5BEF DFA ∠=∠=, ∴设4BF x =,5EF x =,则3BE x =,5CE FE x ==,∴8AD BC x ==, ∵4sin 5DFA ∠=, ∴10DF x =,∵90DFC C ∠=∠=°,DE =∴222DF EF DE +=,即()()(222105x x +, ∴解得:1x =,负值舍去,∴88AD x ==,1010DC DF x ===,∴矩形ABCD 面积81080AD CD =⋅=×=.故答案为:80的三.解答题(共9小题,满分72分)17. 解不等式组12(23)5133x x x x −<+ + ≥+ ,并写出满足条件的正整数解. 【答案】不等式组的解集为1−<2x ≤,正整数解为1,2【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集. 【详解】解:12(23)5133x x x x −<+ +≥+①② 解不等式①,得:x >﹣1,解不等式②,得:2x ≤,∴不等式组的解集为1−<2x ≤,则不等式组的正整数解为1,2.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18. 如图,在ABCD 中,点E ,F 在对角线BD 上,BE DF =,求证:AE CF =.【答案】见解析【解析】【分析】先根据平行四边形的性质得到AB CD =,AB CD ∥,再证明ABE CDF ∠=∠,即可利用SAS 证明C ABE DF ≌△△,即可证明AE CF =.【详解】证明:∵四边形ABCD 是平行四边形,∴AB CD =,AB CD ∥,∴ABE CDF ∠=∠∵BE DF =,∴()SAS ABE CDF △△≌,∴AE CF =.【点睛】本题主要考查了平行四边形的性质,全等三角形的性质与判定,熟知平行四边形对边相等且平行是解题的关键19. 近几年中学生近视的现象越来越严重,为响应国家的号召,某公司推出了如图1所示的护眼灯,其侧面示意图(台灯底座高度忽略不计)如图2所示,其中灯柱BC=18cm,灯臂CD=33cm,灯罩DE=20cm,BC⊥AB,CD,DE分别可以绕点C,D上下调节一定的角度.经使用发现:当∠DCB=140°,且ED∥AB时,台灯光线最佳.求此时点D到桌面AB的距离.(精确到0.1cm,参考数值:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)【答案】点D到桌面AB的距离约为43.4cm【解析】【分析】根据题意,作出合适的辅助线,然后根据锐角三角函数,即可得到DF的长,再根据FG=CB,即可求得DG的长,从而可以解答本题.【详解】解:过点D作DG⊥AB,垂足为G,过点C作CF⊥DG,垂足为F,如图所示,∵CB⊥AB,FG⊥AB,CF⊥FG,∴∠B=∠BGF=∠GFC=90°,∴四边形BCFG为矩形,∴∠BCF=90°,FG=BC=18cm,又∵∠DCB=140°,∴∠DCF=50°,∵CD=33cm,∠DFC=90°,∴DF=CD•sin50°≈33×0.77=25.41(cm),∴DG ≈25.41+18≈43.4(cm ),答:点D 到桌面AB 的距离约为43.4cm .【点睛】本题考查的是矩形的判定与性质,解直角三角形的应用,掌握作出适当的辅助线构建直角三角形是解题的关键.20. 先化简,再求值:22111x x x x x +− −÷ −,其中1x =.【答案】11x −+, 【解析】【分析】先根据分式的混合运算法则化简,然后再将1x=−代入计算即可解答.【详解】解:22111x x x x x +− −÷ − 22111x x xx x +− =−⋅ −()()()()1111x x x x xx x −+−⋅+−11xx x =−⋅+11x =−+.当1x =−时,原式 【点睛】本题主要考查了分式的基本性质及其运算、分母有理化,正确的化简分式是解答本题的关键. 21. 中华文化源远流长,文学方面,《西游记》、《三国演义》、《水浒传》、《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”.某中学为了了解学生对四大古典名著的阅读情况,就“四大古典名著你读完了几部”的问题在全校学生中进行了抽样调查,根据调查结果绘制成如下尚不完整的统计图.请根据以上信息,解决下列问题:(1)本次调查所得数据的众数是________部,中位数是________部;(2)扇形统计图中“4部”所在扇形的圆心角为________度;(3)请将条形统计图补充完整;(4)没有读过四大古典名著的两名学生准备从中各自随机选择一部来阅读,请用列表或画树状图的方法求他们恰好选中同一名著的概率.【答案】(1)1,2;(2)72°;(3)见解析;(4)见解析,1 4【解析】【分析】(1)先根据调查的总人数,求得2部对应的人数,进而得到本次调查所得数据的众数以及中位数;(2)根据扇形圆心角的度数=部分占总体的百分比×360°,即可得到“4部”所在扇形的圆心角;(3)根据2部对应的人数,即可将条形统计图补充完整;(4)根据列表所得的结果,可判断他们选中同一名著的概率.【详解】解:(1)调查的总人数为:10÷25%=40,∴2部对应的人数为40-2-14-10-8=6,∴本次调查所得数据的众数是1部,∵2+14+10=26>21,2+14<20,∴中位数为2部.故答案为:1,2(2)扇形统计图中“4部”所在扇形的圆心角为:8360?=72? 40×故答案为:72°.(3)2部对应的人数为:40-2-14-10-8=6人补全统计图如图所示.(4)将《西游记》、《三国演义》、《水浒传》、《红楼梦》分别记作A,B,C,D,画树状图可得:由图可知,共有16种等可能结果,其中选中同一名著的有4种,()41 164P∴==选中同一部.故答案为:14.【点睛】此题考查了树状图法与列表法求概率,以及条形统计图与扇形统计图的知识.解题时注意:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.一组数据中出现次数最多的数据叫做众数.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.22. 已知A(﹣4,2)、B(n,﹣4)两点是一次函数y=kx+b和反比例函数y=mx图象的两个交点.(1)求一次函数和反比例函数的解析式;(2)求△AOB的面积;(3)观察图象,直接写出不等式kx+b﹣mx>0的解集.的【答案】(1)反比例函数解析式为y=﹣8x,一次函数的解析式为y=﹣x ﹣2;(2)6;(3)x <﹣4或0<x <2. 【解析】【分析】(1)先把点A 的坐标代入反比例函数解析式,即可得到m=﹣8,再把点B 的坐标代入反比例函数解析式,即可求出n=2,然后利用待定系数法确定一次函数的解析式;(2)先求出直线y=﹣x ﹣2与x 轴交点C 的坐标,然后利用S △AOB =S △AOC +S △BOC 进行计算;(3)观察函数图象得到当x <﹣4或0<x <2时,一次函数的图象在反比例函数图象上方,据此可得不等式的解集.【详解】(1)把A (﹣4,2)代入my x=,得m=2×(﹣4)=﹣8, 所以反比例函数解析式为8y x=−, 把B (n ,﹣4)代入8y x=−, 得﹣4n=﹣8 解得n=2,把A (﹣4,2)和B (2,﹣4)代入y=kx+b ,得: 4224k b k b −+= +=− ,解得:12k b =− =− , 所以一次函数的解析式为y=﹣x ﹣2; (2)y=﹣x ﹣2中,令y=0,则x=﹣2, 即直线y=﹣x ﹣2与x 轴交于点C (﹣2,0),∴S △AOB =S △AOC +S △BOC =12×2×2+12×2×4=6; (3)由图可得,不等式kx +b−mx>0的解集为:x <−4或0<x <2.【点睛】本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数的交点坐标满足两函数的解析式.解决问题的关键是掌握用待定系数法确定一次函数的解析式.23. 如图,在单位长度为1的网格中,点O ,A ,B 均在格点上,3OA =,2AB =,以O 为圆心,OA 为半径画圆,请按下列步骤完成作图,并回答问题:①过点A 作切线AC ,且4AC =(点C 在A 的上方); ②连接OC ,交O 于点D ; ③连接BD ,与AC 交于点E . (1)求证:BD 为O 的切线; (2)求AE 的长度.【答案】(1)画图见解析,证明见解析 (2)32AE = 【解析】【分析】(1)根据题意作图,首先根据勾股定理得到5OC ==,然后证明出()SAS AOC DOB ≌,得到90OAC ODB ∠=∠=°,即可证明出BD 为O 的切线;(2)首先根据全等三角形的性质得到4BD AC ==,然后证明出BAE BDO ∽,利用相似三角形的性质求解即可. 【小问1详解】 如图所示,∵AC 是O 的切线, ∴OA AC ⊥, ∵3OA =,4AC =,∴5OC ==,∵3OA =,2AB =, ∴5OB OA AB =+=, ∴OB OC =,又∵3==OD OA ,AOC DOB ∠=∠, ∴()SAS AOC DOB ≌, ∴90OAC ODB ∠=∠=°, ∴OD BD ⊥, ∵点D 在O 上, ∴BD 为O 的切线; 【小问2详解】 ∵AOC DOB ≌, ∴4BD AC ==,∵ABE DBO ∠=∠,BAE BDO ∠=∠,∴BAE BDO ∽,∴AE ABOD BD =,即234AE =, ∴解得32AE =.【点睛】此题考查了格点作图,圆切线的性质和判定,全等三角形的性质和判定,相似三角形的性质和判定等知识,解题的关键是熟练掌握以上知识点.24. 已知二次函数2y ax bx c ++的图像经过()()2,1,2,3−−两点. (1)求b 的值.(2)当1c >−时,该函数的图像的顶点的纵坐标的最小值是________.(3)设()0m ,是该函数的图像与x 轴的一个公共点,当13m −<<时,结合函数的图像,直接写出a 的取值范围.【答案】(1)1b =-;(2)1;(3)a<0或45a >. 【解析】【分析】(1)将点()()2,1,2,3−−代入求解即可得;(2)先求出二次函数的顶点的纵坐标,再利用完全平方公式、不等式的性质求解即可得;(3)分a<0和0a >两种情况,再画出函数图象,结合图象建立不等式组,解不等式组即可得. 【详解】解:(1)将点()()2,1,2,3−−代入2y ax bx c ++得:421423a b c a b c −+=++=− , 两式相减得:44b −=, 解得1b =-;(2)由题意得:0a ≠,由(1)得:2211()24yax x c a x c a a=−+=−+−, 则此函数的顶点的纵坐标为14c a−, 将点()2,3−代入2y ax x c =−+得:423a c −+=−, 解得41a c −=+, 则1141c c a c −=++,下面证明对于任意的两个正数00,x y ,都有00x y +≥2000x y =+−≥ ,00x y ∴+≥(当且仅当00x y =时,等号成立),当1c >−时,10c +>,则11111111c c c c +=++−≥−=++(当且仅当111c c +=+,即0c =时,等号成立), 即114c a−≥, 故当1c >−时,该函数的图像的顶点的纵坐标的最小值是1; (3)由423a c −+=−得:41c a =−−,则二次函数的解析式为241(0)y ax x a a =−−−≠, 由题意,分以下两种情况:①如图,当a<0时,则当=1x −时,0y >;当3x =时,0y <,即141093410a a a a +−−>−−−<,解得a<0;②如图,当0a >时,当=1x −时,14130y a a a =+−−=−<,∴当3x =时,93410y a a =−−−>,解得45a >, 综上,a 的取值范围为a<0或45a >. 【点睛】本题考查了二次函数的图象与性质等知识点,较难的是题(3),熟练掌握函数图象法是解题关键.25. 如图(1),已知点G 在正方形ABCD 对角线AC 上,GE ⊥BC ,垂足为点E ,GF ⊥CD ,垂足为点F .(1)证明与推断:①求证:四边形CEGF 是正方形; ②推断:AGBE的值为 :的(2)探究与证明:将正方形CEGF 绕点C 顺时针方向旋转α角(0°<α<45°),如图(2)所示,试探究线段AG 与BE 之间的数量关系,并说明理由: (3)拓展与运用:正方形CEGF 在旋转过程中,当B ,E ,F 三点在一条直线上时,如图(3)所示,延长CG 交AD 于点H .若AG =6,GH ,则BC = .【答案】(1)①四边形CEGF ;(2)线段AG 与BE 之间的数量关系为AG BE ;(3)【解析】【分析】(1)①由GE BC ⊥、GF CD ⊥结合90BCD ∠= 可得四边形CEGF 是矩形,再由45ECG ∠= 即可得证;②由正方形性质知90CEG B ∠∠== 、45ECG ∠= ,据此可得CGCE=、GE //AB ,利用平行线分线段成比例定理可得;(2)连接CG ,只需证ACG ∽BCE 即可得;(3)证AHG ∽CHA 得AGGH AH ACAH CH ==,设BC CD AD a ===,知AC =,由AG GHAC AH=得23AH a =、13DH a =、CH ,由AG AH AC CH =可得a 的值. 【详解】(1)①∵四边形ABCD 是正方形, ∴∠BCD =90°,∠BCA =45°, ∵GE ⊥BC 、GF ⊥CD , ∴∠CEG =∠CFG =∠ECF =90°,∴四边形CEGF 是矩形,∠CGE =∠ECG =45°, ∴EG =EC ,∴四边形CEGF 是正方形;。
2023年广东省中考数学模拟试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.-2021的绝对值是( )A .2021-B .12021-C .2021D .12020 2.剪纸是我国古老的民间艺术,下列四个剪纸图案为轴对称图形的是( ) A . B .C .D .3.某几何体的三视图如图所示,则此几何体是( )A .圆锥B .圆柱C .长方体D .四棱柱 4.下列运算正确的是( )A .235a a a +=B .3412a a a ⋅=C .32a a a÷= D .()236236a b a b -= 5.关于x 的一元一次不等式58x x ≥+的解集在数轴上表示为( )A .B .C .D .6.如图,直线a ,b 被直线c 所截,若//a b ,170∠=︒,则2∠的度数是( )A .70°B .100°C .110°D .120°7.计算22111m m m m ----的结果是( ) A .1m + B .1m - C .2m - D .2m -- 8.如图,AB 是O 的直径,点E ,C 在O 上,点A 是EC 的中点,过点A 画O 的切线,交BC 的延长线于点D ,连接EC .若58.5ADB ∠=︒,则ACE ∠的度数为( )A .29.5︒B .31.5︒C .58.5︒D .63︒9.如图,O 是坐标原点,点B 在x 轴上,在OAB 中,AO =AB =5,OB =6,点A 在反比例函数y =k x(k ≠0)图象上,则k 的值( )A .﹣12B .﹣15C .﹣20D .﹣3010.如图,在Rt △ABC 中,△A =30°,△C =90°,AB =6,点P 是线段AC 上一动点,点M 在线段AB 上,当AM =13AB 时,PB +PM 的最小值为( )A.B.C.2D.3二、填空题11.因式分解:2728a-=________.12.解决全人类温饱问题是“世界杂交水稻之父”袁隆平先生的毕生追求.2020年中国粮食总产量达到657 000 000吨,已成为世界粮食第一大国.将657 000 000用科学记数法表示为________.13.不等式组51350xx-<⎧⎨-≥⎩的解集是__________.14.已知甲、乙两队员射击的成绩如图,设甲、乙两队员射击成绩的方差分别为2S甲、2 S 乙,则2S甲___2S乙.(填“>”、“=”、“<”)15.如图,花瓣图案中的正六边形ABCDEF的每个内角的度数是__.16.若实数x满足210x x--=,则3222021x x-+=__.17.如图,把边长为3的正方形OABC绕点O逆时针旋转n°(0<n<90)得到正方形ODEF,DE与BC交于点P,ED的延长线交AB于点Q,交OA的延长线于点M.若BQ:AQ=3:1,则AM=__________.三、解答题18.计算:(π﹣1)0+2|﹣(13)﹣1+tan60°.19.如图,在菱形ABCD中,点M、N分别在AB、CB上,且ADM CDN∠=∠,求证:BM BN=.20.端午节吃粽子是中华民族的传统习俗.某超市节前购进了甲、乙两种畅销口味的粽子.已知购进甲种粽子的金额是1200元,购进乙种粽子的金额是800元,购进甲种粽子的数量比乙种粽子的数量少50个,甲种粽子的单价是乙种粽子单价的2倍.(1)求甲、乙两种粽子的单价分别是多少元?(2)为满足消费者需求,该超市准备再次购进甲、乙两种粽子共200个,若总金额不超过1150元,问最多购进多少个甲种粽子?21.为庆祝建党100周年,某校开展“学党史•颂党恩”的作品征集活动,征集的作品分为四类:征文、书法、剪纸、绘画.学校随机抽取部分学生的作品进行整理,并根据结果绘制成如下两幅不完整的统计图.请根据以上信息解答下列问题:(1)所抽取的学生作品的样本容量是多少?(2)补全条形统计图.(3)本次活动共征集作品1200件,估计绘画作品有多少件.22.某校数学社团开展“探索生活中的数学”研学活动,准备测量一栋大楼BC的高度.如图所示,其中观景平台斜坡DE的长是20米,坡角为37︒,斜坡DE底部D与大楼底端C的距离CD为74米,与地面CD垂直的路灯AE的高度是3米,从楼顶B测得路灯AE 项端A 处的俯角是42.6︒.试求大楼BC 的高度. (参考数据:3sin 375︒≈,4cos375≈︒,3tan 374︒≈,17sin 42.625︒≈,34cos 42.645︒≈,9tan 42.610︒≈)23.某药店新进一批桶装消毒液,每桶进价35元,原计划以每桶55元的价格销售,为更好地助力疫情防控,现决定降价销售.已知这种消毒液销售量y (桶)与每桶降价x (元)(020x <<)之间满足一次函数关系,其图象如图所示:(1)求y 与x 之间的函数关系式;(2)在这次助力疫情防控活动中,该药店仅获利1760元.这种消毒液每桶实际售价多少元?24.如图,AB 是O 的直径,C 、D 是O 上两点,且BD CD =,过点D 的直线DE AC ⊥交AC 的延长线于点E ,交AB 的延长线于点F ,连接AD 、OE 交于点G . (1)求证:DE 是O 的切线;(2)若23DG AG =,O 的半径为2,求阴影部分的面积;(3)连结BE ,在(2)的条件下,求BE 的长.25.如图1,二次函数()()34y a x x =+-的图象交坐标轴于点A ,()0,2B -,点P 为x 轴上一动点.(1)求二次函数()()34y a x x =+-的表达式;(2)过点P 作PQ x ⊥轴分别交线段AB ,抛物线于点Q ,C ,连接AC .当1OP =时,求ACQ 的面积;(3)如图2,将线段PB 绕点P 逆时针旋转90得到线段PD .△当点D 在抛物线上时,求点D 的坐标;△点52,3E ⎛⎫- ⎪⎝⎭在抛物线上,连接PE ,当PE 平分BPD ∠时,直接写出点P 的坐标.参考答案:1.C【解析】【分析】根据绝对值的定义即可得出正确选项.【详解】解:-2021的绝对值是2021故选:C.【点睛】本题考查求绝对值,掌握正数的绝对值是它本身,0的绝对值是0,负数的绝对值是它的相反数是解题的关键.2.C【解析】【分析】过一个图形的一条直线,把这个图形分成可以完全重合的两个部分,这个图形就叫做轴对称图形;根据轴对称图形的概念求解即可.【详解】解:A、不是轴对称图形,本选项不符合题意;B、不是轴对称图形,本选项不符合题意;C、是轴对称图形,本选项符合题意;D、不是轴对称图形,本选项不符合题意.故选:C.【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.B【解析】【详解】解:圆柱体的主视图、左视图、右视图,都是长方形(或正方形),俯视图是圆,故选:B.【点睛】本题考查三视图.4.C【解析】【分析】根据合并同类项的法则,同底数幂的乘法,同底数幂的除法,幂的乘方与积的乘方的性质逐项计算可判断求解.【详解】解:A.2a与3a不是同类项,不能合并,故A选项不符合题意;B.347a a a⋅=,故B选项不符合题意;C.32÷=,故C选项符合题意;a a aD.3262-=,故D选项不符合题意,(3)9a b a b故选:C.【点睛】本题考查了合并同类项的法则,同底数幂的乘法,同底数幂的除法,幂的乘方与积的乘方,掌握以上知识是解题的关键.5.B【解析】【分析】求出不等式的解集,并表示出数轴上即可.【详解】≥+x x58x≥解得2x≥表示在数轴上,如图将2故选B【点睛】本题考查了解一元一次不等式,并将不等式的解集表示在数轴上,数形结合是解题的关键.6.C【解析】【分析】由已知条件//a b ,可得1370==︒∠∠,由平角的性质可得23180∠+∠=︒代入计算即可得出答案.【详解】解:如图,//a b ,1370∴∠=∠=︒,23180∠+∠=︒,2180318070110∴∠=︒-∠=︒-︒=︒.故选:C .【点睛】本题主要考查了平行线的性质,熟练掌握平行线的性质进行求解是解决本题的关键. 7.B【解析】【分析】根据分式的减法法则可直接进行求解.【详解】 解:()2221212111111m m m m m m m m m m ---+-===-----; 故选B .【点睛】本题主要考查分式的减法运算,熟练掌握分式的减法运算是解题的关键.8.B【解析】【分析】根据切线的性质得到BA△AD,根据直角三角形的性质求出△B,根据圆周角定理得到△ACB=90°,进而求出△BAC,根据垂径定理得到BA△EC,进而得出答案.【详解】解:△AD是△O的切线,△BA△AD,△△ADB=58.5°,△△B=90°-△ADB=31.5°,△AB是△O的直径,△△ACB=90°,△△BAC=90°-△B=58.5°,△点A是弧EC的中点,△BA△EC,△△ACE=90°-△BAC=31.5°,故选:B.【点睛】本题考查的是切线的性质、圆周角定理、垂径定理,掌握圆的切线垂直于经过切点的半径是解题的关键.9.A【解析】【分析】过A点作AC△OB,利用等腰三角形的性质求出点A的坐标即可解决问题.【详解】解:过A点作AC△OB,△AO=AB,AC△OB,OB=6,△OC=BC=3,在Rt△AOC中,OA=5,△AC4,△A(﹣3,4),把A(﹣3,4)代入y=kx,可得k=﹣12故选:A.【点睛】本题考查反比例函数图象上的点的性质,等腰三角形的性质,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.B【解析】【分析】作B点关于AC的对称点B',连接B'M交AC于点P,则PB+PM的最小值为B'M的长,过点B'作B'H△AB交H点,在Rt△BB'H中,B'H=HB=3,可求MH=1,在Rt△MHB'中,B'M=PB+PM的最小值为【详解】解:作B点关于AC的对称点B',连接B'M交AC于点P,△BP=B'P,BC=B'C,△PB+PM=B'P+PM≥B'M,△PB+PM的最小值为B'M的长,过点B'作B'H△AB交H点,△△A =30°,△C =90°,△△CBA =60°,△AB =6,△BC =3,△BB '=BC +B 'C =6,在Rt △BB 'H 中,△B 'BH =60°,∴△BB 'H =30°,△BH =3,由勾股定理可得:'B H =△AH =AB -BH =3,△AM =13AB , △AM =2,△MH =AH -AM =1,在Rt △MHB '中,'B M =△PB +PM 的最小值为故选:B .【点睛】本题考查轴对称—最短路线问题,涉及到解直角三角形,解题的关键是做辅助线,找出PB +PM 的最小值为B 'M 的长.11.7(2)(2)a a +-【解析】【分析】先提取公因式7,然后再使用平方差公式求解即可.【详解】解:原式2=7(4)7(2)(2)a a a -=+-,故答案为:7(2)(2)a a +-.【点睛】本题考查了因式分解的方法,先提公因式,再看能否套平方差公式或完全平方式. 12.6.57×108【解析】【分析】由题意结合科学记数法表示较大的数时,一般形式为a ×10n ,其中1≤|a |<10,n 为整数,且n 比原来的整数位数少1,据此进行分析即可.【详解】解:将657 000 000用科学记数法表示为6.57×108.故答案为:6.57×108.【点睛】本题主要考查用科学记数法表示较大的数,一般形式为a ×10n ,其中1≤|a |<10,确定a 与n 的值是解题的关键.13.563x < 【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:解不等式51x -<,得:6x <,解不等式350x -,得:53x , 则不等式组的解集为563x <, 故答案为:563x <. 【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.14.>【解析】【分析】先计算两组数据的平均数,再计算它们的方差,即可得出答案.【详解】解:甲射击的成绩为:6,7,7,7,8,8,9,9,9,10,乙射击的成绩为:6,7,7,8,8,8,8,9,9,10,则x甲=110×(6+7×3+8×2+9×3+10)=8,x乙=110×(6+7×2+8×4+9×2+10)=8,△S甲2=110×[(6-8)2+3×(7-8)2+2×(8-8)2+3×(9-8)2+(10-8)2]=110×[4+3+3+4]=1.4;S乙2=110×[(6-8)2+2×(7-8)2+4×(8-8)2+2×(9-8)2+(10-8)2]=110×[4+2+2+4]=1.2;△1.4>1.2,△S甲2>S乙2,故答案为:>.【点睛】题主要考查了平均数及方差的知识.方差的定义:一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=1n[(x1-x)2+(x2-x)2+…+(xn-x)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.15.120°【解析】【分析】多边形的内角和可以表示成(n ﹣2)•180°,因为所给多边形的每个内角均相等,可设这个正六边形的每一个内角的度数为x ,故又可表示成6x ,列方程可求解.【详解】解:设这个正六边形的每一个内角的度数为x ,则6x =(6﹣2)•180°,解得x =120°.故答案为:120°.【点睛】本题考查根据多边形的内角和计算公式及求正多边形的内角的度数,解答时要会根据公式进行正确运算、变形和数据处理.16.2020【解析】【分析】由等式性质可得21x x =+,21x x -=,再整体代入计算可求解.【详解】解:210--=x x ,21x x ∴=+,21x x -=,3222021x x -+2(1)22021x x x =+-+2222021x x x =+-+22021x x =-+12021=-+2020=.故答案为:2020.【点睛】本题主要考查因式分解的应用,将等式转化为21x x =+,21x x -=是解题的关键.17.25【解析】【分析】连接OQ ,OP ,利用HL 证明Rt △OAQ △Rt △ODQ ,得QA =DQ ,同理可证:CP =DP ,设CP =x ,则BP =3-x ,PQ =x +34,在Rt △BPQ 中,利用勾股定理列出方程求出x =95,再利用△AQM △△BQP 可求解.【详解】解:连接OQ ,OP ,△将正方形OABC 绕点O 逆时针旋转n °(0<n <90)得到正方形ODEF ,△OA =OD ,△OAQ =△ODQ =90°,在Rt △OAQ 和Rt △ODQ 中,OQ OQ OA OD=⎧⎨=⎩, △Rt △OAQ △Rt △ODQ (HL ),△QA =DQ ,同理可证:CP =DP ,△BQ :AQ =3:1,AB =3,△BQ =94,AQ =34, 设CP =x ,则BP =3-x ,PQ =x +34, 在Rt △BPQ 中,由勾股定理得:(3-x )2+(94)2=(x +34)2, 解得x =95, △BP =65, △△AQM =△BQP ,△BAM =△B ,△△AQM △△BQP ,△13AM AQ BP BQ ==, △1635AM =,△AM =25. 故答案为:25. 【点睛】本题主要考查了旋转的性质,全等三角形的判定与性质,勾股定理,相似三角形的判定与性质等知识,利用全等证明QA =DQ ,CP =DP 是解题的关键.18.0【解析】【分析】根据011(1)1,()223π--===60°角的正切值解题即可. 【详解】解:原式123=+0=.【点睛】本题考查实数的混合运算,涉及零指数幂、负整指数幂、绝对值、正切等知识,是重要考点,难度较易,掌握相关知识是解题关键.19.见解析【解析】【分析】菱形ABCD 中,四边相等,对角相等,结合已知条件ADM CDN ∠=∠,可利用三角形全等进行证明,得到AM CN =,再线段之差相等即可得证.【详解】四边形ABCD 是菱形,,BA BC DA DC A C ∴==∠=∠在AMD 和CND △中A C DA DCADM CDN ∠=∠⎧⎪=⎨⎪∠=∠⎩∴AMD ≌CND △(ASA)AM CN ∴=BA BC =BA AM BC CN ∴-=-即BM BN =.【点睛】本题考查了三角形全等的证明,菱形的性质,根据题意找准三角形证明的条件,利用角边角进行三角形全等的证明是解题的关键.20.(1)乙种粽子的单价为4元,则甲种粽子的单价为8元;(2)最多购进87个甲种粽子【解析】【分析】(1)设乙种粽子的单价为x 元,则甲种粽子的单价为2x 元,然后根据“购进甲种粽子的金额是1200元,购进乙种粽子的金额是800元,购进甲种粽子的数量比乙种粽子的数量少50个”可列方程求解;(2)设购进m 个甲种粽子,则购进乙种粽子为(200-m )个,然后根据(1)及题意可列不等式进行求解.【详解】解:(1)设乙种粽子的单价为x 元,则甲种粽子的单价为2x 元,由题意得:1200800502x x+=, 解得:4x =,经检验4x =是原方程的解,答:乙种粽子的单价为4元,则甲种粽子的单价为8元.(2)设购进m 个甲种粽子,则购进乙种粽子为(200-m )个,由(1)及题意得: ()842001150m m +-≤,解得:87.5m ≤,△m 为正整数,△m 的最大值为87;答:最多购进87个甲种粽子.【点睛】本题主要考查分式及一元一次不等式的应用,熟练掌握分式方程的解法及一元一次不等式的解法是解题的关键.21.(1)120;(2)图形见解析;(3)360件【解析】【分析】(1)根据剪纸的人数除以所占百分比,得到抽取作品的总件数;(2)由总件数减去其他作品数,求出绘画作品的件数,补全条形统计图即可;(3)求出样本中绘画作品的百分比,乘以1200即可得到结果.【详解】解:(1)根据题意得:1210%120÷=(件),所抽取的学生作品的样本容量是120;(2)绘画作品为120(423012)36-++=(件),补全统计图,如图所示:(3)根据题意得:361200360120⨯=(件),则绘画作品约有360件.答:本次活动共征集作品1200件时,绘画作品约有360件.【点睛】本题主要考查了总体、个体、样本、样本容量,用样本估计总体,条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.96米【解析】【分析】延长AE 交CD 延长线于M ,过A 作AN△BC 于N ,则四边形AMCN 是矩形,得NC=AM ,AN=MC ,由锐角三角函数定义求出EM 、DM 的长,得出AN 的长,然后由锐角三角函数求出BN 的长,即可求解.【详解】延长AE 交CD 于点M ,过点A 作AN BC ⊥,交BC 于点N ,由题意得,90AMC NCM ANC ∠=∠=∠=︒,△四边形AMCN 为矩形,△NC AM =,NA CM =.在Rt EMD △中,90EMD ∠=︒, △sin EM EDM ED ∠=,cos DM EDM ED ∠=, △sin 3720EM ︒=,cos3720MD ︒=, △320sin 3720125EM =⋅≈⨯=︒, △420cos3720165DM =⋅︒≈⨯=. 在Rt BNA △中,90BNA ∠=︒, △tan BN BAN AN ∠=, △tan 42.67416BN ︒=+, △990tan 42.6908110BN =≈⨯=︒, △8131296BC BN AE EM =++=++=.答:大楼BC 的高度约为96米.【点睛】本题考查的是解直角三角形的应用-仰角俯角问题,坡度坡角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.23.(1)y =10x +100;(2)这种消毒液每桶实际售价43元【解析】【分析】(1)设y 与x 之间的函数表达式为y kx b =+,将点(1,110)、(3,130)代入一次函数表达式,即可求解;(2)根据利润等于每桶的利润乘以销售量得关于x 的一元二次方程,通过解方程即可求解.【详解】解:(1)设y 与销售单价x 之间的函数关系式为:y kx b =+,将点(1,110)、(3,130)代入一次函数表达式得:1101303k b k b =+⎧⎨=+⎩, 解得:10100k b =⎧⎨=⎩, 故函数的表达式为:10100y x =+;(2)由题意得:(10100)(5535)1760x x +⨯--=,整理,得210240x x --=.解得112x =,22x =-(舍去).所以5543x -=.答:这种消毒液每桶实际售价43元.【点睛】本题主要考查了一元二次方程的应用以及用待定系数法求一次函数解析式等知识,正确利用销量⨯每件的利润=总利润得出一元二次方程是解题关键.24.(1)见解析;(2)23π;(3【解析】【分析】(1)根据同圆中等弧所对的圆周角相等得到△CAD =△DAB ,根据等边对等角得到△DAB =△ODA ,则△CAD =△ODA ,即可判定OD △AE ,进而得到OD △DE ,据此即可得解;(2)连接BD ,根据相似三角形的性质求出AE =3,AD△DAB =30°,则△EAF =60°,△DOB =60°,DFS 阴影=S △DOF -S 扇形DOB 即可得解;(3)过点E 作EM △AB 于点M ,连接BE ,解直角三角形得到AM =32,EM MB =52,再根据勾股定理求解即可. 【详解】解:(1)证明:如图,连接OD ,BD CD =,CAD DAB ∴∠=∠,OA OD =,DAB ODA ∴∠=∠,CAD ODA ∴∠=∠,//OD AE ∴,DE AC ⊥,OD DE ∴⊥, OD 是O 的半径,DE ∴是O 的切线;(2)解://OD AE ,OGD EGA ∴∆∆∽, ∴DG OD AG AE=, 23DG AG =,O 的半径为2, ∴223AE=, 3AE ∴=,如图,连接BD ,AB 是O 的直径,DE AE ⊥,90AED ADB ∴∠=∠=︒,CAD DAB ∠=∠,AED ADB ∴∆∆∽, ∴AE AD AD AB=, 即34AD AD =,AD ∴=在Rt ADB ∆中,cos AD DAB AB ∠= 30DAB ∴∠=︒,60EAF ∴∠=︒,60DOB ∠=︒,30F ∴∠=︒,2OD =,2tan30DF ∴=︒216022223603DOF DOB S S S ππ∆⨯∴=-=⨯⨯=阴影扇形; (3)如图,过点E 作EM AB ⊥于点M ,连接BE ,在Rt AEM ∆中,13cos60322AM AE =⋅︒=⨯=,sin 60EM AE =⋅︒ 35422MB AB AM ∴=-=-=,BE ∴ 【点睛】此题是圆的综合题,考查了切线的判定与性质、扇形的面积、相似三角形的判定与性质、解直角三角形,熟练掌握切线的判定与性质、相似三角形的判定与性质并证明△OGD △△EGA 求出AE 是解题的关键.25.(1)211266y x x =--;(2)34;(3)△(3,1)D -或(8,10)-;△1(,0)3-或(2,0). 【解析】【分析】(1)根据B 点的坐标以及已知条件,将B 的坐标代入即可求得a 的值,进而求得抛物线的解析式;(2)依题意根据(1)的解析式求得A 的坐标,进而求得1tan 2OAB ∠=,据此求得PQ ,根据1OP =进而求得C 的坐标,根据12ACQ S QC AP =⋅⋅△即可求得ACQ 的面积;(3)△过D 作DF x ⊥轴,分D 点在x 轴上方和下方两种情况讨论,证明BOP PFD △≌△,设(,0)P a ,(2,)D a a +-将点D 的坐标代入(1)中抛物线解析式中即可求得D 点的坐标情形2,方法同情形1;△分当PE 不平行于y 轴和//PE y 轴两种情况讨论,当当PE 不平行于y 轴时,过点B 作BM BP ⊥交PE 于点M ,过点M 作MH OB ⊥于点H ,证明BOP MHB △≌△进而可得P 的坐标,当//PE y 轴时,结合已知条件即可求得P 的坐标.【详解】(1)二次函数()()34y a x x =+-的图象经过()0,2B -∴122a -=- 解得16a = ∴()()34y a x x =+-1(3)(4)6x x =+- ∴211266y x x =-- (2)由1(3)(4)6y x x =+-,令0y = 解得123,4x x =-=(4,0),4A OA ∴=21tan 42OB OAB OA ∠=== ∴当1OP =时,413PA OA OP =-=-=13tan 322PQ PA OAB =⋅∠=⨯= ∴1C x =,则()()1131426C y =+-=- 111332224ACQ S QC AP ∴=⋅⋅=⨯⨯=△; (3)如图,当点D 在x 轴下方时,过点D 作DF AP ⊥于点F ,由211266y x x =--,令0x =, 解得2y =-(0,2)B ,2OB =90FPD PDF ∴∠+∠=︒,将线段PB 绕点P 逆时针旋转90得到线段PD ,90BPD ∴∠=︒90OPB FPD ∴∠+∠=︒OPB PDF ∴∠=∠90,BOP PFD PB DP ∠=∠=︒=∴BOP PFD △≌△2BO PF ∴==,OP DF =,设(0)OP DF a a ==>,2OF OP PF a ∴=+=+(2,)D a a ∴+-D 点在抛物线上,∴()()123246a a a +++-=- 解得121,10a a ==-(舍)(3,1)D ∴-当点D 在x 轴上方时,如图,过点D 作DF AP ⊥于点F ,设OF a =(0)a >同理可得BOP PFD △≌△2,2BO PF DF OP a ∴====+(,2)D a a ∴-+ D 点在抛物线上, ∴()()13426a a a -+--=+ 解得128,3a a ==-(舍去),(8,10)D ∴-综上所述,(3,1)D -或(8,10)-;△当PE 不平行于y 轴时,过点B 作BM BP ⊥交PE 于点M ,过点M 作MH OB ⊥于点H ,如图,PE 平分BPD ∠,PD PB ⊥,45BPE ∴∠=︒,BP BM ⊥,90HBM PBO ∴∠+∠=︒,90,BOP BHM PB BM ∠=∠=︒=90HBM PBO ∴∠+∠=︒90BPO PBO ∠+∠=︒BPO HBM ∴∠=∠90,BOP BHM PB BM ∴∠=∠=︒=BOP MHB ∴△≌△2HM OB ∴==2M x ∴=∴当PE 不平行于y 轴时,,E M 重合,BOP MHB △≌△,52,3E ⎛⎫- ⎪⎝⎭ ∴51233OP BH OB OH ==-=-=- 1(,0)3P ∴- 当PE //y 轴时,如图,此时P E x x =则(2,0)P综上所述,当PE平方BPD∠时,点P的坐标为1(,0)3-或(2,0).【点睛】本题考查了待定系数法求二次函数解析式,二次函数与坐标轴交点,正切的定义,三角形全等的性质与判定,分类讨论是解题的关键.。
广东省汕头市龙湖实验中学2023-2024 学年度第 2 次中考模拟考试卷初三数学一、选择题:(本题共10 小题,每小题3分,共30分)1.2的的相反数是()A.2B.-2C.D.-2.如图所示的几何体,其俯视图是()A B C D3.2020~2025年第二期建设规划地铁总里程约为159600米,把数字“159600”用科学记数法表示为()A.1.596×106B.15.96×104C.1.596×105D.0.1596×1064.如图,平行线AB,CD 被直线EF所截,FG平分∠EFD,若∠EFD=78°,则∠EGF 的度数是()A. 39°B. 51°C. 78°D. 102°题4图题5图5.如图,AB为⊙O的直径,AC是⊙O的切线,点A是切点,连接BC交⊙O于点D,连接OD,若∠C=40°则∠AOD=()A.40°B.50°C.80°D.100°6.已知实数a,b在数轴上对应点的位置如图所示,则下列判断正确的是()A.a+b>0B. a b>0C.(- a)+b<0 D︳b︳<︳a︳7.已知方程x-2y+3=8,则整式2x-4y的值为()A.5 В.10 C.12 D.158.把函数y=(x-1)2+2的图象向右平移1个单位长度,平移后图象的函数解析式为()A.y= x2 +2B.y=(x -1)2 +1C.y=(x -2)2 +2D.y=(x -1)2 -39.已知抛物线y=x2+2x +m与x轴没有交点,则函数的大致图象是()A B C D10.如图,在等腰三角形ABC 中,AB=AC=10,BC=16,将AC 绕点 C 顺时针旋转90°得到DC,连接BD,则tan ∠CBD的值为()A. B. C. D.二、填空题:(本大题共6个小题,每小题3分,共18分)11.若有意义,则x的取值范围为_________12.因式分解:2x2-8=_________13.在一个不透明的布袋中装有4个白球和n个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球,摸到白球的概率是,则n=_________14.已知︳x-2y︳+(y -2)2=0,则x+y=_________15.如图,⊙O 是△ABC 的外接圆,∠A=45°,则cos∠OCB 的值是________题15图题16图16.如图,正方形OABC的边长为4,点D是OA边的中点,连接CD,将△OCD沿CD折叠得到△ECD,CE与OB交于点F.若反比例函数的图象经过点F,则m的值为________三、解答题一(共3小题,17,18 每题5分,19题6分,共16分)17.计算:+(π﹣2024)0﹣()﹣2﹣4cos30°18.先化简,再求值:÷(﹣)其中a =+219.如图,已知△ABC,∠ACB=90°(1)求作AB 边上的高CD。
广东广州市中考适应性练习九年级数学一、选择题(本大题共10小题,共30分)1.要使^/^T在实数范围内有意义,则尤的取值范围是()A.x>lB.x>lC.x>0D.x<l2.已知点A(2-a,a+l)在第一象限,则。
的取值范围是()A.a>2 C.-2<€z<-1 D.a<1B.—1v1v23.下列运算中,正确的是()A.x3-x3=x6B.(x2)3=%5C.3x2-t2x=jcD.(x-y)2=x2-y24.下列说法中,正确的是()A.为了解长沙市中学生的睡眠情况实行全面调查B.一组数据-1,2,5,5,7,7,4的众数是7C.明天的降水概率为90%,则明天下雨是必然事件D.若平均数相同的甲、乙两组数据,孺=0.3,觞=0.02,则乙组数据更稳定。
的直径,点6、。
在(O上,AB=AD=也,ZAOB=60°,则CQ的5.如图,AC是A.^/6B.2^/3C.3D.66.将等腰直角三角形纸片和长方形纸片按如下图方式叠放,若/I=25°,则Z2的度数为()A.45°B.30°C.25°D.20°4 7.如图,在【ABC中,ZC=90°,点。
和点E分别是边8C和A8上的点,DEQAB,sinB=-,AC=8,CD=2,则庞的长为()A. 4.8B. 4.5C.4D. 3.28.已知,如图,点。
是以AB为直径的半圆。
上一点,过点。
作③O的切线CQ,BD±CD 于点Q,若ZDCB=50。
,贝\\ZABC的度数是()9.如图,点A是反比例函数y=-(x>0)上的一个动点,连接Q4,过点。
作OB_LOA,并x且使OB=2OA,连接AB,当点A在反比例函数图象上移动时,点B也在某一反比例函数y =*图象上移动,则上的值为()10.如图,直角三角形顶点尸在矩形ABCD的对角线AC±运动,连接AE.ZEBF=ZACD,AB=6,BC=8,则AE的最小值为().二、填空题(本大题共6小题,共18分)11.某芯片每个探针单元的面积为0.0000064cm2,0.0000064用科学记数法可表示为.12.分解因式:23-8=13.已知一个多边形的每一个外角都等于72°,则这个多边形的边数是.14.某中学开展劳动实习,学生到教具加工厂制作圆锥,他们制作的圆锥,母线长为30cm,底面圆的半径为10cm,这种圆锥的侧面展开图的圆心角度数是—.15.已知。
2024年广东省广州市中考数学模拟试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.舟山市体育中考,女生立定跳远的测试中,以1.97m 为满分标准,若小贺跳出了2.00m ,可记作+0.03m ,则小郑跳出了1.90m ,应记作( )A. ―0.07mB. +0.07mC. +1.90mD. ―1.90m2.设计师石昌鸿耗时两年,将34个省市的风土人情、历史典故转化为形象生动的符号,别具一格.石昌鸿设计的以下省市的简称标志中,是轴对称图形的是( )A.B. C. D.3.下列运算正确的是( )A. x 2⋅x 3=x 6B. 5x ―2x =3C. x 6÷x 2=x 4D. (―2x 2)3=―6x 64.如图,由5个完全相同的小正方体组合成一个立体图形,它的主视图为( )A.B.C.D.5.如图,在平面直角坐标系中,将边长为1的正方形OABC 绕点O 顺时针旋转45°后得到正方形OA 1B 1C 1,依此方式,绕点O 连续旋转2024次得到正方形OA 2024B 2024C 2024,那么点A 2024的坐标是( )A. ( 22,― 22)B. (― 22, 22)C. (1,0)D. (0,1)6.如图,将△ABC沿CB向左平移3cm得到△DEF,AB,DF相交于点G,如果△ABC的周长是12cm,四边形ACED周长为( )A. 12cmB. 15cmC. 18cmD. 24cm7.若关于x的一元二次方程x2―3x+m=0有两个不相等的实数根,则实数m的值可以是( )A. 5B. 4C. 3D. 28.在正方形网格中,△ABC的位置如图所示,则tanB的值为( )A. 2B. 12C. 22D. 19.如图所示,二次函数y=ax2+bx+c(a,b,c常数,a≠0)的图象与x轴交于点A(―3,0),B(1,0).有下列结论:①abc>0;②若点(―2,y1)和(―0.5,y2)均在抛物线上,则y1<y2;③9a―3b+c=0;④4a+2b+c>0.其中正确的有( )A. 1个B. 2个C. 3个D. 4个10.如图,在正方形ABCD中,点P是对角线BD上一点(点P不与B、D重合),连接AP并延长交CD于点E,过点P作PF⊥AP交BC于点F,连接AF、EF,AF交BD于点G,给出四个结论:①AB2+BF2=2AP2;②BF+ DE=EF;③PB―PD=2BF;上述结论中,所有正确结论的序号是( )A. ①②B. ①③C. ②③D. ①②③二、填空题:本题共6小题,每小题3分,共18分。
2024年广东省广州市名校中考数学模拟试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列各数中,最小的数是()A.0B.3C.D.2.苏步青是国际公认的几何学家,中国著名教育家,中国科学院院士,是我国微分几何学派的创始人.为纪念其卓越贡献,国际上将一颗距地球约218000000公里的行星命名为“苏步青星”.将数据218000000用科学记数法表示应为()A. B.C.D.3.九班三名同学进行唱歌比赛,原定出场顺序是:甲第一个出场,乙第二个出场,丙第三个出场,后来要求这三名同学用抽签方式重新确定出场顺序,则抽签后每个同学的出场顺序都发生变化的概率为()A. B. C.D.4.若,,则的值为()A.8B.12C.24D.485.在平面直角坐标系中,已知,则点位于()A.第一象限B.第二象限C.第三象限D.第四象限6.下列几何体均是由若干个大小相同的小正方体搭建而成的,其三视图都相同的是()A. B. C. D.7.如图,AB 、AC 是的切线,B 、C 为切点,D 是上一点,连接BD 、CD ,若,则的半径长为()A. B. C.D.8.若的整数部分为x ,小数部分为y ,则的值是()A.B.3C.D.9.我国南宋著名数学家秦九韶也提出了利用三角形三边长a,b,c求三角形面积的“秦九韶公式”,即已知在中,,,,则b边上的高为()A. B. C. D.10.在平面直角坐标系xOy中,若点P的横坐标和纵坐标相等,则称点P为雅系点.已知二次函数的图象上有且只有一个雅系点,且当时,函数的最小值为,最大值为,则m的取值范围是()A. B. C. D.二、填空题:本题共7小题,每小题4分,共28分。
11.已知二元一次方程组,则的值为______.12.将抛物线先向右平移2个单位,再向下平移3个单位,那么所得的抛物线的顶点坐标为______.13.如图.在中,,,是AC边上一点,且,连接BD,以点B为圆心,BD的长为半径画弧,交AB于点E,交BC的延长线于点F,则图中阴影部分的面积为______.14.若关于x的方程的两根,满足,则二次函数的顶点纵坐标的最大值是______.15.已知实数a,b满足,,则的值为______.16.如图所示,四边形ABCD是平行四边形,其中,垂足为H,若,,,则______.17.如图,在中,,,,点O是边AB的中点,点P是边BC上一动点,连接PO,将线段PO绕点P顺时针旋转,使点O的对应点D落在边AC上,连接OD,若为直角三角形,则BP的长为______.三、计算题:本大题共1小题,共6分。
2023年广东省佛山市第四中学中考模拟数学试题学校:___________姓名:___________班级:___________考号:___________A.核3.我国古代数学家祖冲之推算出0.0000003用科学记数法可以表示为(A.7310-⨯4.不透明的袋子中装有..C .D.二、填空题三、解答题16.解不等式组:52 3x x⎧⎪+⎨⎪⎩17.目前我市“校园手机数学兴趣小组的同学随机调查了若干名家长对无所谓;.B 基本赞成;.C 赞成;.D 反对).并将调查结果绘制成频数折线统计图1和扇形统计图2(不完整).请根据图中提供的信息,解答下列问题:(1)求出图2中扇形C 所对的圆心角的度数为______度,并将图1补充完整;(2)根据抽样调查结果,请你估计该校11000名中学生家长中持反对态度的人数.18.如图,Rt ABC △中,90ACB ∠=︒,CD AB ⊥于D .(1)尺规作图:作CBA ∠的角平分线,交CD 于点P ,交AC 于点Q (保留作图痕迹,不写做法);(2)若46BAC ∠=︒,求CPQ ∠的度数.19.经开区某中学计划举行一次知识竞赛,并对获奖的同学给予奖励.现要购买甲、乙两种奖品,已知1件甲种奖品和2件乙种奖品共需40元,2件甲种奖品和3件乙种奖品共需70元.(1)求甲、乙两种奖品的单价;(2)根据颁奖计划,该中学需甲、乙两种奖品共60件,且甲种奖品不少于乙种奖品的一半,应如何购买才能使总费用最少?并求出最少费用.20.如图,AC 为平行四边形ABCD 的对角线,点E ,F 分别在AB ,AD 上,AE AF =,连接EF ,AC EF ⊥.(1)反比例函数的解析式;(2)若点P是线段OC上的一个动点,点P的坐标;若不存在,请说明理由.22.如图,AB是⊙O的直径,交CD的延长线于点G,连结(1)求证:△ECF∽△GCE(2)求证:EG是⊙O的切线;(3)延长AB交GE的延长线于点(1)求抛物线的解析式;+最小?若存在,请求出Q点坐标;若(2)在抛物线的对称轴上是否存在点Q使QB QC不存在,请说明理由;⊥,垂足为点D,连接PC,当(3)点P为AC上方抛物线上的动点,过点P作PD ACPCD与ACO△相似时,求点P的坐标.参考答案:【点睛】本题主要考查了简单的概率计算,熟知概率计算公式是解题的关键.5.D【分析】根据合并同类项法则,幂的乘方与积的乘方,同底数幂的乘法以及单项式除以单项式分别求出每个式子的值,再判断即可.【详解】A.22223x x x +=,故本选项不符合题意;B.336x x x ⋅=,故本选项不符合题意;C.()2510x x =,故本选项不符合题意;D.75222x x x ÷=,正确.故选:D .【点睛】本题考查了合并同类项法则,幂的乘方与积的乘方,同底数幂的乘法以及单项式除以单项式等知识点,能正确求出每个式子的值是解答此题的关键.6.C【分析】先求出355∠=︒,再根据平行线的性质解答.【详解】解:由题意可得:3180902180903555∠=︒-︒-∠=︒-︒-︒=︒,∵a b ∥,∴1355∠=∠=︒,故选:C.【点睛】本题主要考查了平行线的性质,属于基础题目,熟知两直线平行、同位角相等是解题的关键.7.B【分析】由三角形内角和定理可得105ABC ∠=︒,根据旋转的性质得出105ADE ABC ∠=∠=︒,利用平行线的性质即可得出75DAB ∠=︒,即为旋转角.【详解】解:∵在ABC 中,50BAC ∠=︒,25C ∠=︒,∴1801805025105ABC BAC C ∠=︒-∠-∠=︒-︒-︒=︒,∵将ABC 绕点A 逆时针旋转α角度(0180α<<︒)得到ADE ,连接OC 交圆O 于点E ',∴当点E 位于点E '位置时,线段在矩形ABCD 中,∠ABC =90°,∵2AB =,∴OA =OB =OE '=1,∵3BC =,∴2221OC OB BC =+=+∴101CE OC OE ''=-=-故答案为:101-【点睛】本题主要考查了圆周角定理,可得到点E 的运动轨迹是以AB⨯=(名)(2)解:1100060%6600即该校11000名中学生家长中有6600名家长持反对态度.【点睛】本题考查折线统计图与扇形统计图的综合、解题的关键是找出折线统计图与扇形统计图的关联信息.18.(1)见解析(2)68︒【分析】(1)根据角平分线的作法作图即可;(2)根据三角形内角和求出ABC ∠,根据角平分线的定义求出ABQ ∠,根据垂线的定义求出CDB ∠,最后利用对顶角相等得到68CPQ BPD ∠=∠=︒.【详解】(1)解:如图,点P 和点Q 即为所求;(2)∵90ACB ∠=︒,46BAC ∠=︒,∴180904644ABC ∠=︒-︒-︒=︒,∵BQ 平分ABC ∠,∴22ABQ CBQ ∠=∠=︒,∵CD AB ⊥,∴90CDB ∠=︒,∴18068CPQ BPD ABQ CDB ∠=∠=︒-∠-∠=︒.【点睛】本题考查了尺规作图—角平分线,垂线的定义,角平分线的定义,三角形内角和,对顶角相等,解题的关键是合理利用定理得出角的关系,通过准确计算得到角的度数.19.(1)甲种奖品的单价为20元,乙种奖品的单价为10元(2)当购买甲种奖品20件、乙种奖品40件时总费用最少,最少费用为800元【分析】(1)设甲种奖品的单价为x 元,乙种奖品的单价为y 元,根据:购买1件甲种奖品和2件乙种奖品共需40元,购买2件甲种奖品和3件乙种奖品共需70元,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设购买甲种奖品m 件,则购买乙种奖品()60m -件,设购买两种奖品的总费用为w 元,由甲种奖品不少于乙种奖品的一半,可得出关于m 的取值范围,列出w 关于m 的函数关系式,利用一次函数的性质即可解决最值问题.【详解】(1)解:设甲种奖品的单价为x 元,乙种奖品的单价为y 元,四边形ABCD 是菱形,BD OA OC ∴=,12OB OD BD ==90AOB ∠=︒∴,1tan 2OA ABD OB ∠== ,112OA OB ∴==,22212AB OA OB ∴=+=+若E 为AB 的中点,则1522OE AB ==.【点睛】本题考查菱形的判定和性质,解直角是三角形,直角三角形斜边上的中线.熟练掌握相关性质,以及锐角三角函数的定义,是解题的关键.21.(1)4y x=(2)存在要求的点P ,坐标为(由(1)可知,对称轴为:2b x a =-=(4,0)- A ,(0,2)C ,CP AO∴∥,,C(0,2)∴点P的纵坐标为2,⊥, ,GA AC PD AC⊥∴∥,GA PD∴△∽△,GAC PDC。
2024-2025学年度第一学期期中模拟试卷九年级数学试卷时间:90分钟 分数:120分一.选择题(每小题3分,共15分)1. 菱形ABCD 的对角线长分别为5和8,它的面积为( )A. 20B. 40C. 24D. 30【答案】A【解析】【分析】根据菱形的面积等于对角线乘积的一半,计算即可. 【详解】菱形的面积为:1 58202××=; 故选:A .【点睛】本题考查菱形的性质,掌握菱形的性质是解题的关键.2. 如果方程()27330mm x x −−−+=是关于x 的一元二次方程,那么m 的值为( ) A. 3±B. 3C. 3−D. 都不对【答案】C【解析】【分析】本题根据一元二次方程的定义解答,一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.根据题意得到272m −=,30m −≠,即可求得m 的范围.要特别注意二次项系数30m −≠这一条件,当30m −=时,方程就是一元一次方程了. 【详解】解:由一元二次方程的定义可知27230m m −= −≠, 解得:3m =−.故选:C .3. 在一个不透明的袋子里装有若干个白球和15个黄球,这些球除颜色不同外其余均相同,每次从袋子中摸出一个球记录下颜色后再放回,经过很多次重复试验,发现摸到黄球的频率稳定在0.75,则袋中白球有( )A. 5个B. 15个C. 20个D. 35个【答案】A【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】解:设袋中白球有x 个,根据题意得:1515x+=0.75, 解得:x =5,经检验:x =5是分式方程的解,故袋中白球有5个.故选A .【点睛】此题考查了利用概率的求法估计总体个数,利用如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n是解题关键. 4. 参加一次足球联赛的每两队之间都进行一场比赛,共比赛50场比赛,设参加比赛共有x 个队,根据题意,所列方程为( ).A. (1)50x x +=B. (1)502x x +=C. (1)50x x −=D. (1)502x x −= 【答案】D【解析】 【分析】设共有 x 个球队参赛,根据每两队之间都进行一场比赛,且共比赛 50 场,即可得出关于 x 的 一元二次方程,此题得解;【详解】设共有 x 个球队参赛,依题意, 得:(1)502x x −= 故选D【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程 是解题的关键5. 下列判断正确的是( )A. 对角线互相垂直的四边形是菱形B. 对角线相等的菱形是正方形C. 对角线相等的四边形是矩形D. 对角线互相垂直且相等的四边形是正方形【答案】B【解析】【分析】本题考查特殊平行四边形的判定,熟记判定定理是关键.根据菱形,矩形,正方形的判定逐项判【详解】对角线互相垂直平分的四边形是菱形,故A 错误;对角线相等的菱形是正方形,故B 正确;对角线相等的平行四边形是矩形,故C 错误;对角线互相平分垂直且相等的四边形是正方形,故D 错误.故选B .6. 如图,已知MON ∠,点A 在OM 边上,点B 在ON 边上,且OA OB =,点E 在OB 边上,小明,小红分别在图1,图2中作了矩形AEBF ,平行四边形AEBF ,并连接了对角线,两条对角线交于点C ,小明,小红都认为射线OC 是MON ∠的角平分线,你认为他们说法正确的是( )A. 小明,小红都对B. 小明,小红都错C. 小明错误,小红正确D. 小明正确,小红错误【答案】A【解析】 【分析】根据矩形的性质、平行四边形的性质都可以得到AC BC =,即可证得AOC BOC ≌△△,即可得出结论.【详解】解: 四边形AEBF 是矩形,AC BC ∴=,在AOC △和BOC 中,AC BC OA OB OC OC = = =,AOC BOCSSS ∴ ≌(), AOC BOC ∴∠=∠,∴射线OC 是MON ∠的角平分线,故小明的说法正确;四边形AEBF 是平行四边形,AC BC ∴=,在AOC △和BOC 中,AC BC OA OB OC OC = = =,AOC BOCSSS ∴ ≌(), AOC BOC ∴∠=∠,∴射线OC 是MON ∠的角平分线,故小红的说法正确.故选:A .【点睛】本题考查了矩形的性质、平行四边形的性质、三角形全等的判定和性质,角平分线的判定,解题的关键是熟练掌握矩形的性质和平行四边形的性质.7. 关于x 的方程2(1)(2)x x ρ−+=(ρ为常数)根的情况下,下列结论中正确的是( )A. 两个正根B. 两个负根C. 一个正根,一个负根D. 无实数根 【答案】C【解析】【分析】先将方程整理为一般形式,再根据根的判别式得出方程由两个不等的实数根,然后又根与系数的关系判断根的正负即可.【详解】解:2(1)(2)x x ρ−+=,整理得:2230x x ρ+−−=,∴()2221434130ρρ∆=−−−=+>,∴方程有两个不等的实数根,设方程两个根为1x 、2x , ∵121x x +=−,2123x x p =−− ∴两个异号,而且负根的绝对值大.故选:C .【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式△=b 2-4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;△<0,方程没有实数根.也考查了一元二次方程根与系数的关系:12bx x a +=−,12c x x a= 8. 关于x 的一元二次方程2(1)20x k x k −−−+=有两个实数根12,x x ,()1212122(2)2x x x x x x −+−−+3=−,则k 的值( )A. 0或2B. -2或2C. -2D. 2【答案】D【解析】【详解】解:由根与系数的关系,得: 12x x +=k -1,122x x k +=-,由()1212122(2)23x x x x x x −+−−+=−,得: ()21212423x x x x −−+=−,即()21212124423x x x x x x +−+=−-,所以,()2142(2)3k k −−−−+=−,化简,得:24k =,解得:k =±2,因为关于x 的一元二次方程2(1)20x k x k −−−+=有两个实数根,所以,△=()214(2)k k −−−+=227k k +−>0,k =-2不符合,所以,k =2故选D .【点睛】本题考查了一元二次方程根与系数的关系,熟练掌握并灵活运用是解题的关键.9. 如图1,在菱形ABCD 中,60A ∠=°,动点P 从点A 出发,沿折线AD DC CB →→方向匀速运动,运动到点B 停止.设点P 的运动路程为x ,APB △的面积为y ,y 与x 的函数图象如图2所示,则AB 的长为( )A. B. C. D. 【答案】B【解析】【分析】根据图1和图2判定三角形ABD 为等边三角形,它的面积为【详解】解:在菱形ABCD 中,∠A =60°,∴△ABD 为等边三角形,设AB =a ,由图2可知,△ABD 的面积为∴△ABD 的面积2解得:a =负值已舍)故选B【点睛】本题考查了动点问题的函数图象,根据菱形的性质和函数图象,能根据图形得出正确信息是解此题的关键.10. 如图,在正方形ABCD 中,E 为CD 边上一点,F 为 BC 延长线上一点,且CE CF =,连接EF .给出下列至个结论:①BE DF =;②BE DF ⊥;③EF =;④EDF EBF ∠=∠;⑤2ED EC =.其中正确结论的个数是( )A. 2个B. 3个C. 4个D. 5个【答案】C【解析】 【分析】本题考查了正方形的性质、三角形全等的判定定理与性质、勾股定理,①先根据正方形的性质可得,90BC DC BCE DCF =∠=∠=°,再根据三角形全等的判定定理与性质即可得;②先根据三角形全等的性质可得CBE CDF ∠=∠,再根据三角形的内角和定理、等量代换可得90DGE ∠=°,由此即可得;③根据勾股定理即可得;④根据①中所证的全等三角形的性质即可得;无法说明2ED EC =成立,从而得出与题意不符,由此即可得结论.【详解】解:如图,延长BE ,交DF 于点G ,四边形ABCD 正方形,,90BC DC BCE DCF ∴=∠=∠=°,在BCE 和DCF 中,BC DC BCE DCF CE CF = ∠=∠ =, (SAS)BCE DCF ∴ ≌,,BE DF CBE CDF ∴=∠=∠,则结论①正确;即EDF EBF ∠=∠,则结论④正确;由对顶角相等得:BEC DEG ∠=∠,180180CBE BEC CDF DEG ∴°−∠−∠=°−∠−∠,即90BCE DGE ∠=∠=°, BE DF ∴⊥,则结论②正确;是,90CE CF DCF =∠=° ,EF ∴=,则结论③正确;无法说明2ED EC =成立,结论⑤错误;综上,正确结论的个数是4个,故选:C .二.填空题(每小题3分,共15分)11. 如图,小球从A 入口往下落,在每个交叉口都有向左或向右两种可能,且可能性相等,则小球从E 出口落出概率是________.【答案】14##025 【解析】【分析】根据“在每个交叉口都有向左或向右两种可能,且可能性相等”可知在点B 、C 、D 处都是等可能情况,从而得到在四个出口E 、F 、H 也都是等可能情况,然后概率的意义列式即可得解.【详解】由图可知,在每个交叉口都有向左或向右两种可能,且可能性相等,小球最终落出的点共有E 、F 、G 、H 四个,所以小球从E 出口落出的概率是:14; 故填:14. 【点睛】本题考查了概率的求法,读懂题目信息,得出所给的图形的对称性以及可能性相等是解题的关键,用到的知识点为:概率=所求情况数与总情况数之比.12. 设12,x x 是一元二次方程220240x x +−=的两个根,则21122x x x ++=______. 【答案】2023【解析】【分析】根据方程解的定义、根与系数关系,得2112024x x +=,121x x +=−,对待求解代数式变形,用已知的代数式表示求解.的.【详解】解:由题意,得21120240x x +−=,121x x +=− ∴2112024x x +=. ∴2211211122202412023x x x x x x x ++=+++=−=.故答案为:2023【点睛】本题考查方程解的定义,一元二次方程根与系数关系;掌握根与系数关系是解题的关键. 13. 在“新冠”初期,有2人感染了“新冠”,经过两轮传染后共有288人感染了“新冠”(这两轮感染均未被发现未被隔离),则每轮传染中平均一个人传染了_______个人.【答案】11【解析】【分析】设每轮传染中平均一个人传染了x 个人,根据“有2人感染了“新冠”,经过两轮传染后共有288人感染了“新冠””,列出方程,即可求解.【详解】解:设每轮传染中平均一个人传染了x 个人,根据题意得: ()221288x +=解得:1211,13x x ==−,∵0x >且为整数∴213x =−不符合题意,舍去,答:每轮传染中平均一个人传染了11个人.故答案为:11【点睛】本题主要考查了一元二次方程的应用,明确题意,准确得到等量关系是解题的关键.14. 如图,数轴上点A 代表的数字为3+1x ,点B 代表的数字为22+x x ,已知=5AB ,且点A 在数轴的负半轴上,则x 的值为 _____.【答案】2−【解析】【分析】先利用数轴上两点之间的距离的求法得到()2+23+1=5x x x −,再把方程化为一般式26=0x x −−,接着再用因式分解法把方程转化为3=0x −或+2=0x ,然后再解两个一次方程.【详解】解:根据题意得2+2(3+1)=5x x x −,整理得26=0x x −−,()()3+2=0x x −,3=0x −或+2=0x ,所以1=3x ,2=2x −,将1=3x 代入3+1x 中,得出A 为9,因点A 在数轴的负半轴上,故1=3x (舍去); 将2=2x −,代入3+1x 中,得出A 为5−,点A 在数轴的负半轴上,故=2x −.故答案为:2−.【点睛】本题考查了一元二次方程的因式分解法,这种方法简便易用,是解一元二次方程最常用的方法,也考查了数轴.15. 在正方形ABCD 中,2AD =,E ,F 分别为边DC CB ,上的点,且始终保持DE CF =,连接AE 和DF 交于点P ,则线段CP 的最小值为 _________.1−##1−+【解析】【分析】根据“边角边”证明ADE 和DCF 全等,根据全等三角形对应角相等可得DAE CDF ∠=∠,然后求出90APD ∠=°,取AD 的中点O ,连接OP ,根据直角三角形斜边上的中线等于斜边的一半可得点P 到AD 的中点的距离不变,再根据两点之间线段最短可得C 、P 、O 三点共线时线段CP 的值最小,然后根据勾股定理列式求出CO ,再求解即可.【详解】解: 四边形ABCD 是正方形,AD CD ∴=,90ADE DCF ∠=∠=°, 在ADE 和DCF 中,AD CD ADE BCD DE CF = ∠=∠ =, ()SAS ADE DCF ∴ ≌,DAE CDF ∴∠=∠,90CDF ADF ADC ∠+∠=∠=° ,90ADF DAE ∴∠+∠=°,90APD ∴∠=°,取AD 的中点O ,连接OP CO ,,则1133222OP AD ==×=(不变), 根据两点之间线段最短得C 、P 、O 三点共线时线段CP 的值最小,在Rt COD中,根据勾股定理得,CO =,∴1CP CO OP =−−,∴CP1−,1−.【点睛】本题考查了正方形的性质,全等三角形的判定与性质,直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,确定出点P 到AD 的中点的距离是定值是解题的关键.三.解答题(每小题8分,共24分)16. 解方程:(1)2221x x x =+−;(2)()2231x x x −−=−. 【答案】(1)1222x x +(2)1x =,2x =【解析】【分析】(1)先将方程化为一般式,再用配方法求解即可;(2)先将方程化为一般式,再用公式法求解即可.小问1详解】解:2221x x x =+−,241x x −=,2445x x +=−,()225x −=,2x −,解得:1222x x +−;【小问2详解】解:()2231x x x −−=−, 22231x x x −−=−,22210x x +−=,2,2,1a b c ===−,∴()224242112b ac ∆=−=−××−=,x ,解得:1x =,2x =. 【点睛】本题主要考查了解一元二次方程,解题的关键是熟练掌握一元二次方程的法和步骤.17. 笼子里关着一只小松鼠(如图),笼子的主人决定把小松鼠放归大自然,将笼子所有的门都打开.松鼠要先经过第一道门(A ,B ,或C ),再经过第二道门(D 或E )才能出去.【(1)请用树状图或列表的方法,表示松鼠走出笼子的所有可能路线(经过的两道门).(2)求松鼠经过E门出去的概率.【答案】(1)见解析(2)1 2【解析】【分析】(1)根据题意画出树状图即可;(2)根据(1)所画的树状图确定松鼠走出笼子的所有可能路线结果数和松鼠经过E门出去的结果数,然后运用概率公式计算即可.【小问1详解】解:根据题意画出树状图如下:【小问2详解】解:根据(1)所得的树状图可知:松鼠走出笼子的所有可能路线结果数为6,松鼠经过E门出去的结果数为3,则松鼠经过E门出去的概率为31 62 =.【点睛】本题主要考查了画树状图、根据树状图求概率等知识点,正确画出树状图是解答本题的关键.18. 已知:平行四边形ABCD的两边AB,AD的长是关于x的方程210 24mx mx−+−=的两个实数根.(1)当m为何值时,四边形ABCD是菱形?求出这时菱形的边长;(2)若AB的长为2,那么平行四边形ABCD的周长是多少?【答案】(1)1 2(2)5【解析】【分析】本题考查了菱形的性质,平行四边形的性质,一元二次方程根的判别式以及根据系数的关系,解一元二次方程,综合运用各知识点是解答本题的关键.(1)根据菱形的性质可知方程210 24mx mx−+−=有两个相等的实数根,由根的判别式求出m,进而可求出方程的根;(2)由AB的长为2,可知2是方程的一个根,代入方程求出m,根据根与系数的关系可求出平行四边形ABCD的周长.【小问1详解】解:∵平行四边形ABCD 是菱形,∴AB AD =, ∴方程21024m x mx −+−=有两个相等的实数根, ∴()214024m m ∆=−−−=, 解得:121m m ==, 当1m =时,方程为2104x x −+=, 解得1212x x ==, 即菱形的边长为12; 【小问2详解】 解:∵AB ,AD 的长是方程21024m x mx −+−=的两个实数根,AB 的长为2, ∴AB AD m +=,2是方程的一个根, ∴2122024m m −+−=, ∴解得52m =, ∴52AB AD +=, ∴()25AB AD +=, ∴平行四边形ABCD 的周长为5.四.解答题(每小题9分,共27分)19. 阅读材料:我们知道20x ≥,()20a b ±≥这一性质在数学中有着广泛的应用,比如探求多项式2362x x +−的最小值时,我们可以这样处理:2362x x +−()2322x x +−()22232112x x =++−−()223112x =+−−()2315x =+−.因为()210x +≥,所以()231505x +−≥−,当1x =−时,()2315x +−取得最小值5−.(1)求多项式2283x x −+的最小值,并写出对应的x 的取值.(2)求多项式22247x x y y −+−+的最小值.【答案】(1)xx =2,最小值5−;(2)2【解析】【分析】此题考查的是完全平方公式,非负数的性质,解题的关键是把给出的式子化成完全平方的形式. (1)先把给出的式子化成完全平方的形式,再根据非负数的性质即可得出答案;(2)根据完全平方公式把给出的式子进行整理,即可得出答案.【小问1详解】解:2283x x −+ ()2243x x −+()224443x x =−++﹣()22243x =−−+ ()2225x =−−,∵()220x −≥,∴()222505x −−≥−,∴当xx =2时,()2225x −−取得最小值5−;【小问2详解】解:22247x x y y −+−+ ()()2221442x x y y =−++−++()()22122x y =−+−+,∵()210x −≥,()220y −≥,∴()()221222x y −+−+≥,∴当xx =1,2y =时,22247x x y y −+−+有最小值2.20. 如图,在ABCD 中,5AB =,4BC =,点F 是BC 上一点,若将DCF 沿DF 折叠,点C 恰好与AB 上的点E 重合,过点E 作EG BC ∥交DF 于点G ,连接CG .(1)求证:四边形EFCG 是菱形;(2)当A B ∠=∠时,求点B 到直线EF 的距离.【答案】(1)证明见解析(2)点B 到直线EF 的距离为65. 【解析】【分析】(1)由折叠的性质得出CFD EFD ∠=∠,CF EF =,CG EG =,再根据平行线的性质可得EGF EFD ∠=∠,进而可证四条边相等;(2)先由题意得出四边形ABCD AE ,CE 的长,最后利用等面积法即可求解.【小问1详解】证明:∵将DCF 沿DF 折叠,点C 恰好与AB 上的点E 重合,∴CFD EFD ∠=∠,CF EF =,CG EG =,∵EG BC ∥,∴EGF CFD ∠=∠,∴EGF EFD ∠=∠,∴EG EF =,∴EG EF CF CG ===,∴四边形EFCG 是菱形;【小问2详解】解:∵ABCD ,则AD BC ∥,∴180A B ∠+∠=°,∵A B ∠=∠,∴90A B ∠=∠=°,∴四边形ABCD 是矩形,∵5AB =,4BC =,∴5AB CD ED ===,4BC AD ==,∴3AE ,∴2BE =,在Rt BEF △中,222BE BF EF +=,4EF CF BF ==−,∴()22224BF BF +=−, 解得32BF =, ∴35422EF =−=, 设点B 到直线EF 的距离为h , ∴131522222h ××=×, 解得65h =, ∴点B 到直线EF 的距离为65. 【点睛】本题考查矩形的性质,菱形的判定,平行线的性质,勾股定理,折叠的性质等知识,熟练掌握以上知识是解题关键.21. 某商店准备销售一种多功能旅行背包,计划从厂家以每个30元的价格进货,经过市场发现当每个背包的售价为40元时,月均销量为1元,月均销量就相应减少10个.(1)若使这种背包的月均销量不低于130个,每个背包售价应不高于___________元?(2)在(1)的条件下,当该这种书包销售单价为多少元时,销售利润是3120元?(3)这种书包的销售利润有可能达到3700元吗?若能,请求出此时的销售单价;若不能,请说明理由.【答案】(1)每个背包售价应不高于55元.(2)当该这种书包销售单价为42元时,销售利润是3120元.(3)这种书包的销售利润不能达到3700元.【解析】【分析】(1)设每个背包的售价为x 元,则月均销量为()2804010x ⎡⎤--⨯⎣⎦个,根据月均销量不低于130个,即可得出关于x 的一元一次不等式,解之取其最大值即可得出结论;(2)根据总利润=每个的利润×月均销量,即可得出关于x 的一元二次方程,解之取其较小值即可得出结论;(3)根据总利润=每个的利润×月均销量,即可得出关于x 的一元二次方程,由根的判别式Δ=-36<0,即可得出这种书包的销售利润不能达到3700元.【小问1详解】解:设每个背包的售价为x 元,则月均销量为()2804010x ⎡⎤--⨯⎣⎦个,依题意, 得:()2804010130x ⎡⎤--⨯≥⎣⎦, 解得:55x ≤.答:每个背包售价应不高于55元.【小问2详解】依题意,得:()()3028040103120x x ⎡⎤---⨯=⎣⎦, 整理,得:29823520x x −+=,解得:124256x x ==,(不合题意,舍去). 答:当该这种书包销售单价为42元时,销售利润是3120元.【小问3详解】依题意,得:()()3028040103700x x ⎡⎤---⨯=⎣⎦, 整理,得:29824100x x -+=.∵()298412410360=--⨯⨯=- <,∴该方程无解,∴这种书包的销售利润不能达到3700元.【点睛】本题考查了一元二次方程的应用以及一元一次不等式的应用,解题的关键是:(1)根据各数量之间的关系,正确列出一元一次不等式;(2)(3)找准等量关系,正确列出一元二次方程.五.解答题(每小题12分,共24分)22. 如图所示,在Rt ABC △中,90B ∠=︒,100cm AC =,60A ∠=°,点D 从点C 出发沿CCCC 方向以4cm/s 的速度向点A 匀速运动,同时点E 从点A 出发沿CCAA 方向以2cm/s 的速度向点B 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D E 、运动的时间是t 秒(025t <≤),过点D 作DF BC ⊥于点F ,连接DE EF ,.(1)求证:四边形AEFD 是平行四边形;(2)四边形AEFD 能够成为菱形吗?如果能,求出相应的t 值;如果不能,请说明理由;(3)当t 为何值时,DEF 为直角三角形?请说明理由.【答案】(1)证明见解析(2)能,503t = (3)252或20,理由见解析 【解析】【分析】(1)根据时间和速度表示出AE 和CCCC 的长,利用30°所对的直角边等于斜边的一半求出DF 的长,可得AE DF =,再证明DF AE ∥即可求证; (2)由(1)知四边形AEFD 为平行四边形,如果四边形AEFD 能够成为菱形,则必有邻边相等,即AE AD =,据此列方程求解即可;(3)当DEF 为直角三角形时,有三种情况:①当90EDF ∠=°时,②当90DEF ∠=°时,③当90DFE ∠=°时,分别找出等量关系列方程即可求出t 的值即可.【小问1详解】证明:由题意得,2AE t =,4CD t =,∵DF BC ⊥,∴90CFD ∠=°,∵90B ∠=︒,60A ∠=°,∴30C ∠=°, ∴114222DF CD t t ==×=,∴AE DF =;∵90CFD B ∠=∠=°,∴DF AE ∥,∴四边形AEFD 是平行四边形;【小问2详解】解:四边形AEFD 能够成为菱形,理由如下: 由(1)得,四边形AEFD 为平行四边形,若AEFD 为菱形,则AE AD =,∵100AC =,4CD t =,∴1004AD t =−,∴21004t t =−, ∴503t =, ∴当503t =时,四边形AEFD 能够成为菱形; 【小问3详解】解:分三种情况:①当90EDF ∠=°时,如图1, ∵90CFD B EDF ∠=∠=∠=°, ∴四边形DFBE 为矩形, ∴2DF BE t ==, ∵1502AB AC ==,2AE t =, ∴2502t t =−,252t =;②当90DEF ∠=°时,如图2, ∵四边形AEFD 为平行四边形, ∴EF AD ∥,∴90ADE DEF ∠=∠=°, 在Rt ADE 中,60A ∠=°, ∴30AED ∠=°,∵2AE t =, ∴12AD AE t ==,∵AD CD AC +=,∴4100t t +=,∴20t =;③当90DFE ∠=°不成立;综上所述:当t 为252或20时,DEF 为直角三角形. 【点睛】本题考查了平行四边形的判定与性质,菱形的性质,矩形的判定与性质,,含30°角的直角三角形的性质,直角三角形两锐角互余,平行线的判定与性质,一元一次方程的应用,掌握以上知识点是解题的关键.23. 如图,在平面直角坐标系中,点O 是坐标原点,四边形ABCO 是菱形,点A 的坐标为(3,4)−,点C 在x 轴的正半轴上,直线AC 交y 轴于点M ,AB 边交y 轴于点H ,连接BM .(1)填空:菱形ABCO 的边长=______;(2)求直线AC 的解析式;(3)动点P 从点A 出发,沿折线A B C --方向以3个单位/秒的速度向终点C 匀速运动,设PMB △的面积为()0S S ≠,点P 的运动时间为t 秒, ①当503t <<时,求S 与t 之间的函数关系式; ②在点P 运动过程中,当2S =,请直接写出t 的值. 【答案】(1)5 (2)直线AC 的解析式为1522y x =−+ (3)①91544t S =−+;②79t =或115【解析】 【分析】(1)根据点A 的坐标,结合勾股定理可计算菱形边长AO 的长度;(2)先求出C 点坐标,设直线AC 解析式y kx b =+,将点A C ,坐标代入得到二元一次方程组,然后解方程组即可得到,k b 的值;(3)①当503t <<时,根据题意得到53BP BA AP t =−=−,53422HM OH OM =−=−=,然后利用三角形面积公式,即可表示出S 与t 之间的函数关系;②设M 到直线BC 的距离为h ,根据等面积方法列方程,求出h ,可得到当51033t <<时,S 与t 之间的函数关系,将2S =分别代入两个解析式中,分别解方程即可得解.【小问1详解】解:∵点A 的坐标为()3,4−,∴34AH HO ==,在Rt AOH △中,5AO,故答案为:5;【小问2详解】解:∵四边形ABCO 是菱形,∴5OC OA ==,即50C (,). 设直线AC 的解析式y kx b =+,函数图象过点A C ,, 则5034k b k b += −+=, 解得1252k b =− =, ∴直线AC 的解析式为:1522y x =−+; 【小问3详解】 解:由1522y x =−+,令0x =,52y =,则50,2M ,则52OM =, ①当503t <<时,如图所示, 的53BP BA AP t =−=−,53422HM OH OM =−=−=, ∴()113915·5322244S BP HM t t ==××−=−+, ∴91544t S =−+, ②设M 到直线BC 的距离为h , ∴ΔΔΔ111222ABC AMB BMCS S S AB OH AB HM BC h +⋅⋅+⋅ 则113154552222h ××=××+×, 解得52h =, 当51033t <<时,如图所示,35BP t =−,52h =, ()11515253522244t S BP h t ∴=×=×−×=−, 当2S =时,代入91544t S =−+, 解得79t =, 代入152544t S =−,解得115t=,综上所述79t=或115.【点睛】本题考查了菱形的性质、动点问题、求一次函数解析式、勾股定理等知识,采用数形结合并分情况分析是解题关键.。
DCBA2017年中考数学模拟试题(本试卷共120分,考试时间100分钟).一、选择题(本大题10小题,每小题3分,共30分)1、-8的立方根是( )A 、2B 、22C 、-2D 、-22 2、下列等式成立的是( )A 、a 2+a 4=a 6B 、a 4-a 2=a 2C 、=a 8D 、224a a a =÷ 3、2016年我国国内生产总值约亿元,亿用科学计数法表示为( )A. 91051.9⨯B. 9105.19⨯C. 101051.9⨯D. 10105.19⨯ 4、下列图形中,不是..轴对称图形的是 ( )5、已知x=-3是方程2x-3a=3的根,那么a 的值是( )A 、a=3B 、a=1C 、a= -3D 、a= -16、某中学人数相等的甲、乙两班学生参加了同一次数学测验,班平均分和方差分别为甲x =83分,乙x =83分,甲2S =230,乙2S =190,那么成绩较为整齐的是( )。
A 、甲班 B 、乙班 C 、两班一样整齐 D 、无法确定7、小明用图中所示的扇形纸片作一个圆锥的侧面,已知扇形的半径为5cm ,弧长是6πcm , 那么这个的圆锥的侧面积是( )A . 15cmB .20cmC .25cmD .30cm8、如图,在△ABC 中,∠C=90°,EF ∥AB ,∠1=30°,则∠A 的度数为( )。
° ° ° °第8题图 9、下列各图中,每个正方形网格都是由四个边长为1的小正方形组成,其中阴影部分面积为25的 是( )。
OBA(第7题图)5cm学校:_______________ 班级: 姓名: 学号:………………………… 密 ……………………………………… 封 ………………………………… 线 ……………………………………10、如图:△ABC 的周长为30cm ,把△ABC 的边AC 对折,使顶点C 和点A 重合,折痕 交BC 边于点D ,交AC 边与点E ,连接AD ,若AE=4cm ,则△ABD 周长是( )。
A. 22cm C. 18cm二、填空题(本大题6小题,每小题4分,共24分)11、在为四川雅安芦山地震灾区捐款活动中,某小组7位同学的捐款数额(元)分别是:5,20,5,30,10,15,10. 则这组数据的中位数是___ ___; 12、若分式31-x 有意义,则实数x 的取值范围是 ; 13、已知点(2,-3)在反比例函数ky x=的图象上,则这个反比例函数的解析式为 ; 14、不等式组6020x x -<⎧⎨->⎩的解集是 ;15.如图1,已知AB 是⊙O 的直径,BC 为弦,∠ABC=28°,过圆心O 作OD ⊥BC 交弧BC 于点D ,连接DC , 则∠DCB= °.16、下图是某同学在沙滩上用石子摆成的小房子,观察图形的变化规律,则第10个小房子用了块石子。
······三、解答题(一)(本大题3小题,每小题5分,共15分)17、计算:︒+⎪⎭⎫⎝⎛+45sin 221-2-2(-2017)-10.18、解不等式5(1)31x x -<+,并把这个不等式的解集在数轴上表示出来。
OBDCA图1· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ··· · · ·· ·· · · · · · · · · · · · · · · · · · · · · · · · ·第1个房子 第2个房子 第3个房子 第4个房子EO FD CBA19、 如图,已知△ABC 是不等边三角形,运用所学知识作图,以D 、N 所在直线为三角形的一边作一个三角形△DEF 与△ABC 全等。
(要求用尺规作图,保留作图痕迹,不必写作法。
)四、解答题(二)(本大题3小题,每小题8分,共24分)20、如图,AB 为⊙O 的直径,弦CD ⊥AB ,垂足为点E ,CF ⊥AF ,且CF=CE . (1)求证:CF 是⊙O 的切线; (2)若sin ∠BAC=,求ABCCBDS S ∆∆的值.21、据衢州市2016年国民经济和社会发展统计公报显示,2016年衢州市新开工的住房有商品房、廉租房、经济适用房和公共租赁房四种类型.老王对这四种新开工的住房套数和比例进行了统计,并将统计结果绘制成下面两幅统计图,请你结合图中所给信息解答下列问题: (1)求经济适用房的套数,并补全频数分布直方图; ABCDN12345 6-1-2(2)假如申请购买经济适用房的对象中共有950人符合购买条件,老王是其中之一.由于购买人数超过房子套数,购买者必须通过电脑摇号产生.如果对2016年新开工的经济适用房进行电脑摇号,那么老王被摇中的概率是多少?(3)如果2017年新开工廉租房建设的套数比2016年增长10%,那么2017年新开工廉租房有多少套?题21图22、如图,一次函数y kx b =+的图象与坐标轴分别交于A ,B 两点,与反比例函数ny x=的图象在第二象限的交点为C ,CD⊥x 轴,垂足 为D ,若OB=2,OD=4,△AOB 的面积为1. (1)求一次函数与反比例的解析式; (2)直接写出当0x <时,0kkx b x+->的解集.EO D C BA五、解答题(三)(本大题3小题,每小题9分,共27分) 23、已知关于x 的一元二次方程x 2+(m +3)x +m +1=0.(1)求证:无论m 取何值,原方程总有两个不相等的实数根;(2)若x 1、x 2是原方程的两根,且|x 1-x 2|=2,求m 的值和此时方程的两根.24、如图,四边形ABCD 是矩形,对角线AC 、BD 相交于点O ,BE ∥AC 交DC 的延长线于点E. (1)求证:BD=BE ;(2)若?DBC=30?,BO=4,求四边形ABED 的面积.25、如图:直线33y x =--分别交x 轴、y 轴于A 、B 两点,△AOB 绕点O 按逆时针方向旋转90°后得到△DOC ,抛物线2y ax bx c =++经过A 、B 、C 三点。
(1)填空:A ( , ).B ( , ).C ( , ); (2)求抛物线的函数关系式;(3)E 为抛物线的顶点,在线段DE 上是否存在点P ,使得以C ,D ,P 为顶点的三角形与△DOC 相似?若存在,请求出点P 的坐标;若不存在,请说明理由。
参考答案一、1、C ; 2、D ; 3、B ; 4、A ; 5、C ; 6、B ; 7、A ; 8、D ; 9、D ; 10、A ;二、11、10; 12.3-≠x ; 13.x6-=y ; 14.62<<x ; 15.31; 16.140三、17、解:原式=2222-2-21⨯++················ 4分 =1 ················· 5分 18.解:3625135135-5<<+<-+<x x x x x x············· 3分 这个不等式的解集在数轴表示如下:··········· 5分 19、略20、(1)证明:连接OC . ∵CE ⊥AB ,CF ⊥AF ,CE=CF ,∴AC 平分∠BAF ,即∠BAF=2∠BAC …………1分 ∵∠BOC=2∠BAC …………………………2分 ∴∠BOC=∠BAF∴OC ∥AF …………………………………………3分 ∴CF ⊥OC .∴CF 是⊙O 的切线 …………………………4分 (2)解:∵AB 是⊙O 的直径,CD ⊥AB ,∴CE=ED ,∠ACB=∠BEC=90°.…………………………5分 ∴S △CBD =2S △CEB ,∠BAC=∠BCE ,∴△ABC ∽△CBE ………………………………………6分 ∴==(sin ∠BAC )2==.…………………………7分12345 6-1-2∴=…………………………8分21.解:(1)如图所示:1500÷24%=6250, 6250×%=475,所以经济适用房的套数有475套; (2)老王被摇中的概率为:=;(3)2016年廉租房共有6250×8%=500套,500(1+10%)=550套,所以2017年,新开工廉租房550套.22.解:(1);4;121xy x y -=--= (4分) (2).x <-4; 23、解:(1)证明:由关于x 的一元二次方程x 2+(m +3)x +m +1=0得△=(m+3)2-4(m+1)=(m+1)2+4, ∵无论m 取何值,(m+1)2+4恒大于0, ∴原方程总有两个不相等的实数根。
(2)∵x 1,x 2是原方程的两根,∴x 1+x 2=-(m+3),x 1?x 2=m+1。
∵|x 1-x 2|=22, ∴(x 1-x 2)2=8,即(x 1+x 2)2-4x 1x 2=8。
EO D C BA∴[-(m+3)]2-4(m+1)=8,即m 2+2m -3=0。