2018_2019学年高中数学第二章随机变量及其分布复习提升课学案新人教A版
- 格式:docx
- 大小:2.25 MB
- 文档页数:10
复习课(二) 随机变量及其分布对应学生用书P50(1)在近几年的高考中对条件概率的考查有所体现,一般以选择题或填空题形式考查,难度中低档.(2)条件概率是学习相互独立事件的前提和基础,计算条件概率时,必须搞清欲求的条件概率是在什么条件下发生的概率.[考点精要] 条件概率的性质(1)非负性:0≤P (B |A )≤1.(2)可加性:如果是两个互斥事件,则P (B ∪C |A )=P (B |A )+P (C |A ).[典例] 口袋中有2个白球和4个红球, 现从中随机地不放回连续抽取两次, 每次抽取1个, 则:(1)第一次取出的是红球的概率是多少?(2)第一次和第二次都取出的是红球的概率是多少?(3)在第一次取出红球的条件下, 第二次取出的是红球的概率是多少? [解] 记事件A :第一次取出的是红球; 事件B :第二次取出的是红球.(1)从中随机地不放回连续抽取两次,每次抽取1个, 所有基本事件共6×5个; 第一次取出的是红球, 第二次是其余5个球中的任一个, 符合条件的有4×5个, 所以P (A )=4×56×5=23.(2)从中随机地不放回连续抽取两次,每次抽取1个,所有基本事件共6×5个;第一次和第二次都取出的是红球,相当于取两个球,都是红球,符合条件的有4×3个,所以P (AB )=4×36×5=25. (3)利用条件概率的计算公式,可得P (B |A )=P (AB )P (A )=2523=35.[类题通法]条件概率的两个求解策略(1)定义法:计算P (A ),P (B ),P (AB ),利用P (A |B )=P (AB )P (B )或P (B |A )=P (AB )P (A )求解.(2)缩小样本空间法:利用P (B |A )=n (AB )n (A )求解.其中(2)常用于古典概型的概率计算问题.[题组训练]1.从编号为1,2,…,10的10个大小相同的球中任取4个,已知选出4号球的条件下,选出球的最大号码为6的概率为________.解析:令事件A ={选出的4个球中含4号球},B ={选出的4个球中最大号码为6}.依题意知n (A )=C 39=84,n (AB )=C 24=6,∴P (B |A )=n (AB )n (A )=684=114.答案:1142.已知男人中有5%患色盲,女人中有0.25%患色盲,从100个男人和100个女人中任选一人.(1)求此人患色盲的概率.(2)如果此人是色盲,求此人是男人的概率.(以上各问结果写成最简分式形式). 解:设“任选一人是男人”为事件A ,“任选一人是女人”为事件B ,“任选一人是色盲”为事件C .(1)此人患色盲的概率P =P (AC )+P (BC )=P (A )P (C |A )+P (B )P (C |B ) =100200×5100+100200×0.25100=21800. (2)由(1)得P (AC )=5200,又因为P (C )=21800,所以P (A |C )=P (AC )P (C )=520021800=2021.(1)相互独立事件一般与互斥事件、对立事件结合在一起进行考查,高考经常考查,各种题型均有可能出现,难度中低档. 而二项分布也是高考考查的重点,高考以大题为主,有时也以选择、填空题形式考查.(2)解答此类问题时应分清事件间的内部联系,在此基础上用基本事件之间的交、并、补运算表示出有关事件,并运用相应公式求解.[考点精要](1)若事件A 与B 相互独立, 则事件A 与B ,A 与B ,A 与B 分别相互独立, 且有P (A B )=P (A )P (B ),P (A B )=P (A )P (B ),P (AB )=P (A )P (B ).(2)若事件A 1,A 2,…,A n 相互独立,则有P (A 1A 2A 3…A n )=P (A 1)P (A 2)…P (A n ). (3)在n 次独立重复试验中,事件A 发生的次数为X ,在每次试验中事件A 发生的概率为p ,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为P (X =k )=C k n p k (1-p )n -k,k =0,1,2,…,n .(4)二项分布满足的条件与二项分布有关的问题关键是二项分布的判定,可从以下几个方面判定: ①每次试验中,事件发生的概率是相同的. ②各次试验中的事件是相互独立的.③每次试验只有两种结果:事件要么发生,要么不发生. ④随机变量是这n 次独立重复试验中某事件发生的次数.[典例] 某班甲、乙、丙三名同学竞选班委,甲当选的概率为45,乙当选的概率为35,丙当选的概率为710.(1)求恰有一名同学当选的概率; (2)求至多有两人当选的概率.[解] 设甲、乙、丙当选的事件分别为A ,B ,C , 则有P (A )=45,P (B )=35,P (C )=710.(1)∵A ,B ,C 相互独立, ∴ 恰有一名同学当选的概率为P (A ·B ·C )+P (A ·B ·C )+P (A ·B ·C )=P (A )·P (B )·P (C )+P (A )·P (B )·P (C )+P (A )·P (B )·P (C ) =45×25×310+15×35×310+15×25×710=47250. (2)至多有两人当选的概率为1-P (ABC ) =1-P (A )·P (B )·P (C )=1-45×35×710=83125.[类题通法]求相互独立事件同时发生的概率需注意的三个问题(1)“P (AB )=P (A )P (B )”是判断事件是否相互独立的充要条件,也是解答相互独立事件概率问题的唯一工具.(2)涉及“至多”“至少”“恰有”等字眼的概率问题,务必分清事件间的相互关系. (3)公式“P (A +B )=1-P (A B ) ”常应用于求相互独立事件至少有一个发生的概率.[题组训练]1.投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A ,“骰子向上的点数是3”为事件B ,则事件A ,B 中至少有一件发生的概率是________.解析:用间接法考虑,事件A ,B 一个都不发生的概率为P (AB )=P (A )·P (B )=12×56=512, 则事件A ,B 中至少有一件发生的概率 P =1-P (AB )=712. 答案:7122.在一次抗洪抢险中,准备用射击的办法引爆从上游漂流而下的一个巨大汽油罐,已知只有5发子弹,第一次命中只能使汽油流出,第二次命中才能引爆,每次射击是相互独立的,且命中的概率都是23.(1)求油罐被引爆的概率;(2)如果引爆或子弹打光则停止射击,设射击次数为ξ,求ξ不小于4的概率. 解:(1)油罐引爆的对立事件为油罐没有引爆,没有引爆的可能情况是:射击5次只击中一次或一次也没有击中,故该事件的概率为:P =C 15·23·⎝⎛⎭⎫134+⎝⎛⎭⎫135, 所以所求的概率为1-P =1-⎣⎡⎦⎤C 15·23·⎝⎛⎭⎫134+⎝⎛⎭⎫135=232243. (2)当ξ=4时记事件A , 则P (A )=C 13·23·⎝⎛⎭⎫132·23=427. 当ξ=5时,意味着前4次射击只击中一次或一次也未击中,记为事件B .则P (B )=C 14·23·⎝⎛⎭⎫133+⎝⎛⎭⎫134=19, 所以所求概率为:P (A ∪B )=P (A )+P (B )=427+19=727.(1)离散型随机变量的期望和方差是随机变量中两种最重要的特征数,它们反映了随机变量取值的平均值及其稳定性,是高考的一个热点问题,多与概率统计结合考查,难度中高档.(2)期望与方差在实际优化问题中有大量的应用,关键要将实际问题数学化,然后求出它们的概率分布列,同时,要注意运用两点分布、二项分布等特殊分布的期望、方差公式以及期望与方差的线性性质,如E (aX +b )=aE (X )+b ,D (aX +b )=a 2D (X ).[考点精要](1)求离散型随机变量的期望与方差,一般先列出分布列,再按期望与方差的计算公式计算.(2)要熟记特殊分布的期望与方差公式(如两点分布、二项分布、超几何分布). (3)注意期望与方差的性质.(4)实际应用问题,要注意分析实际问题用哪种数学模型来表达.[典例] (全国乙卷)某公司计划购买2 台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200 元.在机器使用期间,如果备件不足再购买,则每个500 元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100 台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100 台机器更换的易损零件数的频率代替 1 台机器更换的易损零件数发生的概率,记X 表示2 台机器三年内共需更换的易损零件数,n 表示购买2 台机器的同时购买的易损零件数.(1)求X 的分布列;(2)若要求P (X ≤n )≥0.5,确定n 的最小值;(3)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?[解](1)由柱状图及以频率代替概率可得,一台机器在三年内需更换的易损零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2.从而P(X=16)=0.2×0.2=0.04;P(X=17)=2×0.2×0.4=0.16;P(X=18)=2×0.2×0.2+0.4×0.4=0.24;P(X=19)=2×0.2×0.2+2×0.4×0.2=0.24;P(X=20)=2×0.2×0.4+0.2×0.2=0.2;P(X=21)=2×0.2×0.2=0.08;P(X=22)=0.2×0.2=0.04.所以X的分布列为(2)由(1)知P(X≤18)=0.44,P(X≤19)=0.68,故n的最小值为19.(3)记Y表示2台机器在购买易损零件上所需的费用(单位:元).当n=19时,E(Y)=19×200×0.68+(19×200+500)×0.2+(19×200+2×500)×0.08+(19×200+3×500)×0.04=4 040;当n=20时,E(Y)=20×200×0.88+(20×200+500)×0.08+(20×200+2×500)×0.04=4 080.可知当n=19时所需费用的期望值小于当n=20时所需费用的期望值,故应选n=19.[类题通法]求离散型随机变量X的期望与方差的步骤(1)理解X的意义,写出X可能的全部取值;(2)求X 取每个值的概率或求出函数P (X =k ); (3)写出X 的分布列;(4)由分布列和期望的定义求出E (X );(5)由方差的定义, 求D (X ), 若X ~B (n ,p ), 则可直接利用公式求,E (X )=np ,D (X )=np (1-p ).[题组训练]1.一袋中装有分别标记着1,2,3数字的3个小球,每次从袋中取出一个球(每只小球被取到的可能性相同),现连续取3次球,若每次取出一个球后放回袋中,记3次取出的球中标号最小的数字与最大的数字分别为X ,Y ,设ξ=Y -X ,则E (ξ)=________.解析:由题意知ξ的取值为0,1,2,ξ=0,表示X =Y ,ξ=1表示X =1,Y =2或X =2,Y =3;ξ=2表示X =1,Y =3. ∴P (ξ=0)=333=19,P (ξ=1)=2×2×333=49,P (ξ=2)=2×3+A 3333=49,∴E (ξ)=0×19+1×49+2×49=43. 答案:432.一次同时投掷两枚相同的正方体骰子(骰子质地均匀,且各面分别刻有1,2,2,3,3,3六个数字).(1)设随机变量η表示一次掷得的点数和,求η的分布列.(2)若连续投掷10次,设随机变量ξ表示一次掷得的点数和大于5的次数,求E (ξ),D (ξ). 解:(1)由已知,随机变量η的取值为:2,3,4,5,6. 投掷一次正方体骰子所得点数为X ,则 P (X =1)=16,P (X =2)=13,P (X =3)=12,即P (η=2)=16×16=136,P (η=3)=2×16×13=19,P (η=4)=2×16×12+13×13=518,P (η=5)=2×13×12=13,P (η=6)=12×12=14.故η的分布列为(2)由已知,满足条件的一次投掷的点数和取值为6,设其发生的概率为p ,由(1)知,p =14, 因为随机变量ξ~B ⎝⎛⎭⎫10,14, 所以E (ξ)=np =10×14=52,D (ξ)=np (1-p )=10×14×34=158.(1)高考主要以选择、填空题形式考查正态曲线的形状特征与性质,在大题中主要以条件或一问呈现,难度中档.(2)注意数形结合.由于正态分布密度曲线具有完美的对称性,体现了数形结合的重要思想,因此运用对称性结合图象解决某一区间内的概率问题成为热点问题.[考点精要]正态变量在三个特殊区间内取值的概率(1)P (μ-σ<X ≤μ+σ)=0.682 6. (2)P (μ-2σ<X ≤μ+2σ)=0.954 4. (3)P (μ-3σ<X ≤μ+3σ)=0.997 4.[典例] 已知随机变量ξ服从正态分布N (0,σ2),若P (ξ>2)=0.023,则P (-2≤ξ≤2)=( )A .0.447B .0.628C .0.954D .0.977[解析] ∵随机变量ξ服从标准正态分布N (0,σ2), ∴正态曲线关于x =0对称.又P (ξ>2)=0.023,∴P (ξ<-2)=0.023.∴P (-2≤ξ≤2)=1-2×0.023=0.954. [答案] C [类题通法]根据正态曲线的对称性求解概率的三个关键点(1)正态曲线与x 轴围成的图形面积为1;(2)正态曲线关于直线x =μ对称,则正态曲线在对称轴x =μ的左右两侧与x 轴围成的面积都为0.5;(3)可以利用等式P (X ≥μ+c )=P (X ≤μ-c )(c >0)对目标概率进行转化求解.[题组训练]1.设随机变量ξ服从正态分布N (0,1),P (ξ>1)=p ,则P (-1<ξ<0)等于( ) A .12pB .1-pC .1-2pD .12-p解析:选D 由于随机变量服从正态分布N (0,1),由标准正态分布图象可得P (-1<ξ<1)=1-2P (ξ>1)=1-2p . 故P (-1<ξ<0)=12P (-1<ξ<1)=12-p .2.已知X ~N (μ,σ2),且P (X >0)+P (X ≥-4)=1,则μ=________.解析:∵P (X >0)+P (X ≥-4)=1,又∵P (X <-4)+P (X ≥-4)=1,∴P (X >0)=P (X <-4),又0与-4关于x =-2对称,∴曲线关于x =-2对称,即μ=-2.答案:-21.某人进行射击,共有5发子弹,击中目标或子弹打完就停止射击,射击次数为ξ,则 “ξ=5” 表示的试验结果是( )A .第5次击中目标B .第5次未击中目标C .前4次未击中目标D .第4次击中目标 解析:选C 击中目标或子弹打完就停止射击,射击次数为ξ=5,则说明前4次均未击中目标,故选C .2.甲击中目标的概率是12,如果击中赢10分,否则输11分,用X 表示他的得分,计算X 的均值为( )A .0.5分B .-0.5分C .1分D .5分解析:选B E (X )=10×12+(-11)×12=-12.3.甲、乙两个工人在同样的条件下生产,日产量相等,每天出废品的情况如下表所列,则有结论( )A .甲的产品质量比乙的产品质量好一些B .乙的产品质量比甲的质量好一些C .两人的产品质量一样好D .无法判断谁的质量好一些解析:选B ∵E (X 甲)=0×0.4+1×0.3+2×0.2+3×0.1=1,E (X 乙)=0×0.3+1×0.5+2×0.2+3×0=0.9.∵E (X 甲)>E (X 乙),∴乙的产品质量比甲的产品质量好一些.4.抛掷红、蓝两颗骰子,若已知蓝骰子的点数为3或6时,则两颗骰子点数之和大于8的概率为( )A .13B .12C .536D .512解析:选D 记事件A 为“ 蓝骰子的点数为3或6”,A 发生时红骰子的点数可以为1到6中任意一个,n (A )=12,记B :“两颗骰子点数之和大于8”,则AB 包含(3,6),(6,3),(6,4),(6,5),(6,6)5种情况,所以P (B |A )=n (AB )n (A )=512.5.已知随机变量X 和Y ,其中Y =12X +7,且E (Y )=34,若X 的分布列如下表,则m 的值为( )A .13B .14C .16D .18解析:选A 由Y =12X +7,得E (Y )=12E (X )+7=34,从而E (X )=94.∴E (X )=1×14+2m +3n +4×112=94,即2m +3n =53,m +n =1-14-112=23,解得m =13.6.甲、乙两人独立地对同一目标各射击一次,其命中率分别为0.6,0.5,现已知目标被击中,则它是被甲击中的概率是( )A .0.45B .0.6C .0.65D .0.75解析:选D 令事件A ,B 分别表示甲、乙两人各射击一次击中目标,由题意可知P (A )=0.6,P (B )=0.5,令事件C 表示目标被击中,则C =A ∪B ,则P (C )=1-P (A )P (B )=1-0.4×0.5=0.8,所以P (A |C )=P (AC )P (C )=0.60.8=0.75.7.袋中有4只红球3只黑球,从袋中任取4只球,取到1只红球得1分,取到1只黑球得3分,设得分为随机变量X ,则P (X ≤6)=________.解析:P (X ≤6)=P (X =4)+P (X =6)=C 44+C 34C 13C 47=1335. 答案:13358.某人参加驾照考试,共考6个科目,假设他通过各科考试的事件是相互独立的,并且概率都是p .若此人未能通过的科目数ξ的均值是2,则p =________.解析:因为通过各科考试的概率为p ,所以不能通过考试的概率为1-p ,易知ξ~B (6,1-p ),所以E (ξ)=6(1-p )=2,解得p =23.答案:239.从某地区的儿童中挑选体操学员,已知儿童体型合格的概率为15,身体关节构造合格的概率为14,从中任挑一儿童,这两项至少有一项合格的概率是(假定体型与身体关节构造合格与否相互之间没有影响)________.解析:设“儿童体型合格”为事件A ,“身体关节构造合格”为事件B ,则P (A )=15,P (B )=14.又A ,B 相互独立,则A ,B 也相互独立,则P (A B )=P (A )P (B )=45×34=35,故至少有一项合格的概率为P =1-P (A B )=25. 答案:2510.某公司招聘员工,指定三门考试课程,有两种考试方案: 方案一:考三门课程至少有两门及格为考试通过;方案二:在三门课程中,随机选取两门,这两门都及格为考试通过.假设某应聘者对三门指定课程考试及格的概率分别为0.5,0.6,0.9,且三门课程考试是否及格相互之间没有影响.(1)求该应聘者用方案一通过的概率; (2)求该应聘者用方案二通过的概率.解:记“应聘者对三门考试及格的事件”分别为A ,B ,C .P (A )=0.5,P (B )=0.6,P (C )=0.9.(1)该应聘者用方案一通过的概率是P 1=P (AB C )+P (A BC )+P (A B C )+P (ABC ) =0.5×0.6×0.1+0.5×0.6×0.9+0.5×0.4×0.9+0.5×0.6×0.9 =0.03+0.27+0.18+0.27=0.75. (2)应聘者用方案二通过的概率 P 2=13P (AB )+13P (BC )+13P (AC )=13(0.5×0.6+0.6×0.9+0.5×0.9)=13×1.29=0.43. 11.为迎接2022年北京冬奥会,推广滑雪运动,某滑雪场开展滑雪促销活动.该滑雪场的收费标准是:滑雪时间不超过1小时免费,超过1小时的部分每小时收费标准为40元(不足1小时的部分按1小时计算).有甲、乙两人相互独立地来该滑雪场运动,设甲、乙不超过1小时离开的概率分别为14,16;1小时以上且不超过2小时离开的概率分别为12,23;两人滑雪时间都不会超过3小时.(1)求甲、乙两人所付滑雪费用相同的概率;(2)设甲、乙两人所付的滑雪费用之和为随机变量ξ,求ξ的分布列与数学期望E (ξ). 解:(1)若两人所付费用相同,则相同的费用可能为0元,40元,80元, 两人都付0元的概率为P 1=14×16=124,两人都付40元的概率为P 2=12×23=13,两人都付80元的概率为P 3=⎝⎛⎭⎫1-14-12×⎝⎛⎭⎫1-16-23=14×16=124, 则两人所付费用相同的概率为P =P 1+P 2+P 3=124+13+124=512.(2)由题意得,ξ所有可能的取值为0,40,80,120,160. P (ξ=0)=14×16=124,P (ξ=40)=14×23+12×16=14,P (ξ=80)=14×16+12×23+14×16=512,P (ξ=120)=12×16+14×23=14,P (ξ=160)=14×16=124,ξ的分布列为E (ξ)=0×124+40×14+80×512+120×14+160×124=80. 12.从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(1)求这500件产品质量指标值的样本平均数x 和样本方差s 2(同一组中的数据用该区间的中点值作代表);(2)由直方图可以认为,这种产品的质量指标值Z 服从正态分布N (μ,σ2),其中μ近似为样本平均数x ,σ2近似为样本方差s 2.①利用该正态分布,求P (187.8<Z <212.2);②某用户从该企业购买了100件这种产品,记X 表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数.利用①的结果,求EX .附:150≈12.2.若Z ~N (μ,σ2),则P (μ-σ<Z <μ+σ)=0.682 6,P (μ-2σ<Z <μ+2σ)=0.954 4. 解析:(1)抽取产品的质量指标值的样本平均数x 和样本方差s 2分别为x =170×0.02+180×0.09+190×0.22+200×0.33+210×0.24+220×0.08+230×0.02=200,s2=(-30)2×0.02+(-20)2×0.09+(-10)2×0.22+0×0.33+102×0.24+202×0.08+302×0.02=150.(2)①由(1)知,Z~N(200,150),从而P(187.8<Z<212.2)=P(200-12.2<Z<200+12.2)=0.682 6.②由①知,一件产品的质量指标值位于区间(187.8,212.2)的概率为0.682 6,依题意知X~B(100,0.682 6),所以EX=100×0.682 6=68.26.。
2.4 正态分布1.利用实际问题的直方图,了解正态分布曲线的特点及曲线所表示的意义.2.了解变量落在区间(μ-σ,μ+σ],(μ-2σ,μ+2σ],(μ-3σ,μ+3σ]的概率大小.3.会用正态分布去解决实际问题.,1.正态曲线函数φμ,σ(x )=12πσe -(x -μ)22σ2,x ∈(-∞,+∞),其中实数μ和σ(σ>0)为参,简称正态曲线.正态分布密度曲线的图象为)x (σ,μφ数, 2.正态分布一般地,如果对于任何实数a ,b (a <b ),随机变量X 满足P (a <X ≤b )=⎠⎛ab φμ,σ(x)d x ,则,N(μ确定,因此正态分布常记作σ 和μ服从正态分布.正态分布完全由参数X 称随机变量.)2σ,μ(N ~X 服从正态分布,则记为X ,如果随机变量)2σ参数μ是反映随机变量取值的平均水平的特征数,可以用样本的均值去估计;σ是衡量随机变量总体波动大小的特征数,可以用样本的标准差去估计.把μ=0,σ=1的正态分布称为标准正态分布.3.正态曲线的性质正态曲线φμ,σ(x )=12πσe -(x -μ)22σ2,x ∈R 有以下性质:.不相交轴x ,与上方轴x 曲线位于(1) 对称.μ=x 曲线是单峰的,它关于直线(2)处达到峰值μ=x 曲线在(3).1 轴之间的面积为x 曲线与(4)①.轴平移,如图x 的变化而沿μ确定,曲线随着μ一定时,曲线的位置由σ当(5) 集,表示总体的分布越”瘦高“,曲线越越小σ确定,σ一定时,曲线的形状由μ当(6)②.,如图分散表示总体的分布越,”矮胖“,曲线越越大σ;中4.正态总体在三个特殊区间内取值的概率值;7__0.682)≈σ+μ≤X <σ-μ(P ;5__0.954)≈σ2+μ≤X <σ2-μ(P .3__0.997)≈σ3+μ≤X <σ3-μ(P判断正误(正确的打“√”,错误的打“×”)(1)函数φμ,σ(x )中参数μ,σ的意义分别是样本的均值与方差.( )(2)正态曲线是单峰的,其与x 轴围成的面积是随参数μ,σ的变化而变化的.( )(3)正态曲线可以关于y 轴对称.( )答案:(1)× (2)× (3)√设随机变量X ~N (μ,σ2),且P (X ≤C )=P (X >C ),则C =( )A .0B .σC .-μD .μ答案:D已知随机变量X 服从正态分布N (3,σ2),则P (X <3)=( ) A.15B.14 C.13D.12答案:D已知正态分布密度函数为f (x )=12πe -x24π,x ∈(-∞,+∞),则该正态分布的均值为________,标准差为________. 答案:02π探究点1 正态分布密度曲线如图是一个正态曲线,试根据该图象写出其正态分布的概率密度函数的解析式,求出总体随机变量的均值和方差.【解】从正态曲线可知,该正态曲线关于直线x=20对称,最大值为12π,所以μ=20,12πσ=12π,所以σ=2.于是φμ,σ(x)=12π·e-(x-20)24,x∈(-∞,+∞),总体随机变量的期望是μ=20,方差是σ2=(2)2=2.正态密度函数解析式的求法利用图象求正态密度函数的解析式,应抓住图象的实质,主要有两点:一是对称轴x=μ,二是最值1σ2π,这两点确定以后,相应参数μ,σ便确定了,代入便可求出相应的解析式.若一个正态分布的概率密度函数是一个偶函数,且该函数的最大值为142π.求该正态分布的概率密度函数的解析式.解:由于该正态分布的概率密度函数是一个偶函数,所以其图象关于y轴对称,即μ=0.由于12πσ=12π·4,得σ=4,故该正态分布的概率密度函数的解析式是φμ,σ(x)=142πe-x232,x∈(-∞,+∞).探究点2 利用正态分布的性质求概率设X~N(1,22),试求:(1)P(-1<X≤3);(2)P(3<X≤5).【解】因为X~N(1,22),所以μ=1,σ=2.(1)P(-1<X≤3)=P(1-2<X≤1+2)=P(μ-σ<X≤μ+σ)≈0.682 7.(2)因为P (3<X ≤5)=P (-3≤X <-1),所以P (3<X ≤5)=12[P (-3<X ≤5)-P (-1<X ≤3)]=12[P (1-4<X ≤1+4)-P (1-2<X ≤1+2)]=12[P (μ-2σ<X ≤μ+2σ)-P (μ-σ<X ≤μ+σ)]≈12(0.954 5-0.682 7)=0.135 9.[变问法]在本例条件下,试求P (X ≥5).解:因为P (X ≥5)=P (X ≤-3), 所以P (X ≥5)=12[1-P (-3<X ≤5)]=12[1-P (1-4<X ≤1+4)]=12[1-P (μ-2σ<X ≤μ+2σ)]≈12(1-0.954 5)=0.022 75.正态总体在某个区间内取值概率的求解策略(1)充分利用正态曲线的对称性和曲线与x 轴之间面积为1.(2)熟记P (μ-σ<X ≤μ+σ),P (μ-2σ<X ≤μ+2σ),P (μ-3σ<X ≤μ+3σ)的值.(3)注意概率值的求解转化: ①P (X <a )=1-P (X ≥a );②P (X <μ-a )=P (X ≥μ+a );③若b <μ,则P (X <b )=1-P (b <X <2μ-b )2.1.已知随机变量ξ服从正态分布N (2,σ2),且P (ξ<4)=0.8,则P (0<ξ<2)=( )A .0.6B .0.4C .0.3D .0.2解析:选C.因为P (ξ<4)=0.8,所以P (ξ>4)=0.2. 由题意知图象(如图)的对称轴为直线x =2,P (ξ<0)=P (ξ>4)=0.2,所以P (0<ξ<4)=1-P (ξ<0)-P (ξ>4)=0.6.所以P (0<ξ<2)=12P (0<ξ<4)=0.3.2.设随机变量ξ服从正态分布N (2,9),若P (ξ>c +1)=P (ξ<c -1),则c =________.解析:因为μ=2,由正态分布的定义知其图象(如图)关于直线x =2对称,于是c +1+c -12=2,所以c =2.答案:2探究点3 正态分布的实际应用在某次数学考试中,考生的成绩ξ服从一个正态分布,即ξ~N (90,100).(1)试求考试成绩ξ位于区间(70,110)上的概率是多少?(2)若这次考试共有2 000名考生,试估计考试成绩在(80,100)间的考生大约有多少人?【解】 因为ξ~N (90,100),所以μ=90,σ=10.(1)由于正态变量在区间(μ-2σ,μ+2σ)内取值的概率是0.954 5,而该正态分布中,μ-2σ=90-2×10=70,μ+2σ=90+2×10=110,于是考试成绩ξ位于区间(70,110)内的概率为0.954 5.(2)由μ=90,σ=10,得μ-σ=80,μ+σ=100.由于正态变量在区间(μ-σ,μ+σ)内取值的概率是0.682 7,所以考试成绩ξ位于区间(80,100)内的概率就是0.682 7.一共有2 000名考生,所以考试成绩在(80,100)间的考生大约有2 000×0.682 7 ≈1 365(人).正态曲线的应用及求解策略解答此类题目的关键在于将待求的问题向(μ-σ,μ+σ),(μ-2σ,μ+2σ),(μ-3σ,μ+3σ)这三个区间进行转化,然后利用上述区间的概率求出相应概率,在此过程中依然会用到化归思想及数形结合思想.某厂生产的圆柱形零件的外直径X 服从正态分布N (4,0.52),质量检查人员从该厂生产的1 000个零件中随机抽查一个,测得它的外直径为5.7 cm ,该厂生产的这批零件是否合格?解:由于X 服从正态分布N (4,0.52),由正态分布的性质,可知正态分布N (4,0.52)在(4-3×0.5,4+3×0.5)之外的取值的概率只有0.002 7,而5.70∉(2.5,5.5),这说明在一次试验中,出现了几乎不可能发生的小概率事件,据此可以认为该批零件是不合格的.1.设两个正态分布N (μ1,σ21)(σ1>0)和N (μ2,σ2)(σ2>0)的密度函数图象如图所示,则有( )A .μ1<μ2,σ1<σ2B .μ1<μ2,σ1>σ2C .μ1>μ2,σ1<σ2D .μ1>μ2,σ1>σ2答案:A2.已知随机变量ξ服从正态分布N (0,σ2),若P (ξ>2)=0.023,则P (-2≤ξ≤2)等于( ) A .0.477 B .0.628 C .0.954D .0.977解析:选C.由题意可知随机变量ξ服从正态分布N (0,σ2),所以图象关于y 轴对称,又P (ξ>2)=0.023,所以P (-2≤ξ≤2)=1-P (ξ>2)-P (ξ<-2)=1-2P (ξ>2)=0.954.3.设X ~N (5,1),求P (6<X ≤7). 解:由已知得P (4<X ≤6)≈0.682 7,P (3<X ≤7)≈0.954 5.又因为正态曲线关于直线x =5对称, 所以P (3<X ≤4)+P (6<X ≤7) ≈0.954 5-0.682 7 =0.271 8.由对称性知P (3<X ≤4)=P (6<X ≤7), 所以P (6<X ≤7)=0.271 82=0.135 9., [A 基础达标]1.已知随机变量X 服从正态分布N (a ,4),且P (X >1)=0.5,则实数a 的值为( )A .1 B.3C .2D .4解析:选A.因为随机变量X 服从正态分布N (a ,4),所以P (X >a )=0.5.由P (X >1)=0.5,可知a =1.2.设有一正态总体,它的概率密度曲线是函数f (x )的图象,且f (x )=φμ,σ(x )=18πe -(x -10)28,则这个正态总体的均值与标准差分别是( ) A .10与8 B .10与2 C .8与10D .2与10解析:选B.由正态密度函数的定义可知,总体的均值μ=10,方差σ2=4,即σ=2. 3.已知随机变量X 服从正态分布N (3,1),且P (2≤X ≤4)=0.682 7,则P (X >4)=( ) A .0.158 8 B .0.158 65 C .0.158 6D .0.158 5解析:选B.由于X 服从正态分布N (3,1),故正态分布曲线的对称轴为x =3.所以P (X >4)=P (X <2), 故P (X >4)=1-P (2≤X≤4)2=1-0.682 72=0.158 65.4.已知某批零件的长度误差(单位:毫米)服从正态分布N (0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为( )(附:若随机变量ξ服从正态分布N (μ,σ2),则P (μ-σ<ξ<μ+σ)≈68.27%,P (μ-2σ<ξ<μ+2σ)≈95.45%.) A .4.56% B .13.59% C .27.18%D .31.74%解析:选B.由正态分布的概率公式知P (-3<ξ<3)≈0.682 7,P (-6<ξ<6)≈0.954 5,故P (3<ξ<6)=P (-6<ξ<6)-P (-3<ξ<3)2≈0.954 5-0.682 72=0.135 9=13.59%,故选B.5.(2018·洛阳模拟)某班有50名学生,一次数学考试的成绩X 服从正态分布N (105,102),已知P (95≤X ≤105)=0.32,估计该班学生数学成绩在115分以上的人数为( ) A .10 B .9 C .8D .7解析:选B.因为考试的成绩X 服从正态分布N (105,102),所以正态曲线关于x =105对称.因为P (95≤X ≤105)=0.32,所以P (X ≥115)=12×(1-0.32×2)=0.18.所以该班学生数学成绩在115分以上的人数为0.18×50=9.6.设随机变量ξ~N (2,2),则D (12ξ)=________. 解析:因为ξ~N (2,2),所以D (ξ)=2. 所以D (12ξ)=122D (ξ)=14×2=12. 答案:127.设随机变量X ~N (4,σ2),且P (4<X <8)=0.3,则P (X <0)=________.解析:概率密度曲线关于直线x =4对称,在4右边的概率为0.5,在0左边的概率等于在8右边的概率,即0.5-0.3=0.2. 答案:0.28.在某项测量中,测量结果X 服从正态分布N (1,σ2)(σ>0).若X 在(0,1)内取值的概率为0.4,则X 在(0,2)内取值的概率为________. 解析:如图,易得P (0<X <1)=P (1<X <2),故P (0<X <2)=2P (0<X <1)=2×0.4=0.8.答案:0.89.在一次测试中,测试结果X 服从正态分布N (2,σ2)(σ>0),若X 在(0,2)内取值的概率为0.2,求:(1)X 在(0,4)内取值的概率;(2)P (X >4).解:(1)由X ~N (2,σ2), 对称轴x =2,画出示意图,因为P (0<X <2)=P (2<X <4),所以P (0<X <4)=2P (0<X <2)=2×0.2=0.4.(2)P (X >4)=12[1-P (0<X <4)]=12(1-0.4)=0.3.10.生产工艺工程中产品的尺寸误差(单位:mm)X ~N (0,1.52),如果产品的尺寸与规定的尺寸偏差的绝对值不超过1.5 mm 为合格品,求:(1)X 的密度函数;(2)生产的5件产品的合格率不小于80%的概率.解:(1)根据题意,知X ~N (0,1.52),即μ=0,σ=1.5,所以密度函数φ(x )=11.52πe -x24.5.(2)设Y 表示5件产品中的合格品数,每件产品是合格品的概率为P (|X |≤1.5)=P (-1.5≤X ≤1.5)=0.682 7,而Y ~B (5,0.682 7),合格率不小于80%,即Y ≥5×0.8=4,所以P (Y ≥4)=P (Y =4)+P (Y =5)=C45×0.682 74×(1-0.682 7)+0.682 75≈0.492 9.[B 能力提升]11.已知随机变量X 服从正态分布,其正态分布密度曲线为函数f (x )=12πe-(x -2)22的图象,若∫2f(x)d x =13,则P (X >4)=( )A.16B.14 C.13D.12解析:选 A.因为随机变量X 服从正态分布,其正态分布密度曲线为函数f(x)=12πe -(x -2)22的图象,所以μ=2,即函数f(x)的图象关于直线x =2对称,因为∫20f(x )dx=13,所以P (0<X ≤2)=13,所以P (2<X ≤4)=13,因为P (2<X ≤4)+P (X >4)=12,所以P (X >4)=12-P (2<X ≤4)=12-13=16.故选A.12.已知正态分布N (μ,σ2)的密度曲线是f (x )=12πσe -(x -μ)22σ2,x ∈R 的图象.给出以下四个命题:①对任意x ∈R ,f (μ+x )=f (μ-x )成立;②如果随机变量X 服从N (μ,σ2),且F (x )=P (X <x ),那么F (x )是R 上的增函数;③如果随机变量X 服从N (108,100),那么X 的期望是108,标准差是100; ④随机变量X 服从N (μ,σ2),P (X <1)=12,P (X >2)=p ,则P (0<X <2)=1-2p .其中,真命题的序号是________.(写出所有真命题的序号)解析:如果随机变量X ~N (108,100),所以μ=108,σ2=100,即σ=10,故③错,又f (μ+x )=12πσe -(μ+x -μ)22σ2=12πσe -x22σ2,f (μ-x )=12πσe (μ-x -μ)22σ2=12πσe -x22σ2,故①正确,由正态分布密度函数性质以及概率的计算知②④正确,故填①②④.答案:①②④13.已知随机变量X ~N (μ,σ2),且正态分布密度函数在(-∞,80)上是增函数,在(80,+∞)上为减函数,P (72<X ≤88)≈0.682 7.(1)求参数μ,σ的值;(2)求P (64<X ≤72).解:(1)由于正态分布密度函数在(-∞,80)上是增函数,在(80,+∞)上是减函数,所以正态曲线关于直线x =80对称,即参数μ=80.又P (72<X ≤88)≈0.682 7,P (μ-σ<X ≤μ+σ)≈0.682 7,所以σ=8.(2)因为P (μ-2σ<X ≤μ+2σ)=P (64<X ≤96)≈0.954 5,P (72<X ≤88)≈0.682 7,所以P (64<X ≤72)=12[P (64<X ≤96)-P (72<X ≤88)] =12×(0.954 5-0.682 7)=0.135 9.14.(选做题)从某校的一次学科知识竞赛成绩中,随机抽取了50名同学的成绩,统计如下:(2)由频数分布表可以认为,本次学科知识竞赛的成绩Z 服从正态分布N (μ,196),其中μ近似为样本平均数x .①利用该正态分布,求P (Z >74);②某班级共有20名同学参加此次学科知识竞赛,记X 表示这20名同学中成绩超过74分的人数,利用①的结果,求E (X ).附:若Z ~N (μ,σ2),则P (μ-σ<Z <μ+σ)=0.682 7,P (μ-2σ<Z <μ+2σ)=0.954 5.解:(1)样本平均数x =35×350+45×1050+55×1250+65×1550+75×650+85×250+95×250=60. (2)①由(1)可知,Z ~N (60,196), 故P (Z >74)=1-P (60-14<Z<60+14)2=0.158 65.②由①知,某位同学参加学科知识竞赛的成绩Z 超过74分的概率为0.158 65,依题意可知,X ~B (20,0.158 65),所以E (X )=20×0.158 65=3.173.。
第二章 随机变量及其分布二项分布及其应用(课堂针对训练一)条件概率双基再现1.已知P(B|A)=103,P(A)=51,则P(AB)=( ) A .21 B.23 C .32 D.503 2.由“0”、“1” 组成的三位数码组中,若用A 表示“第二位数字为0”的事件,用B 表示“第一位数字为0”的事件,则P(A|B)() A.21 B.31 C.41 D.81 3.某地区气象台统计,该地区下雨的概率是154,刮三级以上风的概率为152,既刮风又下雨的概率为101,则在下雨天里,刮风的概率为( ) A.2258B.21C.83D.43 4.设某种动物有出生算起活20岁以上的概率为0.8,活到25岁以上的概率为0.4.现有一个20岁的这种动物,问它能活到25岁以上的概率是 .5.一个口袋内装有2个白球,3个黑球,则(1)先摸出1个白球后放回,再摸出1个白球的概率? (2)先摸出1个白球后不放回,再摸出1个白球的概率?6.某种元件用满6000小时未坏的概率是43,用满10000小时未坏的概率 是21,现有一个此种元件,已经用过6000小时未坏,求它能用到10000小时的概率变式活学7.某个班级共有学生40人,其中有团员15人,全班分成四个小组,第一小组有学生10人,其中团员4人。
如果要在班内任选一人当学生代表 (1)求这个代表恰好在第一小组内的概率 (2)求这个代表恰好是团员代表的概率(3)求这个代表恰好是第一小组内团员的概率(4)现在要在班内任选一个团员代表,问这个代表恰好在第一小组内的概率8.市场上供应的灯泡中,甲厂产品占70%,乙厂占30%,甲厂产品合格率是95%,乙厂合格率是80%,则(1)市场上灯泡的合格率是多少? (2)市场上合格品中甲厂占百分之几?(保留两位有效数字)实践演练9.一个家庭中有两个小孩,已知其中一个是女孩,问这时另一个小孩也是女孩的概率?(每个小孩是男孩和女孩的概率相等)10. 在一批电子元件中任取一件检查,是不合格品的概率为0.1,是废品的概率为0.01,已知取到了一件不合格品,它不是废品的概率是多少?(课堂针对训练二)事件的相互独立性双基再现1.已知下列各对事件:(1)甲组3名男生,2名女生;乙组2名男生,3名女生.今从甲、乙两组中各选一名同学参加游园活动.“从甲组中选出一名男生”与“从乙组中选出一名女生”;(2)一盒内盛有5个白乒乓球和3个黄乒乓球.“从8个球中任取1个,取出的是白球”与“从剩下的7个球中任意取1个,取出的仍是白球”; (3)一筐内有6个苹果和3个梨,“从中任取1个,取出的是苹果”与“取出第一个后放回筐内,再取1个是梨”; 其中为相互独立事件的有( )A.(1)(2)B.(1)(3)C.(2)D.(2)(3)2.两个气象台同时作天气预报,如果他们与预报准确的概率分别为0.8与0.9,那么在一次预报中,两个气象台都没预报准确的概率为( ) A.0.72 B.0.3 C.0.02 D.0.033.甲、乙两人独立地解同一问题,甲解决这个问题的概率是p 1,乙解决这个问题的概率是p 2,那么恰好有1人解决这个问题的概率是 ( ) A.21p p B.)1()1(1221p p p p -+- C.211p p - D.)1)(1(121p p --- 4 从某地区的儿童中挑选体操学员,已知儿童体型合格的概率为51,身体关节构造合格的概率为41.从中任挑一儿童,这两项至少有一项合格的概率是( )(假定体型与身体关节构造合格与否相互之间没有影响) A.2013B.51 C.41 D.52 5.袋中有红、黄、绿色球各一个,每次任取一个,有放回地抽取三次,球的颜色全相同的概率是________.6.如图,用A 、B 、C 、D 表示四类不同的元件连接成系统M .当元件A 、B 至少有一个正常工作且元件C 、D 至少有一个正常工作时,系统M 正常工作已知元件A 、B 、C 、D 正常工作的概率依次为0.5、0.6、0.7、0.8,元件连接成的系统M 正常工作的概率)(M P =.变式活学7.甲乙两人破译一密码,他们能破译的概率分别为31和41,求两人破译时以下事件发生的概率:(1)两人都能破译的概率; (2)恰有一人能破译的概率; (3)至多有一人能译出的概率。
高中数学第二章随机变量及其分布2.4第1课时正态分布学案新人教A版选修2、4第一课时正态分布一、课前准备1、课时目标(1)理解正态分布的定义;(2)了解正态分布图像的性质;(3)能利用正态分布图像的对称性求概率、2、基础预探1、如果随机变量X的概率密度函数为,其中实数和(>0)为参数、我们称的图象为_____________曲线,简称_____曲线、2、一般地,如果对于任何实数,随机变量X满足,则称X的分布为正态分布、正态分布完全由参数确定,因此正态分布常记作________、3、如果随机变量X服从正态分布,则记为X~______________、把_____________的正态分布叫做标准正态分布、二、学习引领1、现实生活中有哪些正态分布在现实生活中,很多随机变量都服从或近似地服从正态分布、例如长度测量误差;某一地区同年龄人群的身高、体重、肺活量等;一定条件下生长的小麦株高、穗长、单位面积产量等;正常生产条件下各种产品的质量指标(如零件的尺寸、纤维的纤度、电容器的电容量、电子管的使用寿命等);某地每年七月份的平均气温、平均湿度、降雨量等,一般都服从正态分布、所以,正态分布广泛存在于自然现象、生产和生活实际之中、一般地,参数是反映随机变量取值的平均水平的特征数,可以用样本均值去估计;是衡量随机变量总体波动大小的特征数,可以用样本标准差去估计、2、正态曲线的特点(1)曲线位于x轴上方,与x轴不相交,故此曲线以x轴为渐近线,函数的值域为正实数集的子集;(2)曲线是先增后减,以直线为对称轴,在处达到最大值;(3)曲线与x轴之间的面积为1;(4)当σ一定时,曲线随着的变化而沿x轴平移;当一定时,曲线的对称轴位置固定,但形状由σ确定:σ越小,曲线越“瘦高”,表示总体的分布越集中;σ越大,曲线越“矮胖”,表示总体的分布越分散、3、利用正态曲线的对称性求概率的步骤①根据正态密度函数的性质或者均值得到对称轴,做出函数的草图;②观察已知的概率值与要求的概率值在图像上对应的部分是否具备某种对称关系;③利用性质:正态密度曲线下方,x轴上方之间的总面积为1,通过适当的运算得到需要的概率值、例如:我们可用标准正态总体N(0,1)求概率值的过程来说明这种对称性、如图,的概率值为阴影部分的面积:根据正态密度函数的性质可知:+=1、易知,非阴影部分的概率值为、根据标准正态曲线关于y轴对称,所以、、当然,通过其它的一些对称,还可以得到更复杂的性质、同样的,对称轴为的正态分布也具备类似的性质,只不过对称轴位置不同而已、三、典例导析题型一正态曲线的特点例1 设三个正态分布、、的密度函数图象如图所示,则、、按从小到大的顺序排列是__ _____;、、按从小到大的顺序排列是、思路导析:正态曲线的对称轴为,形状的“胖瘦”由确定,观察图像即可知其取值特点、解析:由于正态曲线对称轴为,所以;当一定时,曲线的形状由确定、越小,曲线越“高瘦”;越大,曲线越“矮胖”,所以、所以填;、方法规律:解决正态曲线问题应抓住图像的特点:曲线关于直线x=对称,因此位置由数学期望确定;形状的“胖瘦”由方差确定,可简记为“大胖小瘦”、变式训练:如图是三种不同的正态曲线N(0,)的图象,那么、、的大小关系是( ) A、B、C、D、题型二正态曲线的对称性例2 已知随机变量服从正态分布,,则()A、B、C、D、思路导析:作出正态分布的草图,观察与的对称关系便可得到相应的概率值、解:因为随机变量服从正态分布,所以正态分布的图象关于x=2 对称,其图象如图所示,所以,故选D、规律总结:求正态分布在给定区间上的概率问题时,要将所给区间化为已知其概率值的区间,一般要利用数形结合的思想去解决、利用正态图象的对称性,可避免复杂的计算,简化解题过程、变式训练:已知服从正态分布,,且,则、题型三概率密度函数的性质例3标准正态分布的概率密度函数是、(1)求证:是偶数函数;(2)利用指数函数的性质说明的增减性;(3)求的最大值、思路导析:标准正态分布函数与指数函数比较密切,我们可以借助研究指数函数的方法来研究它、解:(1)对任意,有,所以是偶数函数、(2)任取,且,有,所以,所以、即当x<0时,是递增的。
2.3.2 离散型随机变量的方差[目标] 1.理解取有限个值的离散型随机变量的方差及标准差的概念.2.能计算简单离散型随机变量的方差,并能解决一些实际问题.3.掌握方差的性质,以及两点分布、二项分布的方差的求法.[重点] 离散型随机变量的方差和标准差的概念和计算;方差的性质以及两点分布、二项分布的方差的求法.[难点] 离散型随机变量的方差的计算与应用.知识点一 离散型随机变量的方差、标准差[填一填]1.方差及标准差的定义 设离散型随机变量X 的分布列为X x 1 x 2 … x i … x n Pp 1p 2…p i…p n(1)方差D (X )=∑i =1n(x i -E (X ))2·p i . (2)标准差为D (x ). 2.方差的性质 D (aX +b )=a 2D (X ).[答一答]1.方差与标准差有什么实际意义?提示:随机变量X 的方差和标准差都反映了随机变量X 取值的稳定与波动、集中与离散的程度.D (X )越小,稳定性越高,波动越小.显然D (X )≥0,随机变量的标准差与随机变量本身有相同的单位.2.你能类比样本数据方差的计算公式,理解离散型随机变量方差的计算公式吗? 提示:设x 1、x 2、…、x n 为样本的n 个数据,x =x 1+…+x n n ,则该样本数据的方差s 2=∑i =1n(x i -x )2·1n ,由于x 相当于离散型随机变量中的E (X ),而1n相当于每个数据出现的频率(概率)p i ,故离散型随机变量X 的方差可定义为:D (X )=∑i =1n(x i -E (X ))2·p i (i =1,2,…,n ).3.随机变量的方差与样本方差有什么关系?提示:随机变量的方差即为总体的方差,它是一个客观存在的常数,不随抽样样本的变化而变化;样本方差则是随机变量,它是随着样本的不同而变化的.对于简单随机样本,随着样本容量的增加,样本方差越来越接近于总体方差.知识点二 两个常见分布的方差[填一填]1.若X 服从两点分布,则D (X )=p (1-p ). 2.若X ~B (n ,p ),则D (X )=np (1-p ).[答一答]4.两点分布的方差同二项分布的方差存在什么关系?提示:由于两点分布是特殊的二项分布,故两点分布的方差同二项分布的方差存在特殊与一般的关系.1.对随机变量X 的方差、标准差的理解(1)随机变量X 的方差的定义与一组数据的方差的定义是相同的.(2)随机变量X 的方差和标准差都反映了随机变量X 取值的稳定性和波动、集中与离散程度.(3)D (X )越小,稳定性越高,波动越小.(4)标准差与随机变量本身有相同的单位,所以在实际问题中应用更广泛. 2.剖析方差的性质当a ,b 均为常数时,随机变量η=aξ+b 的方差D (η)=D (aξ+b )=a 2D (ξ).特别地: (1)当a =0时,D (b )=0,即常数的方差等于0.(2)当a =1时,D (ξ+b )=D (ξ),即随机变量与常数之和的方差等于这个随机变量的方差本身.(3)当b =0时,D (aξ)=a 2D (ξ),即随机变量与常数之积的方差,等于这个常数的平方与这个随机变量方差的乘积.类型一 离散型随机变量的方差及性质【例1】 已知η的分布列如下:η 0 10 20 50 60 P1325115215115(1)求η(2)设Y =2η-E (η),求D (Y ).【分析】 (1)首先求出均值E (η),然后利用D (η)的定义求方差;(2)由于E (η)是一个常数,所以D (Y )=D [2η-E (η)]=22D (η).【解】 (1)∵E (η)=0×13+10×25+20×115+50×215+60×115=16,∴D (η)=(0-16)2×13+(10-16)2×25+(20-16)2×115+(50-16)2×215+(60-16)2×115=384,∴D (η)=8 6.(2)∵Y =2η-E (η),∴D (Y )=D [2η-E (η)]=22D (η)=4×384=1 536.(1)求离散型随机变量的均值或方差的关键是列分布列,而列分布列的关键是要清楚随机试验中每一个可能出现的结果,同时还要正确求出每一个结果出现的概率.(2)利用离散型随机变量X 的方差的性质:当a ,b 为常数时,随机变量Y =aX +b ,则D (Y )=D (aX +b )=a 2D (X ),可以简化解答过程,提高解题效率.某校从6名学生会干部(其中男生4人,女生2人)中选3人参加市中学生运动会志愿者. (1)所选3人中女生人数为ξ,求ξ的分布列及方差. (2)在男生甲被选中的情况下,求女生乙也被选中的概率. 解:(1)ξ的可能取值为0,1,2. 由题意P (ξ=0)=C 34C 36=15,P (ξ=1)=C 24C 12C 36=35,P (ξ=2)=C 14C 22C 36=15,所以ξ的分布列为ξ 0 1 2 P153515E (ξ)=0×15+1×35+2×15=1,D (ξ)=(0-1)2×15+(1-1)2×35+(2-1)2×15=25.(2)设在男生甲被选中的情况下,女生乙也被选中的事件为C ,男生甲被选中的种数为C 25=10,男生甲被选中,女生乙也被选中的种数为C 14=4,所以P (C )=C 14C 25=410=25,在男生甲被选中的情况下,女生乙也被选中的概率为25.类型二 二项分布的方差【例2】 已知某运动员投篮命中率p =0.6. (1)求一次投篮命中次数ξ的数学期望与方差;(2)求重复5次投篮时,命中次数η的数学期望与方差.【分析】 解本题的关键是正确地判断出第(1)小题属于两点分布,第(2)小题属于二项分布,利用相应的公式计算可得解.【解】 (1)投篮一次命中次数ξ的分布列为:ξ 0 1 P0.40.6则E (ξ)=0×0.4+1×0.6=0.6,D (ξ)=(0-0.6)2×0.4+(1-0.6)2×0.6=0.24.(2)由题意知重复5次投篮,命中的次数η服从二项分布,即η~B (5,0.6). 由二项分布的数学期望与方差的公式得: E (η)=5×0.6=3,D (η)=5×0.6×0.4=1.2.解此类题的一般步骤如下:第一步,判断随机变量X 服从什么分布(两点分布还是二项分布).第二步,代入相应的公式,X 服从两点分布时,D (X )=p (1-p );X 服从二项分布,即X ~B (n ,p )时,D (X )=np (1-p ).甲、乙比赛时,甲每局赢的概率是p =0.51,乙每局赢的概率是p =0.49.甲乙一共进行了10次比赛,当各次比赛的结果是相互独立时,计算甲平均赢多少局,乙平均赢多少局,哪一个技术比较稳定?解:用X 表示10局中甲赢的次数,则X 服从二项分布B (10,0.51).E (X )=10×0.51=5.1,即甲平均赢5.1局.用Y 表示10局中乙赢的次数,则Y 服从二项分布B (10,0.49).E (Y )=10×0.49=4.9,于是乙平均赢4.9局.又D (X )=10×0.51×0.49=2.499,D (Y )=10×0.49×0.51=2.499.所以他们技术一样稳定.类型三 离散型随机变量方差的应用【例3】 某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16枝玫瑰花,求当天的利润y (单位:元)关于当天需求量n (单位:枝,n ∈N )的函数解析式.(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:日需求量n 14 15 16 17 18 19 20 频数10201616151310以100①若花店一天购进16枝玫瑰花,X 表示当天的利润(单位:元),求X 的分布列,数学期望及方差.②若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.【解】 (1)当n ≥16时,y =16×(10-5)=80. 当n ≤15时,y =5n -5(16-n )=10n -80.得:y =⎩⎨⎧10n -80(n ≤15),80(n ≥16)(n ∈N ).(2)①X可取60,70,80.P(X=60)=0.1,P(X=70)=0.2,P(X=80)=0.7.X的分布列为X 607080P 0.10.20.7E(X)=60×0.1+70×0.2+80×0.7=76,D(X)=162×0.1+62×0.2+42×0.7=44.②购进17枝时,当天的利润的期望值为y=(14×5-3×5)×0.1+(15×5-2×5)×0.2+(16×5-1×5)×0.16+17×5×0.54=76.4.由76.4>76得,应购进17枝.有甲、乙两名同学,据统计,他们在解答同一份数学试卷时,各自的分数在80分,90分,100分的概率分布大致如下表所示:试分析甲、乙两名同学谁的成绩好一些.解:在解答同一份数学试卷时,甲、乙两人成绩的均值分别为E(X甲)=80×0.2+90×0.6+100×0.2=90,E(X乙)=80×0.4+90×0.2+100×0.4=90.方差分别为D (X 甲)=(80-90)2×0.2+(90-90)2×0.6+(100-90)2×0.2=40, D (X 乙)=(80-90)2×0.4+(90-90)2×0.2+(100-90)2×0.4=80. 由上面数据,可知E (X 甲)=E (X 乙),D (X 甲)<D (X 乙).这表示甲、乙两人所得分数的均值相等,但两人的分数的稳定程度不同,甲同学分数较稳定,乙同学分数波动较大,所以甲同学的成绩较好.离散型随机变量期望与方差的综合应用【例4】 设袋子中装有a 个红球,b 个黄球,c 个蓝球,且规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分.(1)当a =3,b =2,c =1时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此2球所得分数之和,求ξ的分布列;(2)从该袋子中任取(每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若E (η)=53,D (η)=59,求abc .【思路分析】 第一问关键是分清取出2个球所得分数之和的所有情况,然后分类讨论,根据情况算出相应的概率、写出分布列;第二问类似地写出分布列,根据期望、方差的公式建立方程求解.【解】 (1)由题意得ξ=2,3,4,5,6. 故P (ξ=2)=3×36×6=14,P (ξ=3)=2×3×26×6=13,P (ξ=4)=2×3×1+2×26×6=518,P (ξ=5)=2×2×16×6=19,P (ξ=6)=1×16×6=136.所以ξ的分布列为ξ 2 3 4 5 6 P141351819136(2)由题意知η的分布列为η 1 2 3 paa +b +cba +b +cca +b +c所以E (η)=a a +b +c +2b a +b +c +3c a +b +c =53,D (η)=(1-53)2·a a +b +c +(2-53)2·b a +b +c +(3-53)2·c a +b +c =59.化简得⎩⎪⎨⎪⎧2a -b -4c =0,a +4b -11c =0,解得a =3c ,b =2c ,故abc =321.【解后反思】 离散型随机变量的分布列和期望是理科数学考题中的高频考点之一,其中,浙江省又多以摸球为背景,以对立事件、相互独立事件、两点分布、二项分布等知识为载体,综合考查事件发生的概率及随机变量的分布列、数学期望与方差.解题时首先要理解关键词,其次要准确无误地找出随机变量的所有可能取值,计算出相应的概率,后面一般就是计算问题.若随机事件A 在1次试验中发生的概率为p (0<p <1),用随机变量ξ表示A 在1次试验中发生的次数.(1)求方差D (ξ)的最大值; (2)求2D (ξ)-1E (ξ)的最大值.解:随机变量ξ的所有可能取值为0,1,并且有P (ξ=1)=p ,P (ξ=0)=1-p ,从而E (ξ)=0×(1-p )+1×p =p , D (ξ)=(0-p )2×(1-p )+(1-p )2×p =p -p 2.(1)D (ξ)=p -p 2=-(p 2-p +14)+14=-(p -12)2+14,∵0<p <1,∴当p =12时,D (ξ)取得最大值,最大值为14.(2)2D (ξ)-1E (ξ)=2(p -p 2)-1p =2-(2p +1p ),∵0<p <1,∴2p +1p≥2 2.当2p =1p ,p =22时,取“=”,因此,当p =22时,2D (ξ)-1E (ξ)取得最大值2-2 2.1.下面说法中正确的是(D)A.离散型随机变量ξ的期望E(ξ)反映了ξ取值的概率的平均值B.离散型随机变量ξ的方差D(ξ)反映了ξ取值的平均水平C.离散型随机变量ξ的期望E(ξ)反映了ξ取值的波动水平D.离散型随机变量ξ的方差D(ξ)反映了ξ取值的波动水平解析:由于离散型随机变量ξ的期望E(ξ)反映的是随机变量的平均取值水平,而不是概率的平均值,故A错.而D(ξ)则反映随机变量的集中(或稳定)的程度,即波动水平.2.若X~B(n,p),且E(X)=1.6,D(X)=1.28,则(A)A.n=8,p=0.2 B.n=4,p=0.4C.n=5,p=0.32 D.n=7,p=0.45解析:由E(X)=np=1.6,D(X)=np(1-p)=1.28,可知1-p=0.8,所以p=0.2,n=8.3.已知随机变量ξ,D(ξ)=19,则ξ的标准差为13.解析:D(ξ)=19=13.4.有两台自动包装机甲与乙,包装质量分别为随机变量ξ1,ξ2,已知E(ξ1)=E(ξ2),D(ξ1)>D(ξ2),则自动包装机乙的质量较好.解析:均值仅体现了随机变量取值的平均大小,如果两个随机变量的均值相等,还要看随机变量的取值如何在均值周围变化,方差大说明随机变量取值较分散;方差小,说明取值较集中.故乙的质量较好.5.已知随机变量X的分布列是X 0123 4P 0.2m n 0.20.1且E(X)=1.8.(1)求D(X);(2)设Y=2X-1,求D(Y).解:(1)由分布列可知0.2+m+n+0.2+0.1=1,且E(X)=0×0.2+1×m+2×n+3×0.2+4×0.1=1.8.即⎩⎪⎨⎪⎧ m +n =0.5,m +2n =0.8,解得m =0.2,n =0.3. ∴D (X )=(0-1.8)2×0.2+(1-1.8)2×0.2+(2-1.8)2×0.3+(3-1.8)2×0.2+(4-1.8)2×0.1=1.56.(2)∵D (X )=1.56,∴D (2X -1)=4D (X )=6.24.。
2.2 第一课时 条件概率一、课前准备1.课时目标(1) 理解条件概率的定义;(2) 了解条件概率的性质;(3) 能熟练应用条件概率公式求概率值.2.基础预探1.设A 、B 为两个事件,且P (A )>0,称(|)P B A =__________为在事件A 发生的条件下,事件B 发生的条件概率.一般把(|)P A B 读作A 发生的条件下B 的概率.2.条件概率的性质为:①条件概率具有概率的性质,任何事件的条件概率都在_____和_____之间,即___(|)P B A ≤≤_____;②如果B 和C 是两个互斥事件,则(|)P B C A =____________.二、学习引领1.深入理解条件概率每一个随机试验都是在一定条件下进行的,而这里所说的条件概率则是当试验结果的一部分信息已知(即在原随机试验的条件下,再加上一定的条件),求另一事件在此条件下发生的概率.2.古典概型相关的条件概率公式如果研究的试验是古典概型,则P (B|A )即A发生的条件下B发生的概率相当于以事件A为新的基本事件空间,P (B|A )的值也就是事件A中基本事件数与事件AB 的基本事件数之比,Ω为试验的基本事件空间.3.乘法公式与条件概率公式的关系乘法公式与条件概率公式可以相互求解:要求P (AB ),必须知道P (A |B )或P (B |A );反之,要求P (A |B ),必须知道积事件AB 的概率P (AB ).在解决实际问题时,不要将求P (AB )的问题误认为是求P (A |B )的问题.三、典例导析题型一:定义法求条件概率例1 袋中有3只红球,7只黑球,从中随机地不放回地取两次,每次取1球,发现第一次取得1只黑球.试求第二次取得1只也是黑球的概率.思路导析:显然,第一次取到黑球为条件,在此条件下,第二次仍然取得黑球的概率为条件概率.解: 不妨设取到黑球为事件A ,由题意知P(A)=107;(P AB )272104279015C C ===.由条件概率定义得P(B|A)=()2()3P AB P A =. 规律方法:直接运用条件概率时,第一要分清谁是条件,第二是准确求出P(AB),当题目中出现已知“在…前提下(条件下)”等字眼时,一般为求条件概率;题目中虽然没有出现上述明显字眼,但已知事件的发生影响了所求事件的概率,一般也为条件概率.变式训练:如图,EFGH 是以O 为圆心,半径为1的圆的内接正方形,将一颗豆子随机地扔到该圆内,用A 表示事件“豆子落在正方形EFGH 内”,B 表示事件“豆子落在扇形OHE (阴影部分)内”,则(1)=______PA ();(2)=______P A (B|).题型二:利用集合关系法求条件概率例2 盒子中有15个外形相同的球,分别标有号码1,2,…,15,其中6个白球,4个黄球,5个黑球,从盒子中任意取出一球,已知它不是白球,求它是黑球的概率是多少?思路导析:本题为在不是白球的条件下,求为黑球的概率,显然为条件概率.要先研究A 、B 之间的关系,再求P (AB )会比较简单.解:设“不是白球”为事件A ,“是黑球”为事件B ,“不是白球是黑球”为事件AB , 则951(),()15153P A P B ===. 因为B A ⊆,所以A B =B ,由条件概率公式可得:()P B A =1()()539()()915P AB P B P A P A ===. 方法规律:本题在求()P AB 的概率时,运用了集合之间的关系,避免了复杂的计算,要掌握这种方法技巧.变式训练:某种节能灯使用了800 h 还能继续使用的概率是0.8,使用了1 000 h 还能继续使用的概率是0.5,问已经使用了800 h 的节能灯还能继续使用到1 000 h 的概率是多少?题型三 条件概率公式的应用例3 某商店储存的50个环形节能灯中, 甲厂生产的环形节能灯占60%, 乙厂生产的环形节能灯占40%, 甲厂生产的环形节能灯的一等品率是90%, 乙厂生产的环形节能灯的一等品率是80%,若从这50个环形节能灯中随机抽取出一个环形节能灯(每个环形节能灯被取出的机会均等), 求它是甲厂生产的一等品的概率.思路导析:取出甲厂生产的一等品环形节能灯,其实包含两个过程一个是甲厂生产的,二是一等品的环形节能灯,故为条件概率事件.解: 设事件A 表示“甲厂生产的环形节能灯”, 事件B 表示“环形节能灯为一等品”, 依题意有()0.6P A =, ()0.9P B A =,根据条件概率计算公式得()()()0.60.90.54P AB P A P B A ==⨯=.所以它是甲厂生产的一等品的概率为0.54.方法规律:事件A 与B 同时发生的概率等于事件A 发生的概率乘以在A 发生的条件下,事件B 发生的概率,要注意条件概率公式变形的应用.变式训练:设A 、B 是两个事件,若事件A 和事件B 同时发生的概率为310,在事件A 发生的条件下,事件B 发生的概率为12,则事件A 发生的概率为 .四、随堂练习1.下面几种概率是条件概率的是( ).A .甲、乙两人投篮命中率分别为0.6、0.7,各投篮一次都投中的概率;B .甲、乙两人投篮命中率分别为0.6、0.7,在甲投中的条件下乙投篮一次命中的概率;C .有10件产品,其中3件次品,抽2件产品进行检验,恰好抽到一件次品的概率;D .小明上学路上要过四个路口,每个路口遇到红灯的概率都是25,则小明在一次上学中遇到的红灯的概率.2 .一个口袋内将有2个白球和3个黑球,则先摸出1个白球后放回,再摸出1个白球的概率是( ).A .23B .14C .25D .153.据统计,大熊猫的平均寿命是12~20岁,一只大熊猫从出生起,活到10岁的概率为0.8,活到20岁的概率为0.4.北京动物园的大熊猫“妞妞”今年已经10岁了,它能活到20岁的概率为( ).A .0.32B .0.48C .0.5D .0.64.把一枚硬币任意抛掷两次,事件A 为“第一次出现反面",事件B 为“第二次出现正面”,则()P B A = —————.5. 一个盒子里面装有5只三极管,其中3只一等品,2只二等品,从中取两次,每次一只,做不放回抽样,设事件A={}第一次取到一等品,事件B={}第二次取到一等品则(|)P A B 的概率为 .6. 根据历年气象资料统计.某地四月份刮东风的概率是830,既刮东风又下雨的概率是730,求在四月份刮东风的条件下,某地四月份下雨的概率.五、课后作业1.张家的3个鸡仔钻进了李家装有3个鸡仔的鸡笼里,现打开笼门,让鸡仔一个一个地走出来,若第一个走出来的是张家的鸡仔,那么第二个走出的也是张家的鸡仔的概率是( ).A .52B .32 C .51 D .532.盒子里装有16只球,其中6只是玻璃球,另外10只是木质球.而玻璃球中有2只是红色的,4只是蓝色的;木质球中有3只是红色的,7只是蓝色的, 现从中任取一只球,如果已知取到的是蓝色的球, 则这个球是玻璃球的概率为( ). A 1116 B 411 C 14 D 183.掷两颗均匀的骰子,已知第一颗骰子掷出6点,则掷出点数之和不小于10的概率为 .4.某种零件使用到400天后还能正常使用的概率是0.9,使用到600天后还能正常使用的概率是0.6,问已经使用了400天的零件还能继续使用到600天的概率是 .5. 已知某产品的次品率为4%,其合格品中75%为一级品,求任取一件为一级品的概率.6.抛掷红、蓝两颗骰子,设事件A 为“蓝色骰子的点数为4或6”;事件B 为“两颗骰子的点数之和大于8”, 求事件A 发生时,事件B 发生的概率是多少?参考答案2.2 第一课时条件概率2.基础预探1.()()P ABP A2. 0 1 0 1 (|)(|)P B A P C A+三、典例导析例1 变式训练答案:2π;14解析:(1)因为圆的半径为1,所以S=π圆;因为正方形EFGH的对角线长为2,所以22 S=正方形,由几何概型的概率计算公式可得2==SP ASπ正圆();(2)因为14()4P Bππ==,112()2P ABππ==,所以()P B A=1()122()4P ABP Aππ==.例2变式训练解:设节能灯使用了800 h还能继续使用为事件A,使用了1 000 h还能继续使用为事件B,则由题意知,P(A)=0.8,P(B)=0.5.因为B A⊆,所以A B=B,由条件概率公式可得:() P B A=()()0.55 ()()0.88P AB P BP A P A===.故已经使用了800 h的节能灯还能继续使用到1 000 h的概率是58.例3 变式训练答案:3 5解析:因为31(),()102P AB P B A==,所以()3()()5P ABP AP B A==.四、随堂练习1.答案:B解析:条件概率指的是在某个事件A 发生的条件下,B 事件发生的概率,事件A 发生是这个试验的前提.显然,B 选项有这样一个前提.2 .答案:C解析:因为摸出1个白球后放回,所以第二次是否摸出白球与第一次没有关系,故选C .3.答案:C解析: 设A=“能活到10岁”,B=“能活到20岁”,则8.0)(=A P ,4.0)(=B P ,所求概率为)|(A B P .因为A B ⊆,所以()()0.4(|)0.5()()0.8P AB P B P B A P A P A ====.故选C . 4.答案:12解析:一救硬币任意抛掷两次,总事件数为11224C C =,事件A 的基本事件数为11122C C =;事件A B 的基本事件数为1,故可知1()2P B A =. 5.答案:0.5 解析:现将产品编号1,2,3,为一等品,4,5为二等品,(i,j)分别为第一二次抽到的产品号.全部的基本事件为20,其中事件A 包含的事件数为12而事件AB 包含的事件数为6,所以(|)P A B =0.5.6.解:设某地四月份刮东风为事件A ,某地四 月份下雨为事件B ,则AB 为某地四月份既刮东风又下雨,则 P(A)=830,7()30P AB =, 所以7()730()8()830P AB P B A P A ===. 五、课后作业1.答案.A解析: 设“第一个走出的是张家的鸡仔”为事件A ,“第二个走出的是张家的鸡仔”为事件B ,则=)|(A B P ()()P AB P A 23262356A A ==.故选A . 2.答案:B解析:设A 表示任取一球是玻璃球,B 表示任取一球是蓝色的球,则A ⋂B 表示任取一球是蓝色玻璃球,则114(),(),1616P B P AB ==所以()4(|)()11P AB P A B P B ==. 3.答案:12解析:设掷出点数之和不小于10为事件A , 第一颗掷出6点为事件B ,则3()136()==6()236P AB P A B P B =. 4.答案:23解析:设零件使用了400天后还能正常使用为事件A ,使用了600天后还能正常使用为事件B ,因为B A Ü,所以A B B =,因为()0.9P A =,()0.6P B =. 所以()()2()()()3P AB P B P B A P A P A ===.5.解:设“任取一件为合格品”为事件A ,“任取一件为一级品”为事件B ,显然A B B ⋂=,故()14%0.96P A =-=,()0.75P B A =, 所以()()()()0.960.750.72P B P AB P A P B A ===⨯=.6.解:抛掷红、蓝两颗骰子,事件总数为116636A A =.事件A 的基本事件数为6×2=12,所以P(A)= 121363=, 因为4+5>8,4+6>8,6+3>8,6+4>8,6+5>8,6+6>8,所以在事件A 发生的条件下,事件B 发生,即AB 的事件总数为6.故P(AB) =61366=. 由条件概率公式,得1()16(|)1()23P AB P B A P A ====, 故事件A 发生时事件B 发生的概率是12.。
第二章 随机变量及其分布第三讲 独立重复试验、二项分布与正态分布[知识梳理][知识盘点]1.在相同的条件下重复做的 称为n 次独立试验。
在n 次独立重复试验中,“在相同条件下”等价于各次试验的 ,若i A (1,2,,i n =)是第i 次试验的结果,则12()________________.n P A A A =2.若设事件A 发生的次数为X ,在每次试验中事件A 发生的概率为P ,那么在n 次独立重复试验中事件A 恰好发生k 次的概率为()__________,P X k ==其中k 的取值为_________.此时随机就是X 服从二项分布,记为 ,并称P 为成功概率。
3.函数,()______________x μσϕ=的图象称为正态密度曲线,简称正态曲线。
4.对于任何实数a b <,随机变量X 满足()____________,P a X b <≤≈则称X 的分布为正态分布,正态分布完全由参数 确定。
因此正态分布常记作 ,如果X 服从正态分布,则记为 。
5.正态分布的特点:(1)曲线在 ;(2)曲线关于直线 对称;(3)曲线在x μ=时 ;(4)当μ一定时,曲线的形状由σ确定,σ越大,曲线 ,表示总体的分布越 ;σ越小,曲线 ,表示总体的分布越 。
6.若2~(,)X N μσ则对于任何实数0a >,概率()P a X a μμ-<≤+= ;(22)P a X a μμ-<≤+= ;(33)P a X a μμ-<≤+= 。
7.在实际应用中,通常认为服从正态分布2(,)N μσ的随机变量X 只取(3,3)a a μμ-+之间的值,并简称 。
[特别提醒]1.独立重复试验又叫做贝努里试验,这种试验中每一次试验只有两种结果,即要么事件发生,要么不发生,并且任何一次试验中事件发生的概率是一样的;2.如果1次试验中某事件发生的概率是p ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率为()(1)k kn k n P k C p p -=-,这个公式恰好是[(1)]n p p -+的展开式中的第1k +项,由此可见排列组合、二项式定理、概率之间存在着密切的联系。
复习课(二) 随机变量及其分布对应学生用书P50(1)在近几年的高考中对条件概率的考查有所体现,一般以选择题或填空题形式考查,难度中低档.(2)条件概率是学习相互独立事件的前提和基础,计算条件概率时,必须搞清欲求的条件概率是在什么条件下发生的概率.[考点精要] 条件概率的性质(1)非负性:0≤P (B |A )≤1.(2)可加性:如果是两个互斥事件,则P (B ∪C |A )=P (B |A )+P (C |A ).[典例] 口袋中有2个白球和4个红球, 现从中随机地不放回连续抽取两次, 每次抽取1个, 则:(1)第一次取出的是红球的概率是多少?(2)第一次和第二次都取出的是红球的概率是多少?(3)在第一次取出红球的条件下, 第二次取出的是红球的概率是多少? [解] 记事件A :第一次取出的是红球; 事件B :第二次取出的是红球.(1)从中随机地不放回连续抽取两次,每次抽取1个, 所有基本事件共6×5个; 第一次取出的是红球, 第二次是其余5个球中的任一个, 符合条件的有4×5个, 所以P (A )=4×56×5=23.(2)从中随机地不放回连续抽取两次,每次抽取1个,所有基本事件共6×5个;第一次和第二次都取出的是红球,相当于取两个球,都是红球,符合条件的有4×3个,所以P (AB )=4×36×5=25. (3)利用条件概率的计算公式,可得P (B |A )=P (AB )P (A )=2523=35.[类题通法]条件概率的两个求解策略(1)定义法:计算P (A ),P (B ),P (AB ),利用P (A |B )=P (AB )P (B )或P (B |A )=P (AB )P (A )求解.(2)缩小样本空间法:利用P (B |A )=n (AB )n (A )求解.其中(2)常用于古典概型的概率计算问题.[题组训练]1.从编号为1,2,…,10的10个大小相同的球中任取4个,已知选出4号球的条件下,选出球的最大号码为6的概率为________.解析:令事件A ={选出的4个球中含4号球},B ={选出的4个球中最大号码为6}.依题意知n (A )=C 39=84,n (AB )=C 24=6,∴P (B |A )=n (AB )n (A )=684=114.答案:1142.已知男人中有5%患色盲,女人中有0.25%患色盲,从100个男人和100个女人中任选一人.(1)求此人患色盲的概率.(2)如果此人是色盲,求此人是男人的概率.(以上各问结果写成最简分式形式). 解:设“任选一人是男人”为事件A ,“任选一人是女人”为事件B ,“任选一人是色盲”为事件C .(1)此人患色盲的概率P =P (AC )+P (BC )=P (A )P (C |A )+P (B )P (C |B ) =100200×5100+100200×0.25100=21800. (2)由(1)得P (AC )=5200,又因为P (C )=21800,所以P (A |C )=P (AC )P (C )=520021800=2021.(1)相互独立事件一般与互斥事件、对立事件结合在一起进行考查,高考经常考查,各种题型均有可能出现,难度中低档. 而二项分布也是高考考查的重点,高考以大题为主,有时也以选择、填空题形式考查.(2)解答此类问题时应分清事件间的内部联系,在此基础上用基本事件之间的交、并、补运算表示出有关事件,并运用相应公式求解.[考点精要](1)若事件A 与B 相互独立, 则事件A 与B ,A 与B ,A 与B 分别相互独立, 且有P (A B )=P (A )P (B ),P (A B )=P (A )P (B ),P (AB )=P (A )P (B ).(2)若事件A 1,A 2,…,A n 相互独立,则有P (A 1A 2A 3…A n )=P (A 1)P (A 2)…P (A n ). (3)在n 次独立重复试验中,事件A 发生的次数为X ,在每次试验中事件A 发生的概率为p ,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为P (X =k )=C k n p k (1-p )n -k,k =0,1,2,…,n .(4)二项分布满足的条件与二项分布有关的问题关键是二项分布的判定,可从以下几个方面判定: ①每次试验中,事件发生的概率是相同的. ②各次试验中的事件是相互独立的.③每次试验只有两种结果:事件要么发生,要么不发生. ④随机变量是这n 次独立重复试验中某事件发生的次数.[典例] 某班甲、乙、丙三名同学竞选班委,甲当选的概率为45,乙当选的概率为35,丙当选的概率为710.(1)求恰有一名同学当选的概率; (2)求至多有两人当选的概率.[解] 设甲、乙、丙当选的事件分别为A ,B ,C , 则有P (A )=45,P (B )=35,P (C )=710.(1)∵A ,B ,C 相互独立, ∴ 恰有一名同学当选的概率为P (A ·B ·C )+P (A ·B ·C )+P (A ·B ·C )=P (A )·P (B )·P (C )+P (A )·P (B )·P (C )+P (A )·P (B )·P (C ) =45×25×310+15×35×310+15×25×710=47250. (2)至多有两人当选的概率为1-P (ABC ) =1-P (A )·P (B )·P (C )=1-45×35×710=83125.[类题通法]求相互独立事件同时发生的概率需注意的三个问题(1)“P (AB )=P (A )P (B )”是判断事件是否相互独立的充要条件,也是解答相互独立事件概率问题的唯一工具.(2)涉及“至多”“至少”“恰有”等字眼的概率问题,务必分清事件间的相互关系. (3)公式“P (A +B )=1-P (A B ) ”常应用于求相互独立事件至少有一个发生的概率.[题组训练]1.投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A ,“骰子向上的点数是3”为事件B ,则事件A ,B 中至少有一件发生的概率是________.解析:用间接法考虑,事件A ,B 一个都不发生的概率为P (AB )=P (A )·P (B )=12×56=512, 则事件A ,B 中至少有一件发生的概率 P =1-P (AB )=712. 答案:7122.在一次抗洪抢险中,准备用射击的办法引爆从上游漂流而下的一个巨大汽油罐,已知只有5发子弹,第一次命中只能使汽油流出,第二次命中才能引爆,每次射击是相互独立的,且命中的概率都是23.(1)求油罐被引爆的概率;(2)如果引爆或子弹打光则停止射击,设射击次数为ξ,求ξ不小于4的概率. 解:(1)油罐引爆的对立事件为油罐没有引爆,没有引爆的可能情况是:射击5次只击中一次或一次也没有击中,故该事件的概率为:P =C 15·23·⎝⎛⎭⎫134+⎝⎛⎭⎫135, 所以所求的概率为1-P =1-⎣⎡⎦⎤C 15·23·⎝⎛⎭⎫134+⎝⎛⎭⎫135=232243. (2)当ξ=4时记事件A , 则P (A )=C 13·23·⎝⎛⎭⎫132·23=427. 当ξ=5时,意味着前4次射击只击中一次或一次也未击中,记为事件B .则P (B )=C 14·23·⎝⎛⎭⎫133+⎝⎛⎭⎫134=19, 所以所求概率为:P (A ∪B )=P (A )+P (B )=427+19=727.(1)离散型随机变量的期望和方差是随机变量中两种最重要的特征数,它们反映了随机变量取值的平均值及其稳定性,是高考的一个热点问题,多与概率统计结合考查,难度中高档.(2)期望与方差在实际优化问题中有大量的应用,关键要将实际问题数学化,然后求出它们的概率分布列,同时,要注意运用两点分布、二项分布等特殊分布的期望、方差公式以及期望与方差的线性性质,如E (aX +b )=aE (X )+b ,D (aX +b )=a 2D (X ).[考点精要](1)求离散型随机变量的期望与方差,一般先列出分布列,再按期望与方差的计算公式计算.(2)要熟记特殊分布的期望与方差公式(如两点分布、二项分布、超几何分布). (3)注意期望与方差的性质.(4)实际应用问题,要注意分析实际问题用哪种数学模型来表达.[典例] (全国乙卷)某公司计划购买2 台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200 元.在机器使用期间,如果备件不足再购买,则每个500 元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100 台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100 台机器更换的易损零件数的频率代替 1 台机器更换的易损零件数发生的概率,记X 表示2 台机器三年内共需更换的易损零件数,n 表示购买2 台机器的同时购买的易损零件数.(1)求X 的分布列;(2)若要求P (X ≤n )≥0.5,确定n 的最小值;(3)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?[解](1)由柱状图及以频率代替概率可得,一台机器在三年内需更换的易损零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2.从而P(X=16)=0.2×0.2=0.04;P(X=17)=2×0.2×0.4=0.16;P(X=18)=2×0.2×0.2+0.4×0.4=0.24;P(X=19)=2×0.2×0.2+2×0.4×0.2=0.24;P(X=20)=2×0.2×0.4+0.2×0.2=0.2;P(X=21)=2×0.2×0.2=0.08;P(X=22)=0.2×0.2=0.04.所以X的分布列为(2)由(1)知P(X≤18)=0.44,P(X≤19)=0.68,故n的最小值为19.(3)记Y表示2台机器在购买易损零件上所需的费用(单位:元).当n=19时,E(Y)=19×200×0.68+(19×200+500)×0.2+(19×200+2×500)×0.08+(19×200+3×500)×0.04=4 040;当n=20时,E(Y)=20×200×0.88+(20×200+500)×0.08+(20×200+2×500)×0.04=4 080.可知当n=19时所需费用的期望值小于当n=20时所需费用的期望值,故应选n=19.[类题通法]求离散型随机变量X的期望与方差的步骤(1)理解X的意义,写出X可能的全部取值;(2)求X 取每个值的概率或求出函数P (X =k ); (3)写出X 的分布列;(4)由分布列和期望的定义求出E (X );(5)由方差的定义, 求D (X ), 若X ~B (n ,p ), 则可直接利用公式求,E (X )=np ,D (X )=np (1-p ).[题组训练]1.一袋中装有分别标记着1,2,3数字的3个小球,每次从袋中取出一个球(每只小球被取到的可能性相同),现连续取3次球,若每次取出一个球后放回袋中,记3次取出的球中标号最小的数字与最大的数字分别为X ,Y ,设ξ=Y -X ,则E (ξ)=________.解析:由题意知ξ的取值为0,1,2,ξ=0,表示X =Y ,ξ=1表示X =1,Y =2或X =2,Y =3;ξ=2表示X =1,Y =3. ∴P (ξ=0)=333=19,P (ξ=1)=2×2×333=49,P (ξ=2)=2×3+A 3333=49,∴E (ξ)=0×19+1×49+2×49=43. 答案:432.一次同时投掷两枚相同的正方体骰子(骰子质地均匀,且各面分别刻有1,2,2,3,3,3六个数字).(1)设随机变量η表示一次掷得的点数和,求η的分布列.(2)若连续投掷10次,设随机变量ξ表示一次掷得的点数和大于5的次数,求E (ξ),D (ξ). 解:(1)由已知,随机变量η的取值为:2,3,4,5,6. 投掷一次正方体骰子所得点数为X ,则 P (X =1)=16,P (X =2)=13,P (X =3)=12,即P (η=2)=16×16=136,P (η=3)=2×16×13=19,P (η=4)=2×16×12+13×13=518,P (η=5)=2×13×12=13,P (η=6)=12×12=14.故η的分布列为(2)由已知,满足条件的一次投掷的点数和取值为6,设其发生的概率为p ,由(1)知,p =14, 因为随机变量ξ~B ⎝⎛⎭⎫10,14, 所以E (ξ)=np =10×14=52,D (ξ)=np (1-p )=10×14×34=158.(1)高考主要以选择、填空题形式考查正态曲线的形状特征与性质,在大题中主要以条件或一问呈现,难度中档.(2)注意数形结合.由于正态分布密度曲线具有完美的对称性,体现了数形结合的重要思想,因此运用对称性结合图象解决某一区间内的概率问题成为热点问题.[考点精要]正态变量在三个特殊区间内取值的概率(1)P (μ-σ<X ≤μ+σ)=0.682 6. (2)P (μ-2σ<X ≤μ+2σ)=0.954 4. (3)P (μ-3σ<X ≤μ+3σ)=0.997 4.[典例] 已知随机变量ξ服从正态分布N (0,σ2),若P (ξ>2)=0.023,则P (-2≤ξ≤2)=( )A .0.447B .0.628C .0.954D .0.977[解析] ∵随机变量ξ服从标准正态分布N (0,σ2), ∴正态曲线关于x =0对称.又P (ξ>2)=0.023,∴P (ξ<-2)=0.023.∴P (-2≤ξ≤2)=1-2×0.023=0.954. [答案] C [类题通法]根据正态曲线的对称性求解概率的三个关键点(1)正态曲线与x 轴围成的图形面积为1;(2)正态曲线关于直线x =μ对称,则正态曲线在对称轴x =μ的左右两侧与x 轴围成的面积都为0.5;(3)可以利用等式P (X ≥μ+c )=P (X ≤μ-c )(c >0)对目标概率进行转化求解.[题组训练]1.设随机变量ξ服从正态分布N (0,1),P (ξ>1)=p ,则P (-1<ξ<0)等于( ) A .12pB .1-pC .1-2pD .12-p解析:选D 由于随机变量服从正态分布N (0,1),由标准正态分布图象可得P (-1<ξ<1)=1-2P (ξ>1)=1-2p . 故P (-1<ξ<0)=12P (-1<ξ<1)=12-p .2.已知X ~N (μ,σ2),且P (X >0)+P (X ≥-4)=1,则μ=________.解析:∵P (X >0)+P (X ≥-4)=1,又∵P (X <-4)+P (X ≥-4)=1,∴P (X >0)=P (X <-4),又0与-4关于x =-2对称,∴曲线关于x =-2对称,即μ=-2.答案:-21.某人进行射击,共有5发子弹,击中目标或子弹打完就停止射击,射击次数为ξ,则 “ξ=5” 表示的试验结果是( )A .第5次击中目标B .第5次未击中目标C .前4次未击中目标D .第4次击中目标 解析:选C 击中目标或子弹打完就停止射击,射击次数为ξ=5,则说明前4次均未击中目标,故选C .2.甲击中目标的概率是12,如果击中赢10分,否则输11分,用X 表示他的得分,计算X 的均值为( )A .0.5分B .-0.5分C .1分D .5分解析:选B E (X )=10×12+(-11)×12=-12.3.甲、乙两个工人在同样的条件下生产,日产量相等,每天出废品的情况如下表所列,则有结论( )A .甲的产品质量比乙的产品质量好一些B .乙的产品质量比甲的质量好一些C .两人的产品质量一样好D .无法判断谁的质量好一些解析:选B ∵E (X 甲)=0×0.4+1×0.3+2×0.2+3×0.1=1,E (X 乙)=0×0.3+1×0.5+2×0.2+3×0=0.9.∵E (X 甲)>E (X 乙),∴乙的产品质量比甲的产品质量好一些.4.抛掷红、蓝两颗骰子,若已知蓝骰子的点数为3或6时,则两颗骰子点数之和大于8的概率为( )A .13B .12C .536D .512解析:选D 记事件A 为“ 蓝骰子的点数为3或6”,A 发生时红骰子的点数可以为1到6中任意一个,n (A )=12,记B :“两颗骰子点数之和大于8”,则AB 包含(3,6),(6,3),(6,4),(6,5),(6,6)5种情况,所以P (B |A )=n (AB )n (A )=512.5.已知随机变量X 和Y ,其中Y =12X +7,且E (Y )=34,若X 的分布列如下表,则m 的值为( )A .13B .14C .16D .18解析:选A 由Y =12X +7,得E (Y )=12E (X )+7=34,从而E (X )=94.∴E (X )=1×14+2m +3n +4×112=94,即2m +3n =53,m +n =1-14-112=23,解得m =13.6.甲、乙两人独立地对同一目标各射击一次,其命中率分别为0.6,0.5,现已知目标被击中,则它是被甲击中的概率是( )A .0.45B .0.6C .0.65D .0.75解析:选D 令事件A ,B 分别表示甲、乙两人各射击一次击中目标,由题意可知P (A )=0.6,P (B )=0.5,令事件C 表示目标被击中,则C =A ∪B ,则P (C )=1-P (A )P (B )=1-0.4×0.5=0.8,所以P (A |C )=P (AC )P (C )=0.60.8=0.75. 7.袋中有4只红球3只黑球,从袋中任取4只球,取到1只红球得1分,取到1只黑球得3分,设得分为随机变量X ,则P (X ≤6)=________.解析:P (X ≤6)=P (X =4)+P (X =6)=C 44+C 34C 13C 47=1335. 答案:13358.某人参加驾照考试,共考6个科目,假设他通过各科考试的事件是相互独立的,并且概率都是p .若此人未能通过的科目数ξ的均值是2,则p =________.解析:因为通过各科考试的概率为p ,所以不能通过考试的概率为1-p ,易知ξ~B (6,1-p ),所以E (ξ)=6(1-p )=2,解得p =23. 答案:239.从某地区的儿童中挑选体操学员,已知儿童体型合格的概率为15,身体关节构造合格的概率为14,从中任挑一儿童,这两项至少有一项合格的概率是(假定体型与身体关节构造合格与否相互之间没有影响)________.解析:设“儿童体型合格”为事件A ,“身体关节构造合格”为事件B ,则P (A )=15,P (B )=14.又A ,B 相互独立,则A ,B 也相互独立,则P (A B )=P (A )P (B )=45×34=35,故至少有一项合格的概率为P =1-P (A B )=25. 答案:2510.某公司招聘员工,指定三门考试课程,有两种考试方案:方案一:考三门课程至少有两门及格为考试通过;方案二:在三门课程中,随机选取两门,这两门都及格为考试通过.假设某应聘者对三门指定课程考试及格的概率分别为0.5,0.6,0.9,且三门课程考试是否及格相互之间没有影响.(1)求该应聘者用方案一通过的概率;(2)求该应聘者用方案二通过的概率.解:记“应聘者对三门考试及格的事件”分别为A ,B ,C .P (A )=0.5,P (B )=0.6,P (C )=0.9.(1)该应聘者用方案一通过的概率是P 1=P (AB C )+P (A BC )+P (A B C )+P (ABC ) =0.5×0.6×0.1+0.5×0.6×0.9+0.5×0.4×0.9+0.5×0.6×0.9 =0.03+0.27+0.18+0.27=0.75.(2)应聘者用方案二通过的概率P 2=13P (AB )+13P (BC )+13P (AC ) =13(0.5×0.6+0.6×0.9+0.5×0.9)=13×1.29=0.43. 11.为迎接2022年北京冬奥会,推广滑雪运动,某滑雪场开展滑雪促销活动.该滑雪场的收费标准是:滑雪时间不超过1小时免费,超过1小时的部分每小时收费标准为40元(不足1小时的部分按1小时计算).有甲、乙两人相互独立地来该滑雪场运动,设甲、乙不超过1小时离开的概率分别为14,16;1小时以上且不超过2小时离开的概率分别为12,23;两人滑雪时间都不会超过3小时.(1)求甲、乙两人所付滑雪费用相同的概率;(2)设甲、乙两人所付的滑雪费用之和为随机变量ξ,求ξ的分布列与数学期望E (ξ). 解:(1)若两人所付费用相同,则相同的费用可能为0元,40元,80元,两人都付0元的概率为P 1=14×16=124, 两人都付40元的概率为P 2=12×23=13, 两人都付80元的概率为P 3=⎝⎛⎭⎫1-14-12×⎝⎛⎭⎫1-16-23=14×16=124, 则两人所付费用相同的概率为P =P 1+P 2+P 3=124+13+124=512. (2)由题意得,ξ所有可能的取值为0,40,80,120,160.P (ξ=0)=14×16=124,P (ξ=40)=14×23+12×16=14, P (ξ=80)=14×16+12×23+14×16=512, P (ξ=120)=12×16+14×23=14, P (ξ=160)=14×16=124, ξ的分布列为E (ξ)=0×124+40×14+80×512+120×14+160×124=80. 12.从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(1)求这500件产品质量指标值的样本平均数x 和样本方差s 2(同一组中的数据用该区间的中点值作代表);(2)由直方图可以认为,这种产品的质量指标值Z 服从正态分布N (μ,σ2),其中μ近似为样本平均数x ,σ2近似为样本方差s 2.①利用该正态分布,求P (187.8<Z <212.2);②某用户从该企业购买了100件这种产品,记X 表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数.利用①的结果,求EX .附:150≈12.2.若Z ~N (μ,σ2),则P (μ-σ<Z <μ+σ)=0.682 6,P (μ-2σ<Z <μ+2σ)=0.954 4. 解析:(1)抽取产品的质量指标值的样本平均数x 和样本方差s 2分别为x =170×0.02+180×0.09+190×0.22+200×0.33+210×0.24+220×0.08+230×0.02=200,s2=(-30)2×0.02+(-20)2×0.09+(-10)2×0.22+0×0.33+102×0.24+202×0.08+302×0.02=150.(2)①由(1)知,Z~N(200,150),从而P(187.8<Z<212.2)=P(200-12.2<Z<200+12.2)=0.682 6.②由①知,一件产品的质量指标值位于区间(187.8,212.2)的概率为0.682 6,依题意知X~B(100,0.682 6),所以EX=100×0.682 6=68.26.。
2.2.1 条件概率1.通过对具体情境的分析,了解条件概率的定义.2.掌握求条件概率的两种方法.3.利用条件概率公式解决一些简单的问题.,1.条件概率条件设A,B为两个事件,且P(A)>0含义在事件A发生的条件下,事件B发生的条件概率记作P(B|A)读作A发生的条件下B发生的概率计算公式①事件个数法:P(B|A)=n(AB)n(A)②定义法:P(B|A)=P(AB)P(A)2.条件概率的性质(1)P(B|A)∈[0,1].(2)如果B与C是两个互斥事件,则P(B∪C|A)=P(B|A)+P(C|A).[注意] (1)前提条件:P(A)>0.(2)P(B∪C|A)=P(B|A)+P(C|A),必须B与C互斥,并且都是在同一个条件A下.判断正误(正确的打“√”,错误的打“×”)(1)若事件A,B互斥,则P(B|A)=1.( )(2)P(B|A)与P(A|B)不同.( )答案:(1)×(2)√已知P(AB)=310,P(A)=35,则P(B|A)为( )A.950B.12C.910D.14答案:B由“0”“1”组成的三位数组中,若用事件A表示“第二位数字为0”,用事件B表示“第一位数字为0”,则P(A|B)等于( )A.12B.13C.14D.18 答案:A一个盒子里有6只好晶体管,4只坏晶体管,任取两次,每次取1只,每次取出后不放回,则若已知第一次取出的是好的,则第二次取出的也是好的概率为________. 答案:59探究点1 利用定义求条件概率甲、乙两地都位于长江下游,根据多年的气象记录知道,甲、乙两地一年中雨天所占的比例分别为20%和18%,两地同时下雨的比例为12%,问: (1)乙地为雨天时甲地为雨天的概率是多少? (2)甲地为雨天时乙地为雨天的概念是多少?【解】 设“甲地为雨天”为事件A ,“乙地为雨天”为事件B , 根据题意,得P (A )=0.2,P (B )=0.18,P (AB )=0.12.(1)乙地为雨天时甲地为雨天的概率是P (A |B )=P (AB )P (B )=0.120.18=23. (2)甲地为雨天时乙地为雨天的概率是P (B |A )=P (AB )P (A )=0.120.2=35.利用定义计算条件概率的步骤(1)分别计算概率P (AB )和P (A ). (2)将它们相除得到条件概率P (B |A )=P (AB )P (A ),这个公式适用于一般情形,其中AB 表示A ,B 同时发生.如图,EFGH 是以O 为圆心,1为半径的圆的内接正方形,将一颗豆子随机地掷到圆内,用A 表示事件“豆子落在正方形EFGH 内”,B 表示事件“豆子落在扇形HOE (阴影部分)内”,则P (A )=________,P (B |A )=________.解析:因为圆的半径为1,所以圆的面积S =πr 2=π,正方形EFGH 的面积为⎝ ⎛⎭⎪⎫2r 22=2,所以P (A )=2π.P (B |A )表示事件“已知豆子落在正方形EFGH 中,则豆子落在扇形HOE (阴影部分)”的概率,所以P (B |A )=14.答案:2π 14探究点2 缩小基本事件范围求条件概率集合A ={1,2,3,4,5,6},甲、乙两人各从A 中任取一个数,若甲先取(不放回),乙后取,在甲抽到奇数的条件下,求乙抽到的数比甲抽到的数大的概率.【解】 将甲抽到数字a ,乙抽到数字b ,记作(a ,b ),甲抽到奇数的情形有(1,2),(1,3),(1,4),(1,5),(1,6),(3,1),(3,2),(3,4),(3,5),(3,6),(5,1),(5,2),(5,3),(5,4),(5,6),共15个,在这15个中,乙抽到的数比甲抽到的数大的有(1,2),(1,3),(1,4),(1,5),(1,6),(3,4),(3,5),(3,6),(5,6),共9个,所以所求概率P =915=35.1.[变问法]本例条件不变,求乙抽到偶数的概率.解:在甲抽到奇数的情形中,乙抽到偶数的有(1,2),(1,4),(1,6),(3,2),(3,4),(3,6),(5,2),(5,4),(5,6),共9个,所以所求概率P =915=35.2.[变条件]若甲先取(放回),乙后取,若事件A :“甲抽到的数大于4”;事件B :“甲、乙抽到的两数之和等于7”,求P (B |A ).解:甲抽到的数大于4的情形有:(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共12个,其中甲、乙抽到的两数之和等于7的情形有:(5,2),(6,1),共2个.所以P (B |A )=212=16.利用缩小基本事件范围计算条件概率的方法将原来的基本事件全体Ω缩小为已知的条件事件A ,原来的事件B 缩小为AB .而A 中仅包含有限个基本事件,每个基本事件发生的概率相等,从而可以在缩小的概率空间上利用古典概型公式计算条件概率,即P (B |A )=n (AB )n (A ),这里n (A )和n (AB )的计数是基于缩小的基本事件范围的.一个盒子内装有4个产品,其中3个一等品,1个二等品,从中取两次,每次任取1个,作不放回抽取.设事件A 为“第一次取到的是一等品”,事件B 为“第二次取到的是一等品”,试求条件概率P (B |A ).解:将产品编号为1,2,3号的看作一等品,4号为二等品,以(i ,j )表示第一次,第二次分别取得第i 号,第j 号产品,则试验的基本事件空间Ω={(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)},事件A 有9种情况,事件AB 有6种情况,P (B |A )=n (AB )n (A )=69=23.探究点3 条件概率性质的应用在一个袋子中装有10个球,设有1个红球,2个黄球,3个黑球,4个白球,从中依次摸2个,求在第一个球是红球的条件下,第二个球是黄球或黑球的概率.【解】 设“摸出第一个球为红球”为事件A ,“摸出第二个球为黄球”为事件B ,“摸出第三个球为黑球”为事件C ,则P (A )=110,P (AB )=1×210×9=145,P (AC )=1×310×9=130.所以P (B |A )=P (AB )P (A )=145÷110=29,P (C |A )=P (AC )P (A )=130÷110=13.所以P (B ∪C |A )=P (B |A )+P (C |A )=29+13=59.所以所求的条件概率为59.利用条件概率性质的解题策略(1)分析条件,选择公式:首先看事件B ,C 是否互斥,若互斥,则选择公式P (B ∪C |A )=P (B |A )+P (C |A ).(2)分解计算,代入求值:为了求比较复杂事件的概率,一般先把它分解成两个(或若干个)互不相容的较简单的事件之和,求出这些简单事件的概率,再利用加法公式即得所求的复杂事件的概率.外形相同的球分装在三个盒子中,每盒10个.第一个盒子中有7个球标有字母A ,3个球标有字母B ,第二个盒子中有红球和白球各5个,第三个盒子中有红球8个,白球2个.试验按如下规则进行:先在第一个盒子中任取一个球,若取得标有字母A 的球,则在第二个盒子中任取一个球;若第一次取得标有字母B 的球,则在第三个盒子中任取一个球.如果第二次取出的是红球,则称试验为成功.求试验成功的概率. 解:设A ={从第一个盒子中取得标有字母A 的球},B ={从第一个盒子中取得标有字母B 的球}, R ={第二次取出的球是红球},W ={第二次取出的球是白球},则P (A )=710,P (B )=310,所以P (R |A )=12,P (W |A )=12,P (R |B )=45,P (W |B )=15,所以P (RA ∪RB )=P (RA )+P (RB )=P (R |A )P (A )+P (R |B )P (B )=12×710+45×310=0.59.1.已知P (B |A )=13,P (A )=25,则P (AB )等于( )A.56 B.910 C.215D.115解析:选C.P (AB )=P (B |A )·P (A )=13×25=215,故选C.2.甲、乙、丙三人到三个景点旅游,每人只去一个景点,设事件A 为“三个人去的景点不相同”,B 为“甲独自去一个景点”,则概率P (A |B )等于( ) A.49 B.29 C.12 D.13解析:选C.由题意可知.n (B )=C 1322=12,n (AB )=A 33=6.所以P (A |B )=n (AB )n (B )=612=12.3.考虑恰有两个小孩的家庭.(1)若已知某家有男孩,求这家有两个男孩的概率;(2)若已知某家第一个是男孩,求这家有两个男孩(相当于第二个也是男孩)的概率(假定生男生女为等可能).解:Ω={(男,男),(男,女),(女,男),(女,女)}. 设B =“有男孩”,则B ={(男,男),(男,女),(女,男)}.A =“有两个男孩”,则A ={(男,男)},B 1=“第一个是男孩”,则B 1={(男,男),(男,女)},于是得(1)P (B )=34,P (BA )=P (A )=14,所以P (A |B )=P (BA )P (B )=13;(2)P (B 1)=12,P (B 1A )=P (A )=14,所以P (A |B 1)=P (B 1A )P (B 1)=12.知识结构深化拓展1.对条件概率计算公式的两点说明(1)如果知道事件A发生会影响事件B发生的概率,那么P(B)≠P(B|A);(2)已知A发生,在此条件下B发生,相当于AB发生,要求P(B|A),相当于把A看作新的基本事件空间计算AB发生的概率,即P(B|A)=n(AB)n(A)=n(AB)n(Ω)n(A)n(Ω)=P(AB)P(A).2.两个区别(1)P(B|A)与P(A|B)意义不同,由条件概率的定义可知P(B|A)表示在事件A发生的条件下事件B发生的条件概率;而P(A|B)表示在事件B发生的条件下事件A发生的条件概率.(2)P(B|A)与P(B):在事件A发生的前提下,事件B发生的概率不一定是P(B),即P(B|A)与P(B)不一定相等., [A 基础达标]1.已知甲在上班途中要经过两个路口,在第一个路口遇到红灯的概率为0.5,两个路口连续遇到红灯的概率为0.4,则甲在第一个路口遇到红灯的条件下,第二个路口遇到红灯的概率为( )A.0.6 B.0.7C.0.8 D.0.9解析:选C.设“第一个路口遇到红灯”为事件A,“第二个路口遇到红灯”为事件B,则P(A)=0.5,P(AB)=0.4,则P(B|A)=P(AB)P(A)=0.8.2.(2018·西安高二检测)7名同学站成一排,已知甲站在中间,则乙站在末尾的概率是( )A.14B.15C.16D.17解析:选C.记“甲站在中间”为事件A ,“乙站在末尾”为事件B ,则n (A )=A 66,n (AB )=A 55, P (B |A )=A 55A 66=16.3.(2018·洛阳高二检测)一盒中装有5个产品,其中有3个一等品,2个二等品,从中不放回地取出产品,每次1个,取两次,已知第一次取得一等品的条件下,第二次取得的是二等品的概率是( ) A.12 B.13 C.14D.23解析:选A.设事件A 表示“第一次取得的是一等品”,B 表示“第二次取得的是二等品”. 则P (AB )=3×25×4=310,P (A )=35.由条件概率公式知 P (B |A )=P (AB )P (A )=31035=12.4.在区间(0,1)内随机投掷一个点M (其坐标为x ),若A ={x |0<x <12},B ={x |14<x <34},则P (B |A )等于( )A.12 B.14 C.13D.34解析:选A.P (A )=121=12.因为A ∩B ={x |14<x <12},所以P (AB )=141=14,所以P (B |A )=P (AB )P (A )=1412=12.5.(2018·四川广安期末)甲、乙两人从1,2,…,15这15个数中,依次任取一个数(不放回),则在已知甲取到的数是5的倍数的情况下,甲所取的数大于乙所取的数的概率是( ) A.12 B.715 C.815D.914解析:选D.设事件A =“甲取到的数是5的倍数”,B =“甲所取的数大于乙所取的数”,又因为本题为古典概型概率问题,所以根据条件概率可知,P (B |A )=n (A ∩B )n (A )=4+9+143×14=914.故选D. 6.已知P (A )=0.4,P (B )=0.5,P (A |B )=0.6,则P (B |A )为________. 解析:因为P (A |B )=P (AB )P (B ),所以P (AB )=0.3. 所以P (B |A )=P (AB )P (A )=0.30.4=0.75.答案:0.757.抛掷红、蓝两颗骰子,若已知蓝骰子的点数为3或6,则两骰子点数之和大于8的概率为________.解析:令A =“抛掷出的红、蓝两颗骰子中蓝骰子的点数为3或6”,B =“两骰子点数之和大于8”,则A ={(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)},AB ={(3,6),(6,3),(6,4),(6,5),(6,6)}. 所以P (B |A )=P (AB )P (A )=n (AB )n (A )=512.答案:5128.从一副不含大、小王的52张扑克牌中不放回地抽取2次,每次抽1张.已知第1次抽到A ,则第2次也抽到A 的概率是________.解析:设“第1次抽到A ”为事件A ,“第2次也抽到A ”为事件B ,则AB 表示两次都抽到A ,P (A )=452=113,P (AB )=4×352×51=113×17,所以P (B |A )=P (AB )P (A )=117.答案:1179.(2018·福建厦门六中高二下学期期中)一个袋子中,放有大小、形状相同的小球若干,其中标号为0的小球有1个,标号为1的小球有2个,标号为2的小球有n 个.从袋子中任取2个小球,取到标号都是2的小球的概率是110.(1)求n 的值;(2)从袋子中任取2个球,已知其中一个的标号是1的条件下,求另一个标号也是1的概率. 解:(1)由题意得C 2n C 2n +3=n (n -1)(n +3)(n +2)=110,解得n =2(负值舍去).所以n =2.(2)记“一个的标号是1”为事件A ,“另一个的标号也是1”为事件B ,所以P (B |A )=n (AB )n (A )=C 22C 25-C 23=17. 10.已知男人中有5%患色盲,女人中有0.25%患色盲,从100个男人和100个女人中任选一人.(1)求此人患色盲的概率;(2)如果此人是色盲,求此人是男人的概率.解:设“任选一人是男人”为事件A ;“任选一人是女人”为事件B ,“任选一人是色盲”为事件C .(1)P (C )=P (AC )+P (BC )=P (A )P (C |A )+P (B )P (C |B )=100200×5100+100200×0.25100=21800. (2)P (A |C )=P (AC )P (C )=520021800=2021.[B 能力提升]11.先后掷两次骰子(骰子的六个面上分别是1,2,3,4,5,6点),落在水平桌面后,记正面朝上的点数分别为x ,y ,记事件A 为“x +y 为偶数”,事件B 为“x ,y 中有偶数且x ≠y ”,则概率P (B |A )的值为( ) A.12 B.13 C.14D.16解析:选B.根据题意,事件A 为“x +y 为偶数”,则x ,y 两个数均为奇数或偶数,共有2×3×3=18个基本事件.所以事件A 发生的概率为P (A )=2×3×36×6=12,而A ,B 同时发生,基本事件有“2+4”“2+6”“4+2”“4+6”“6+2”“6+4”,一共有6个基本事件,所以事件A ,B 同时发生的概率为P (AB )=66×6=16, 所以P (B |A )=P (AB )P (A )=1612=13. 12.从1~100共100个正整数中,任取一数,已知取出的一个数不大于50,则此数是2或3的倍数的概率为________.解析:设事件C 为“取出的数不大于50”,事件A 为“取出的数是2的倍数”,事件B 是“取出的数是3的倍数”.则P (C )=12,且所求概率为 P (A ∪B |C )=P (A |C )+P (B |C )-P (AB |C )=P (AC )P (C )+P (BC )P (C )-P (ABC )P (C )=2×(25100+16100-8100) =3350. 答案:335013.一个口袋内装有2个白球和2个黑球,那么:(1)先摸出1个白球不放回,再摸出1个白球的概率是多少?(2)先摸出1个白球后放回,再摸出1个白球的概率是多少?解:(1)设“先摸出1个白球不放回”为事件A ,“再摸出1个白球”为事件B ,则“先后两次摸出白球”为事件AB ,“先摸一球不放回,再摸一球”共有4×3种结果,所以P (A )=12,P (AB )=2×14×3=16, 所以P (B |A )=1612=13.所以先摸出1个白球不放回,再摸出1个白球的概率为13. (2)设“先摸出1个白球放回”为事件A 1,“再摸出1个白球”为事件B 1,“两次都摸出白球”为事件A 1B 1,P (A 1)=12,P (A 1B 1)=2×24×4=14,所以P (B 1|A 1)=P (A 1B 1)P (A 1)=1412=12.所以先摸出1个白球后放回,再摸出1个白球的概率为12. 14.(选做题)在某次考试中,要从20道题中随机地抽出6道题,若考生至少能答对其中的4道题即可通过;若能答对其中的5道题就能获得优秀.已知某考生能答对其中的10道题,并且已知道他在这次考试中已经通过,求他获得优秀成绩的概率.解:设“该考生6道题全答对”为事件A ,“该考生恰好答对了5道题”为事件B ,“该考生恰好答对了4道题”为事件C ,“该考生在这次考试中通过”为事件D ,“该考生在这次考试中获得优秀”为事件E ,则D =A ∪B ∪C ,E =A ∪B ,且A ,B ,C 两两互斥,由古典概型的概率公式知P (D )=P (A ∪B ∪C )=P (A )+P (B )+P (C )=C 610C 620+C 510C 110C 620+C 410C 210C 620=12 180C 620, 又AD =A ,BD =B ,所以P (E |D )=P (A ∪B |D )=P (A |D )+P (B |D )=P (AD )P (D )+P (BD )P (D )=P (A )P (D )+P (B )P (D )=C 610C 62012 180C 620+C 510C 110C 62012 180C 620=1358.。
2.1.1离散型随机变量知识目标:1.理解随机变量的意义;2.学会区分离散型与非离散型随机变量,并能举出离散性随机变量的例子;3.理解随机变量所表示试验结果的含义,并恰当地定义随机变量.能力目标:发展抽象、概括能力,提高实际解决问题的能力.情感目标:学会合作探讨,体验成功,提高学习数学的兴趣.教学重点:随机变量、离散型随机变量、连续型随机变量的意义教学难点:随机变量、离散型随机变量、连续型随机变量的意义授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪内容分析:本章是在初中“统计初步”和高中必修课“概率”的基础上,学习随机变量和统计的一些知识.学习这些知识后,我们将能解决类似引言中的一些实际问题教学过程:一、复习引入:展示教科书章头提出的两个实际问题(有条件的学校可用计算机制作好课件辅助教学),激发学生的求知欲某人射击一次,可能出现命中0环,命中1环,…,命中10环等结果,即可能出现的结果可能由0,1,……10这11个数表示;某次产品检验,在可能含有次品的100件产品中任意抽取4件,那么其中含有的次品可能是0件,1件,2件,3件,4件,即可能出现的结果可以由0,1,2,3,4这5个数表示在这些随机试验中,可能出现的结果都可以用一个数来表示.这个数在随机试验前是否是预先确定的?在不同的随机试验中,结果是否不变?观察,概括出它们的共同特点二、讲解新课:思考1:掷一枚骰子,出现的点数可以用数字1 , 2 ,3,4,5,6来表示.那么掷一枚硬币的结果是否也可以用数字来表示呢?掷一枚硬币,可能出现正面向上、反面向上两种结果.虽然这个随机试验的结果不具有数量性质,但我们可以用数1和0分别表示正面向上和反面向上(图2.1一1 ) .在掷骰子和掷硬币的随机试验中,我们确定了一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果的变化而变化.定义1:随着试验结果变化而变化的变量称为随机变量(random variable ).随机变量常用字母X , Y,ξ,η,…表示.思考2:随机变量和函数有类似的地方吗?随机变量和函数都是一种映射,随机变量把随机试验的结果映为实数,函数把实数映为实数.在这两种映射之间,试验结果的范围相当于函数的定义域,随机变量的取值范围相当于函数的值域.我们把随机变量的取值范围叫做随机变量的值域.例如,在含有10件次品的100 件产品中,任意抽取4件,可能含有的次品件数X 将随着抽取结果的变化而变化,是一个随机变量,其值域是{0, 1, 2 , 3, 4 } .利用随机变量可以表达一些事件.例如{X=0}表示“抽出0件次品” , {X =4}表示“抽出4件次品”等.你能说出{X< 3 }在这里表示什么事件吗?“抽出 3 件以上次品”又如何用 X 表示呢?定义2:所有取值可以一一列出的随机变量,称为离散型随机变量 ( discrete random variable ) .离散型随机变量的例子很多.例如某人射击一次可能命中的环数 X 是一个离散型随机变量,它的所有可能取值为0,1,…,10;某网页在24小时内被浏览的次数Y 也是一个离散型随机变量,它的所有可能取值为0, 1,2,….思考3:电灯的寿命X 是离散型随机变量吗?电灯泡的寿命 X 的可能取值是任何一个非负实数,而所有非负实数不能一一列出,所以 X 不是离散型随机变量.在研究随机现象时,需要根据所关心的问题恰当地定义随机变量.例如,如果我们仅关心电灯泡的使用寿命是否超过1000 小时,那么就可以定义如下的随机变量:⎧⎨≥⎩0,寿命<1000小时;Y=1,寿命1000小时.与电灯泡的寿命 X 相比较,随机变量Y 的构造更简单,它只取两个不同的值0和1,是一个离散型随机变量,研究起来更加容易.连续型随机变量: 对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量如某林场树木最高达30米,则林场树木的高度ξ是一个随机变量,它可以取(0,30]内的一切值 4.离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出注意:(1)有些随机试验的结果虽然不具有数量性质,但可以用数量来表达如投掷一枚硬币,ξ=0,表示正面向上,ξ=1,表示反面向上(2)若ξ是随机变量,b a b a ,,+=ξη是常数,则η也是随机变量三、讲解范例:例1. 写出下列随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果(1)一袋中装有5只同样大小的白球,编号为1,2,3,4,5 现从该袋内随机取出3只球,被取出的球的最大号码数ξ;(2)某单位的某部电话在单位时间内收到的呼叫次数η 解:(1) ξ可取3,4,5ξ=3,表示取出的3个球的编号为1,2,3;ξ=4,表示取出的3个球的编号为1,2,4或1,3,4或2,3,4;ξ=5,表示取出的3个球的编号为1,2,5或1,3,5或1,4,5或2,3或3,4,5 (2)η可取0,1,…,n ,…η=i ,表示被呼叫i 次,其中i=0,1,2,…例2. 抛掷两枚骰子各一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数的差为ξ,试问:“ξ> 4”表示的试验结果是什么? 答:因为一枚骰子的点数可以是1,2,3,4,5,6六种结果之一,由已知得-5≤ξ≤5,也就是说“ξ>4”就是“ξ=5”所以,“ξ>4”表示第一枚为6点,第二枚为1点例3 某城市出租汽车的起步价为10元,行驶路程不超出4km ,则按10元的标准收租车费若行驶路程超出4km ,则按每超出lkm 加收2元计费(超出不足1km 的部分按lkm 计).从这个城市的民航机场到某宾馆的路程为15km .某司机常驾车在机场与此宾馆之间接送旅客,由于行车路线的不同以及途中停车时间要转换成行车路程(这个城市规定,每停车5分钟按lkm 路程计费),这个司机一次接送旅客的行车路程ξ是一个随机变量,他收旅客的租车费可也是一个随机变量(1)求租车费η关于行车路程ξ的关系式;(Ⅱ)已知某旅客实付租车费38元,而出租汽车实际行驶了15km ,问出租车在途中因故停车累计最多几分钟?解:(1)依题意得η=2(ξ-4)+10,即η=2ξ+2 (Ⅱ)由38=2ξ+2,得ξ=18,5×(18-15)=15. 所以,出租车在途中因故停车累计最多15分钟. 四、课堂练习:1.①某寻呼台一小时内收到的寻呼次数ξ;②长江上某水文站观察到一天中的水位ξ;③某超市一天中的顾客量ξ其中的ξ是连续型随机变量的是( ) A .①; B .②; C .③; D .①②③2.随机变量ξ的所有等可能取值为1,2,,n …,若()40.3P ξ<=,则( ) A .3n =; B .4n =; C .10n =; D .不能确定 3.抛掷两次骰子,两个点的和不等于8的概率为( ) A .1112; B .3136; C .536; D .112 4.如果ξ是一个离散型随机变量,则假命题是( )A. ξ取每一个可能值的概率都是非负数;B. ξ取所有可能值的概率之和为1;C. ξ取某几个值的概率等于分别取其中每个值的概率之和;D. ξ在某一范围内取值的概率大于它取这个范围内各个值的概率之和答案:1.B 2.C 3.B 4.D五、小结 :随机变量离散型、随机变量连续型随机变量的概念 随机变量ξ是关于试验结果的函数,即每一个试验结果对应着一个实数;随机变量ξ的线性组合η=a ξ+b(其中a 、b 是常数)也是随机变量 六、课后作业: 七、板书设计(略)八、教学反思:1、怎样防止所谓新课程理念流于形式,如何合理选择值得讨论的问题,实现学生实质意义的参与.2、防止过于追求教学的情境化倾向,怎样把握一个度.2. 1.2离散型随机变量的分布列教学目标:知识与技能:会求出某些简单的离散型随机变量的概率分布。
第二章随机变量及其分布章末复习学习目标 1.了解条件概率和两个事件相互独立的概念.2.理解离散型随机变量及分布列,并掌握两个特殊的分布列——二项分布和超几何分布.3.理解离散型随机变量的均值、方差的概念,并能应用其解决一些简单的实际问题.4.了解正态分布曲线特点及曲线所表示的意义.1.离散型随机变量的分布列(1)如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量;所有取值可以一一列出的随机变量,称为离散型随机变量.(2)若离散型随机变量X可能取的不同值为x1,x2,…,x i,…,x n,X取每一个值x i(i=1,2,…,n)的概率P(X=x i)=p i,则称表为离散型随机变量X的概率分布列,简称为X的分布列,具有性质:①p i≥ 0,i=1,2,…,n;②∑n i =1p i =1.离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和. 2.两点分布如果随机变量X 的分布列为其中0<p <1,q =1-p 则称离散型随机变量X 服从参数为p 的两点分布. 3.超几何分布在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{X =k }发生的概率:P (X =k )=Ck M Cn k N -M Cn N(k =0,1,2,…,m ),其中m =min{M ,n },且n ≤N ,M ≤N ,n ,M ,N ∈N *,则称分布列为超几何分布列. 4.条件概率及其性质(1)对于任何两个事件A 和B ,在已知事件A 发生的条件下,事件B 发生的概率叫做条件概率,用符号P (B |A )来表示,其公式为P (B |A )=错误!(P (A )>0).在古典概型中,若用n (A )表示事件A 中基本事件的个数,则P (B |A )=错误!. (2)条件概率具有的性质: ①0≤P (B |A )≤1;②如果B 和C 是两个互斥事件, 则P (B ∪C |A )=P (B |A )+P (C |A ). 5.相互独立事件(1)对于事件A ,B ,若A 的发生与B 的发生互不影响,则称A ,B 是相互独立事件. (2)若A 与B 相互独立,则P (B |A )=P (B ),P (AB )=P (B |A )P (A )=P (A )P (B ).(3)若A 与B 相互独立,则A 与B ,A 与B ,A 与B 也都相互独立. (4)若P (AB )=P (A )P (B ),则A 与B 相互独立. 6.二项分布(1)独立重复试验是指在相同条件下可重复进行的,各次之间相互独立的一种试验,在这种试验中每一次试验只有两种结果,即要么发生,要么不发生,且任何一次试验中发生的概率都是一样的.(2)在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率为p ,则P (X =k )=Ck n p k(1-p )n -k(k =0,1,2,…,n ),此时称随机变量X 服从二项分布,记为X ~B (n ,p ),并称p 为成功概率. 7.离散型随机变量的均值与方差 若离散型随机变量X 的分布列为(1)均值称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量X 的均值或数学期望,它反映了离散型随机变量取值的平均水平. (2)方差称D (X )=∑n i =1 (x i -E (X ))2p i 为随机变量X 的方差,它刻画了随机变量X 与其均值E (X )的平均偏离程度,其算术平方根错误!为随机变量X 的标准差. (3)均值与方差的性质 ①E (aX +b )=aE (X )+b .②D (aX +b )=a 2D (X ).(a ,b 为常数) (4)两点分布与二项分布的均值、方差①若X 服从两点分布,则E (X )=p ,D (X )=p (1-p ). ②若X ~B (n ,p ),则E (X )=np ,D (X )=np (1-p ). 8.正态分布 (1)正态曲线:函数φμ,σ(x )=12πσ22()2ex μσ--,x ∈(-∞,+∞),其中μ和σ为参数(σ>0,μ∈R ).我们称函数φμ,σ(x )的图象为正态分布密度曲线,简称正态曲线.(2)正态曲线的性质:①曲线位于x轴上方,与x轴不相交;②曲线是单峰的,它关于直线x=μ对称;③曲线在x=μ处达到峰值1σ2π;④曲线与x轴之间的面积为 1 ;⑤当σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿x轴平移,如图甲所示;⑥当μ一定时,曲线的形状由σ确定,σ越小,曲线越“瘦高”,表示总体的分布越集中;σ越大,曲线越“矮胖”,表示总体的分布越分散,如图乙所示.(3)正态分布的定义及表示如果对于任何实数a,b(a<b),随机变量X满足P(a<X≤b)=ʃb aφμ,σ(x)d x,则称随机变量X服从正态分布,记作X~N(μ,σ2).正态总体在三个特殊区间内取值的概率值①P(μ-σ<X≤μ+σ)=0.682 6;②P(μ-2σ<X≤μ+2σ)=0.954 4;③P(μ-3σ<X≤μ+3σ)=0.997 4.类型一条件概率的求法例1 设b和c分别是先后抛掷一枚骰子得到的点数,用随机变量ξ表示方程x2+bx+c =0实根的个数(重根按一个计).求在先后两次出现的点数中有5的条件下,方程x2+bx +c=0有实根的概率.考点条件概率的定义及计算公式题点直接利用公式求条件概率解记“先后两次出现的点数中有5”为事件M,则基本事件总数为6×6=36.其中先后两次出现的点数中有5,共有11种.从而P (M )=1136.记“方程x 2+bx +c =0有实根”为事件N , 若使方程x 2+bx +c =0有实根, 则Δ=b 2-4c ≥0,即b ≥2 c.∵b ,c 分别是先后抛掷一枚骰子得到的点数, ∴当先后两次出现的点数中有5时, 若b =5,则c =1,2,3,4,5,6;若c =5,则b =5,6.b =5,c =5只能算一种情况,从而P (MN )=736.∴在先后两次出现的点数中有5的条件下,方程x 2+bx +c =0有实根的概率为P (N |M )=错误!=错误!.反思与感悟 条件概率是学习相互独立事件的前提和基础,计算条件概率时,必须搞清要求的条件概率是在什么条件下发生的概率.一般地,计算条件概率常有两种方法 (1)P (B |A )=错误!.(2)P (B |A )=错误!.在古典概型下,n (AB )指事件A 与事件B 同时发生的基本事件个数;n (A )是指事件A 发生的基本事件个数.跟踪训练1 已知男人中有5%患色盲,女人中有0.25%患色盲,从100个男人和100个女人中任选一人.(1)求此人患色盲的概率;(2)如果此人是色盲,求此人是男人的概率.(以上各问结果写成最简分式形式) 考点 条件概率的性质及应用 题点 条件概率的性质的简单应用解 设“任选一人是男人”为事件A ,“任选一人是女人”为事件B ,“任选一人是色盲”为事件C .(1)此人患色盲的概率P (C )=P (AC )+P (BC )=P (A )P (C |A )+P (B )·P (C |B ) =100200×5100+100200×0.25100=21800. (2)由(1)得P (AC )=5200,又因为P (C )=21800, 所以P (A |C )=错误!=错误!=错误!.类型二 相互独立事件的概率与二项分布例2 天气预报,在元旦期间甲、乙两地都降雨的概率为16,至少有一个地方降雨的概率为23,已知甲地降雨的概率大于乙地降雨的概率,且在这段时间甲、乙两地降雨互不影响. (1)分别求甲、乙两地降雨的概率;(2)在甲、乙两地3天假期中,仅有一地降雨的天数为X ,求X 的分布列、均值与方差. 考点 二项分布的计算及应用 题点 求二项分布的分布列解 (1)设甲、乙两地降雨的事件分别为A ,B ,且P (A )=x ,P (B )=y . 由题意得错误!解得错误!所以甲地降雨的概率为12,乙地降雨的概率为13.(2)在甲、乙两地中,仅有一地降雨的概率为P =P (A B )+P (A B )=P (A )P (B )+P (A )P (B )=12×23+12×13=12. X 的可能取值为0,1,2,3.P (X =0)=C03⎝ ⎛⎭⎪⎫123=18,P (X =1)=C13⎝ ⎛⎭⎪⎫121⎝ ⎛⎭⎪⎫1-122=38,P (X =2)=C23⎝ ⎛⎭⎪⎫122⎝ ⎛⎭⎪⎫1-12=38,P (X =3)=C33⎝⎛⎭⎪⎫1-123=18,所以X 的分布列为所以E (X )=0×18+1×38+2×38+3×18=32.方差D (X )=18×⎝ ⎛⎭⎪⎫0-322+38×⎝ ⎛⎭⎪⎫1-322+38×⎝ ⎛⎭⎪⎫2-322+18×⎝ ⎛⎭⎪⎫3-322=34.反思与感悟 (1)求相互独立事件同时发生的概率需注意的三个问题①“P (AB )=P (A )P (B )”是判断事件是否相互独立的充要条件,也是解答相互独立事件概率问题的唯一工具.②涉及“至多”“至少”“恰有”等字眼的概率问题,务必分清事件间的相互关系. ③公式“P (A ∪B )=1-P (A B )”常应用于相互独立事件至少有一个发生的概率. (2)二项分布的判定与二项分布有关的问题关键是二项分布的判定,可从以下几个方面判定: ①每次试验中,事件发生的概率是相同的. ②各次试验中的事件是相互独立的.③每次试验只有两种结果:事件要么发生,要么不发生. ④随机变量是这n 次独立重复试验中某事件发生的次数.跟踪训练2 在一次抗洪抢险中,准备用射击的办法引爆从上游漂流而下的一个巨大汽油罐,已知只有5发子弹,第一次命中只能使汽油流出,第二次命中才能引爆,每次射击是相互独立的,且命中的概率都是23.(1)求油灌被引爆的概率;(2)如果引爆或子弹打光则停止射击,设射击次数为ξ,求ξ不小于4的概率. 考点 互斥、对立、独立重复试验的概率问题 题点 互斥事件、对立事件、独立事件的概率问题解 (1)油罐引爆的对立事件为油罐没有引爆,没有引爆的可能情况是:射击5次只击中一次或一次也没有击中,故该事件的概率为P =C15×23×⎝ ⎛⎭⎪⎫134+⎝ ⎛⎭⎪⎫135,所以所求的概率为1-P =1-⎣⎢⎡⎦⎥⎤C15×23×⎝ ⎛⎭⎪⎫134+⎝ ⎛⎭⎪⎫135=232243.(2)当ξ=4时,记事件为A , 则P (A )=C13×23×⎝ ⎛⎭⎪⎫132×23=427,当ξ=5时,意味着前4次射击只击中一次或一次也未击中,记为事件B .则P (B )=C14×23×⎝ ⎛⎭⎪⎫133+⎝ ⎛⎭⎪⎫134=19,所以所求概率为P (A ∪B )=P (A )+P (B )=427+19=727.类型三 离散型随机变量的均值与方差例3 为回馈顾客,某商场拟通过摸球兑奖的方式对1 000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元,求: ①顾客所获的奖励额为60元的概率; ②顾客所获的奖励额的分布列及均值;(2)商场对奖励总额的预算是60 000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由. 考点 均值与方差的应用 题点 均值与方差的综合应用 解 (1)设顾客所获的奖励额为X , ①依题意,得P (X =60)=C11·C 13C24=12,即顾客所获的奖励额为60元的概率为12.②依题意得X 的所有可能取值为20,60,P (X =20)=C23C24=12,P (X =60)=12,即X 的分布列为所以这位顾客所获奖励额的均值为E (X )=20×12+60×12=40.(2)根据商场的预算,每位顾客的平均奖励额为60元,所以先寻找均值为60元的可能方案.对于面值由10元和50元组成的情况,如果选择(10,10,10,50)的方案,因为60元是面值之和的最大值,所以均值不可能为60元.如果选择(50,50,50,10)的方案,因为60元是面值之和的最小值,所以均值也不可能为60元,因此可能的方案是(10,10,50,50)记为方案1,对于面值由20元和40元组成的情况,同理可排除(20,20,20,40)和(40,40,40,20)的方案,所以可能的方案是(20,20,40,40), 记为方案2,以下是对这两个方案的分析:对于方案1,即方案(10,10,50,50),设顾客所获的奖励额为X 1,则X 1的分布列为X 1的均值E (X 1)=20×16+60×23+100×16=60.X 1的方差D (X 1)=(20-60)2×16+(60-60)2×23+(100-60)2×16=1 6003,对于方案2,即方案(20,20,40,40),设顾客所获的奖励额为X 2,则X 2的分布列为X 2的均值E (X 2)=40×16+60×23+80×16=60,X 2的方差D (X 2)=(40-60)2×16+(60-60)2×23+(80-60)2×16=4003. 由于两种方案的奖励额的均值都符合要求,但方案2奖励额的方差比方案1小,所以应该选择方案2.反思与感悟 求离散型随机变量X 的均值与方差的步骤 (1)理解X 的意义,写出X 可能的全部取值; (2)求X 取每个值的概率或求出函数P (X =k ); (3)写出X 的分布列;(4)由分布列和均值的定义求出E (X );(5)由方差的定义,求D (X ),若X ~B (n ,p ),则可直接利用公式求,E (X )=np ,D (X )=np (1-p ).跟踪训练3 某产品按行业生产标准分成8个等级,等级系数X 依次为1,2,…,8,其中X ≥5为标准A ,X ≥3为标准B ,已知甲厂执行标准A 生产该产品,产品的零售价为6元/件;乙厂执行标准B 生产该产品,产品的零售价为4元/件,假定甲、乙两厂的产品都符合相应的执行标准.(1)已知甲厂产品的等级系数X 1的分布列如下表:且X 1的均值E (X 1)=6,求a ,b 的值;(2)为分析乙厂产品的等级系数X 2,从该厂生产的产品中随机抽取30件,相应的等级系数组成一个样本,数据如下: 3 5 3 3 8 5 5 6 3 4 6 3 4 7 5 3 4 8 5 3 8 3 4 3 4 4 7 5 6 7用该样本的频率分布估计总体分布,将频率视为概率,求等级系数X 2的均值; (3)在(1)(2)的条件下,若以“性价比”为判断标准,则哪个工厂的产品更具有可购买性?说明理由.注:①产品的“性价比”=产品的等级系数的均值产品的零售价;②“性价比”高的产品更具有可购买性. 考点 均值与方差的应用 题点 均值与方差的综合应用 解 (1)∵E (X 1)=6,∴5×0.4+6a +7b +8×0.1=6, 即6a +7b =3.2,又由X 1的分布列得0.4+a +b +0.1=1, 即a +b =0.5.由⎩⎪⎨⎪⎧6a +7b =3.2,a +b =0.5,解得⎩⎪⎨⎪⎧a =0.3,b =0.2.(2)由已知得,样本的频率分布表如下:用该样本的频率分布估计总体分布,将频率视为概率,可得等级系数X 2的分布列如下:∴E (X 2)=3×0.3+4×0.2+5×0.2+6×0.1+7×0.1+8×0.1=4.8,即乙厂产品的等级系数的均值为4.8.(3)乙厂的产品更具有可购买性,理由如下: 甲厂产品的等级系数的均值为6,价格为6元/件, 其性价比为66=1,乙厂产品的等级系数的均值等于4.8,价格为4元/件, 其性价比为4.84=1.2.∴乙厂的产品更具有可购买性. 类型四 正态分布的应用例4 为了评估某大米包装生产设备的性能,从该设备包装的大米中随机抽取100袋作为样本,称其重量为经计算:样本的平均值μ=10.10,标准差σ=0.21.(1)为评判该生产线的性能,从该生产线中任抽取一袋,设其重量为X (kg),并根据以下不等式进行评判.①P (μ-σ<X ≤μ+σ)≥0.682 6; ②P (μ -2σ<X ≤μ+2σ)≥0.954 4; ③P (μ-3σ<X ≤μ+3σ)≥0.997 4;若同时满足三个不等式,则生产设备为甲级;满足其中两个,则为乙级;仅满足其中一个,则为丙级;若全不满足,则为丁级.请判断该设备的等级;(2)将重量小于或等于μ-2σ与重量大于μ+2σ的包装认为是不合格的包装,从设备的生产线上随机抽取5袋大米,求其中不合格包装袋数Y 的均值E (Y ). 考点 正态分布的应用 题点 正态分布的综合应用 解 (1)由题意得P (μ-σ<X ≤μ+σ)=P (9.89<X ≤10.31)=80100=0.8>0.682 6, P (μ-2σ<X ≤μ+2σ)=P (9.68<X ≤10.52)=94100=0.94<0.954 4, P (μ-3σ<X ≤μ+3σ)=P (9.47<X ≤10.73)=99100=0.99<0.997 4, 所以该生产设备为丙级.(2)由表知,不合格的包装共有6袋,则从设备的生产线上随机抽一袋不合格的概率P =6100=350, 由题意知Y 服从二项分布,即Y ~B ⎝ ⎛⎭⎪⎫5,350, 所以E (Y )=5×350=0.3.反思与感悟 正态曲线的应用及求解策略解答此类题目的关键在于将待求的问题向(μ-σ,μ+σ],(μ-2σ,μ+2σ],(μ-3σ,μ+3σ]这三个区间进行转化,然后利用上述区间的概率求出相应概率,在此过程中依然会用到化归思想及数形结合思想.跟踪训练4 某市去年高考考生成绩X 服从正态分布N (500,502),现有25 000名考生,试确定考生成绩在550分~600分的人数. 考点 正态分布的应用 题点 正态分布的实际应用解 ∵考生成绩X ~N (500,502),∴μ=500,σ=50, ∴P =(550<X ≤600)=12[P (500-2×50<X ≤500+2×50)-P (500-50<X ≤500+50)]=12(0.954 4-0.682 6)=0.135 9. 故考生成绩在550分~600分的人数约为25 000×0.135 9≈3 398.1.抛掷一枚骰子,观察出现的点数,若已知出现的点数不超过4,则出现的点数是奇数的概率为( ) A.13 B.14 C.16 D.12考点 条件概率的定义及计算公式 题点 利用缩小基本事件空间求条件概率 答案 D解析 设抛掷一枚骰子出现的点数不超过4为事件A ,抛掷一枚骰子出现的点数是奇数为事件B ,则P (B |A )=错误!=错误!=错误!.故选D.2.国庆节放假,甲、乙、丙三人去北京旅游的概率分别是13,14,15.假定三人的行动相互之间没有影响,那么这段时间内至少有1人去北京旅游的概率为( ) A.5960 B.35 C.12 D.160考点 相互独立事件的性质及应用 题点 独立事件与互斥事件的综合应用 答案 B解析 设“国庆节放假,甲、乙、丙三人去北京旅游”分别为事件A ,B ,C ,则A ,B ,C 相互独立且P (A )=13,P (B )=14,P (C )=15,∴至少有1人去北京旅游的概率为1-P (A BC )=1-P (A )·P (B )·P (C )=1-⎝ ⎛⎭⎪⎫1-13×⎝ ⎛⎭⎪⎫1-14×⎝ ⎛⎭⎪⎫1-15=1-25=35,故选B.3.某班有50名学生,一次考试后的数学成绩ξ~N (110,102),若P (100≤ξ≤110)=0.34,则估计该班学生的数学成绩在120分以上(含120分)的人数为( ) A .10 B .9 C .8 D .7 考点 正态分布的应用 题点 正态分布的实际应用答案 C解析 ∵数学成绩ξ服从正态分布N (110,102), 且P (100≤ξ≤110)=0.34,∴P (ξ≥120)=P (ξ<100)=12×(1-0.34×2)=0.16,∴该班数学成绩在120分以上的人数为0.16×50=8.4.设随机变量ξ的分布列为P (ξ=k )=m ·⎝ ⎛⎭⎪⎫23k,k =1,2,3,则m 的值为 .考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求参数 答案2738解析 因为P (ξ=1)+P (ξ=2)+P (ξ=3)=1, 即m ⎣⎢⎡⎦⎥⎤23+⎝ ⎛⎭⎪⎫232+⎝ ⎛⎭⎪⎫233=1,所以m =2738. 5.某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历.假定该毕业生得到甲公司面试的概率为23,得到乙、丙两公司面试的概率均为p ,且三个公司是否让其面试是相互独立的.记X 为该毕业生得到面试的公司个数,若P (X =0)=112,则随机变量X 的均值E (X )= . 考点 相互独立事件的性质及应用 题点 独立事件与分布列 答案 53解析 随机变量X 的可能取值是0,1,2,3.由题意知P (X =0)=13(1-p )2=112,所以p =12,于是P (X =1)=23×12×12+13×12×12+13×12×12=13,P (X =3)=23×12×12=16,P (X =2)=1-P (X =0)-P (X =1)-P (X =3)=1-112-13-16=512,所以均值E (X )=0×112+1×13+2×512+3×16=53.1.条件概率的两个求解策略(1)定义法:计算P(A),P(B),P(AB),利用P(A|B)=错误!错误!求解.(2)缩小样本空间法:利用P(B|A)=错误!求解.其中(2)常用于古典概型的概率计算问题.2.求解实际问题的均值与方差的解题思路:先要将实际问题数学化,然后求出随机变量的分布列,同时要注意运用两点分布、二项分布等特殊分布的均值、方差公式以及均值与方差的线性性质.一、选择题1.已知某一随机变量X的分布列如下,且E(X)=6.3,则a的值为( )A.5 B.6 C.7 D.8考点离散型随机变量的可能取值题点离散型随机变量的结果答案 C解析由题意和分布列的性质得0.5+0.1+b=1,且E(X)=4×0.5+0.1a+9b=6.3,解得b=0.4,a=7.2.某工程施工在很大程度上受当地年降水量的影响,施工期间的年降水量X(单位:mm)对工期延误天数Y的影响及相应的概率P如下表所示:在年降水量X至少是100的条件下,工期延误小于30天的概率为( )A.0.7 B.0.5C.0.3 D.0.2考点条件概率的定义及计算公式题点直接利用公式求条件概率答案 B解析 设事件A 为“年降水量X 至少是100”,事件B 为“工期延误小于30天”,则P (B |A )=错误!=错误!=0.5,故选B.3.从应届高中毕业生中选拔飞行员,已知这批学生体型合格的概率为13,视力合格的概率为16,其他几项标准合格的概率为15,从中任选一名学生,则该生均合格的概率为(假设各项标准互不影响)( ) A.49 B.59 C.45D.190考点 相互独立事件同时发生的概率计算 题点 求多个相互独立事件同时发生的概率 答案 D解析 该生各项均合格的概率为13×16×15=190.4.设随机变量X 服从正态分布N (3,4),则P (X <1-3a )=P (X >a 2+7)成立的一个必要不充分条件是( ) A .a =1或2 B .a =±1或2 C .a =2D .a =3-52考点 正态分布密度函数的概念 题点 正态曲线性质的应用 答案 B解析 ∵X ~N (3,4),P (X <1-3a )=P (X >a 2+7), ∴(1-3a )+(a 2+7)=2×3,∴a =1或2.故选B.5.(2017·福建莆田二十四中高二期中)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( ) A .0.648 B .0.432 C .0.36D .0.312考点 互斥、对立、独立重复试验的概率问题题点互斥事件、对立事件、独立事件的概率问题答案 A解析根据独立重复试验公式得,该同学通过测试的概率为C230.62×0.4+C330.63=0.648.6.命题r:随机变量ξ~N(3,σ2),若P(ξ≤2)=0.4,则P(ξ≤4)=0.6.命题q:随机变量η~B(n,p),且E(η)=200,D(η)=100,则p=0.5.则( )A.r正确,q错误B.r错误,q正确C.r错误,q也错误D.r正确,q也正确考点正态分布的应用题点正态分布的综合应用答案 D解析因为随机变量ξ~N(3,σ2),所以正态曲线关于x=3对称,又P(ξ≤2)=0.4,则P(ξ>4)=P(ξ≤2)=0.4,所以P(ξ≤4)=0.6,所以r是正确的;随机变量η~B(n,p),且E(η)=np=200,D(η)=np(1-p)=100,所以200(1-p)=100,解得p=0.5,所以q是正确的.故选D.7.节日期间,某种鲜花进货价是每束2.5元,销售价是每束5元;节日卖不出去的鲜花以每束1.6元价格处理.根据前五年销售情况预测,节日期间这种鲜花的需求量X服从如表所示的分布列若进这种鲜花500束,则利润的均值为( )A.706元B.690元C.754元D.720元考点离散型随机变量均值的概率与计算题点离散型随机变量均值的计算答案 A解析因为E(X)=200×0.2+300×0.35+400×0.3+500×0.15=340,所以利润的均值为340×(5-2.5)-(500-340)×(2.5-1.6)=706元,故选A.8.某班50名学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间是[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].从样本成绩不低于80分的学生中随机选取2人,这2人中成绩在90分以上(含90分)的人数为ξ,则ξ的均值为( )A.13B.12C.23D.34考点 常见的几种均值题点 与排列、组合有关的随机变量的均值 答案 B解析 由频率分布直方图知,3×0.006×10+0.01×10+0.054×10+10x =1,解得x =0.018,∴成绩不低于80分的学生人数为(0.018+0.006)×10×50=12,成绩在90分以上(含90分)的学生人数为0.006×10×50=3,∴ξ的可能取值为0,1,2,P (ξ=0)=C29C212=611,P (ξ=1)=C13×C 19C212=922,P (ξ=2)=C23C212=122,∴E (ξ)=0×611+1×922+2×122=12. 二、填空题9.盒中有10支螺丝钉,其中3支是坏的,现在从盒中不放回地依次抽取两支,那么在第一支抽取为好的条件下,第二支是坏的概率为 . 考点 条件概率的定义及计算公式 题点 直接利用公式求条件概率 答案 13解析 记事件A 为“第一支抽取为好的”,事件B 为“第二支是坏的”,则P (A )=710,P (AB )=710×39=730,∴P (B |A )=错误!=错误!.10.甲、乙两人进行跳绳比赛,规定:若甲赢一局,比赛结束,甲胜出;若乙赢两局,比赛结束,乙胜出.已知每一局甲、乙二人获胜的概率分别为25,35,则甲胜出的概率为 .考点 互斥、对立、独立重复试验的概率问题 题点 互斥事件、对立事件、独立事件的概率问题 答案1625解析 方法一 甲胜的情况为:①举行一局比赛,甲胜出,比赛结束,②举行两局比赛,第一局乙胜,第二局甲胜,其概率分别为25,35×25,且这两个事件是互斥的,所以甲胜出的概率为25+35×25=1625.方法二 因为比赛结果只有甲胜出和乙胜出两个结果,而乙胜出的情况只有一种,举行两局比赛都是乙胜出,其概率为35×35=925,所以甲胜出的概率为1-925=1625.11.一台机器生产某种产品,如果生产一件甲等品可获得50元,生产一件乙等品可获得30元,生产一件次品,要赔20元,已知这台机器生产出甲等品、乙等品和次品的概率分别为0.6,0.3和0.1,则这台机器每生产一件产品平均预期获利 元. 考点 离散型随机变量的均值的概念与计算 题点 离散型随机变量均值的计算 答案 37解析 设生产一件该产品可获利钱数为X ,则随机变量X 的取值可以是-20,30,50.依题意,X 的分布列为故E (X )=-20×0.1+30×0.3+50×0.6=37(元).12.一批玉米种子的发芽率是0.8,每穴只要有一粒发芽,就不需补种,否则需要补种.则每穴至少种 粒,才能保证每穴不需补种的概率大于98%.(lg 2=0.301 0)考点 互斥、对立、独立重复试验的概率问题 题点 互斥事件、对立事件、独立事件的概率问题 答案 3解析 记事件A 为“种一粒种子,发芽”, 则P (A )=0.8,P (A )=1-0.8=0.2.因为每穴种n 粒相当于做了n 次独立重复试验,记事件B 为“每穴至少有一粒种子发芽”, 则P (B )=C0n 0.80(1-0.8)n =0.2n, 所以P (B )=1-P (B )=1-0.2n. 根据题意,得P (B )>98%,即0.2n <0.02. 两边同时取以10为底的对数,得n lg 0.2<lg 0.02,即n (lg 2-1)<lg 2-2,所以n >lg 2-2lg 2-1=-1.699 0-0.699 0≈2.43.因为n ∈N *,所以n 的最小正整数值为3. 三、解答题13.一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3.从盒中任取3张卡片. (1)求所取3张卡片上的数字完全相同的概率;(2)用X 表示所取3张卡片上的数字的中位数,求X 的分布列与均值. (注:若三个数a ,b ,c 满足a ≤b ≤c ,则称b 为这三个数的中位数) 考点 常见的几种均值题点 与排列、组合有关的随机变量的均值解 (1)由古典概型的概率计算公式知所求概率P =C34+C33C39=584.(2)X 的所有可能取值为1,2,3, 则P (X =1)=C24×C 15+C34C39=1742,P (X =2)=C13×C 14×C 12+C23×C 16+C33C39=4384,P (X =3)=C22×C 17C39=112.故X 的分布列为从而E (X )=1×1742+2×4384+3×112=4728.四、探究与拓展14.某公司在迎新年晚会上举行抽奖活动,有甲、乙两个抽奖方案供员工选择. 方案甲:员工最多有两次抽奖机会,每次抽奖的中奖率均为45.第一次抽奖,若未中奖,则抽奖结束.若中奖,则通过抛一枚质地均匀的硬币,决定是否继续进行第二次抽奖.规定:若抛出硬币,反面朝上,员工则获得500元奖金,不进行第二次抽奖;若正面朝上,员工则须进行第二次抽奖且在第二次抽奖中,若中奖,则获得奖金1 000元;若未中奖,则所获得的奖金为0元.方案乙:员工连续三次抽奖,每次中奖率均为25,每次中奖均可获得奖金400元.(1)求某员工选择方案甲进行抽奖所获奖金X (元)的分布列;(2)试比较某员工选择方案乙与选择方案甲进行抽奖.哪个方案更划算? 考点 均值、方差的综合应用 题点 均值与方差在实际中的应用解 (1)由题意得,X 的所有可能取值为0,500,1 000,则P (X =0)=15+45×12×15=725,P (X =500)=45×12=25, P (X =1 000)=45×12×45=825,所以某员工选择方案甲进行抽奖所获奖金X (元)的分布列为(2)由(1)可知,选择方案甲进行抽奖所获奖金X 的均值E (X )=500×25+1 000×825=520,若选择方案乙进行抽奖,中奖次数ξ~B ⎝ ⎛⎭⎪⎫3,25,则E (ξ)=3×25=65,抽奖所获奖金Y 的均值E (Y )=E (400ξ)=400E (ξ)=480,故选择方案甲较划算.15.某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16枝玫瑰花,求当天的利润y (单位:元)关于当天需求量n (单位:枝,n ∈N )的函数解析式;(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:以100天记录的各需求量的频率作为各需求量发生的概率.①若花店一天购进16枝玫瑰花,X 表示当天的利润(单位:元),求X 的分布列、均值及方差;②若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.考点 均值、方差的综合应用 题点 均值与方差在实际中的应用 解 (1)当日需求量n ≥16时,利润y =80. 当日需求量n <16时,利润y =10n -80.所以当天的利润y 关于当天需求量n 的函数解析式为y =⎩⎪⎨⎪⎧10n -80,n<16,80,n≥16.(n ∈N )(2)①X 可能的取值为60,70,80,并且P (X =60)=0.1,P (X =70)=0.2,P (X =80)=0.7. 故X 的分布列为E(X)=60×0.1+70×0.2+80×0.7=76,D(X)=(60-76)2×0.1+(70-76)2×0.2+(80-76)2×0.7=44.②方法一:花店一天应购进16枝玫瑰花.理由如下:若花店一天购进17枝玫瑰花,Y表示当天的利润(单位:元),那么Y的分布列为E(Y)=55×0.1+65×0.2+75×0.16+85×0.54=76.4,D(Y)=(55-76.4)2×0.1+(65-76.4)2×0.2+(75-76.4)2×0.16+(85-76.4)2×0.54=112.04.由以上的计算结果可以看出,D(X)<D(Y),即购进16枝玫瑰花时利润波动相对较小.另外,虽然E(X)<E(Y),但两者相差不大,故花店一天应购进16枝玫瑰花.方法二:花店一天应购进17枝玫瑰花.理由如下:若花店一天购进17枝玫瑰花,Y表示当天的利润(单位:元),那么Y的分布列为E(Y)=55×0.1+65×0.2+75×0.16+85×0.54=76.4.由以上的计算结果可以看出,E(X)<E(Y),即购进17枝玫瑰花时的平均利润大于购进16枝时的平均利润.故花店一天应购进17枝玫瑰花.。
第二章 随机变量及其分布章末复习学习目标 1.了解条件概率和两个事件相互独立的概念.2.理解离散型随机变量及分布列,并掌握两个特殊的分布列——二项分布和超几何分布.3.理解离散型随机变量的均值、方差的概念,并能应用其解决一些简单的实际问题.4.了解正态分布曲线特点及曲线所表示的意义.1.离散型随机变量的分布列(1)如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量;所有取值可以一一列出的随机变量,称为离散型随机变量.(2)若离散型随机变量X 可能取的不同值为x 1,x 2,…,x i ,…,x n ,X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,则称表为离散型随机变量X 的概率分布列,简称为X 的分布列,具有性质: ①p i ≥ 0,i =1,2,…,n ;②∑ni =1p i =1. 离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和. 2.两点分布如果随机变量X 的分布列为其中0<p <1,q =1-p 则称离散型随机变量X 服从参数为p 的两点分布. 3.超几何分布在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{X =k }发生的概率:P (X =k )=C k M C n -kN -M C n N(k =0,1,2,…,m ),其中m =min{M ,n },且n ≤N ,M ≤N ,n ,M ,N ∈N *,则称分布列为超几何分布列. 4.条件概率及其性质(1)对于任何两个事件A 和B ,在已知事件A 发生的条件下,事件B 发生的概率叫做条件概率,用符号P (B |A )来表示,其公式为P (B |A )=P (AB )P (A )(P (A )>0). 在古典概型中,若用n (A )表示事件A 中基本事件的个数,则P (B |A )=n (AB )n (A ). (2)条件概率具有的性质: ①0≤P (B |A )≤1;②如果B 和C 是两个互斥事件, 则P (B ∪C |A )=P (B |A )+P (C |A ). 5.相互独立事件(1)对于事件A ,B ,若A 的发生与B 的发生互不影响,则称A ,B 是相互独立事件. (2)若A 与B 相互独立,则P (B |A )=P (B ),P (AB )=P (B |A )P (A )=P (A )P (B ).(3)若A 与B 相互独立,则A 与B ,A 与B ,A 与B 也都相互独立. (4)若P (AB )=P (A )P (B ),则A 与B 相互独立. 6.二项分布(1)独立重复试验是指在相同条件下可重复进行的,各次之间相互独立的一种试验,在这种试验中每一次试验只有两种结果,即要么发生,要么不发生,且任何一次试验中发生的概率都是一样的.(2)在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率为p ,则P (X =k )=C k n p k (1-p )n -k(k =0,1,2,…,n ),此时称随机变量X 服从二项分布,记为X ~B (n ,p ),并称p 为成功概率.7.离散型随机变量的均值与方差 若离散型随机变量X 的分布列为(1)均值称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量X 的均值或数学期望,它反映了离散型随机变量取值的平均水平. (2)方差。
2.2.1 条件概率[学习目标]1.理解条件概率的定义. 2.掌握条件概率的计算方法.3.利用条件概率公式解决一些简单的实际问题. [知识链接]1.3张奖券中只有1张能中奖,现分别由3名同学无放回地抽取,问最后一名同学抽到中奖奖券的概率是否比其他同学小?答 最后一名同学抽到中奖奖券的概率为13,不比其他同学小.2.若事件A ,B 互斥,则P (B |A )是多少? 答 A 与B 互斥,即A ,B 不同时发生. ∴P (AB )=0, ∴P (B |A )=0. [预习导引] 1.条件概率的概念设A ,B 为两个事件,且P (A )>0,称P (B |A )=P (AB )P (A )为在事件A 发生的条件下,事件B 发生的条件概率.P (B |A )读作A 发生的条件下B 发生的概率.2.条件概率的性质 (1)P (B |A )∈[0,1].(2)如果B 与C 是两个互斥事件,则P ((B ∪C )|A )=P (B |A )+P (C |A ).要点一 条件概率例1 一个盒子中有6个白球、4个黑球,每次从中不放回地任取1个,连取两次,求第一次取到白球的条件下,第二次取到黑球的概率.解 法一 记“第一次取到白球”为事件A ,“第二次取到黑球”为事件B . 显然,事件“第一次取到白球,第二次取到黑球”的概率为P (AB )=6×410×9=415. 由条件概率的计算公式,得 P (B |A )=P (AB )P (A )=415610=49.法二 这个问题还可以这样理解:第一次取到白球,则只剩9个球,其中5个白球,4个黑球,在这个前提下,第二次取到黑球的概率是49.规律方法 (1)对于古典概型的概率求法要搞清楚基本事件总数.(2)条件概率的定义揭示了P (A ),P (AB )及P (B |A )三者之间的关系,反映了“知二求一”的互化关系.跟踪演练1 设100件产品中有70件一等品,25件二等品,其余为三等品,规定一、二等品为合格品.从中任取1件,求:(1)取得一等品的概率;(2)已知取得的是合格品,求它是一等品的概率.解 设B 表示取得一等品,A 表示取得合格品,则 (1)因为100件产品中有70件一等品,P (B )=70100=710.(2)法一 因为95件合格品中有70件一等品,又由于一等品也是合格品,∴AB =B ,∴P (B |A )=7095=1419. 法二 P (B |A )=P (AB )P (A )=7010095100=1419.要点二 条件概率的综合应用例2 在某次考试中,从20道题中随机抽取6道题,若考生至少能答对其中的4道即可通过;若至少能答对其中5道就获得优秀.已知某考生能答对其中10道题,并且知道他在这次考试中已经通过,求他获得优秀成绩的概率. 解 设事件A 为“该考生6道题全答对”,事件B为“该考生答对了其中5道题,另一道答错”,事件C为“该考生答对了其中4道题,另两道答错”,事件D为“该考生在这次考试中通过”,事件E为“该考生在这次考试中获得优秀”,则A,B,C两两互斥,且D=A∪B∪C,由古典概型的概率公式及加法公式可知P(D)=P(A∪B∪C)=P(A)+P(B)+P(C)C610 C620+C510·C110C620+C410·C210C620=12 180C620.∵P(AD)=P(A∩D)=P(A),P(BD)=P(B∩D)=P(B),∴P(E|D)=P((A∪B)|D)=P(A|D)+P(B|D)=P(A)P(D)+P(B)P(D)=C610C62012 180C620+C510·C110C62012 180C620=1358.所以他获得优秀成绩的概率是1358.规律方法当所求事件的概率相对较复杂时,往往把该事件分成两个(或多个)互不相容的较简单的事件之和,求出这些简单事件的概率,再利用P((B∪C)|A)=P(B|A)+P(C|A)便可求得较复杂事件的概率.跟踪演练2 高二·一班和高二·二班两班共有学生120名,其中女同学50名,若一班有70名同学,而女生30名,问在碰到一班同学时,正好碰到一名女同学的概率.解设事件A为“碰到一班的一名同学”,事件B为“正好碰到一班的一名女同学”,易知n(A)=70,n(AB)=n(B)=30,由条件概率公式求得P(B|A)=n(AB)n(A)=37.1.下列说法正确的是( )A .P (B |A )<P (AB ) B .P (B |A )=P (B )P (A )是可能的 C .0<P (B |A )<1 D .P (A |A )=0 答案 B 解析 ∵P (B |A )=P (AB )P (A ),而P (A )≤1,∴P (B |A )≥P (AB ),∴A 错, 当P (A )=1时,P (AB )=P (B ), ∴P (B |A )=P (AB )P (A )=P (B )P (A ),∴B 正确.而0≤P (B |A )≤1,P (A |A )=1,∴C ,D 错,故选B.2.甲、乙、丙三人到三个景点旅游,每人只去一个景点,设事件A 为“三个人去的景点不相同”,B 为“甲独自去一个景点”,则概率P (A |B )等于( ) A.49 B.29 C.12 D.13 答案 C解析 由题意可知.n (B )=C 1322=12,n (AB )=A 33=6.∴P (A |B )=n (AB )n (B )=612=12.3.设某种动物能活到20岁的概率为0.8,能活到25岁的概率为0.4,现有一只20岁的这种动物,它能活到25岁的概率是________. 答案 0.5解析 设事件A 为“能活到20岁”,事件B 为“能活到25岁”, 则P (A )=0.8,P (B )=0.4,而所求概率为P (B |A ),由于B ⊆A ,故AB =B , 于是P (B |A )=P (AB )P (A )=P (B )P (A )=0.40.8=0.5,所以一只20岁的这种动物能活到25岁的概率是0.5.4.考虑恰有两个小孩的家庭.若已知某家有男孩,求这家有两个男孩的概率;若已知某家第一个是男孩,求这家有两个男孩(相当于第二个也是男孩)的概率(假定生男生女为等可能). 解 Ω={(男,男),(男,女),(女,男),(女,女)}. 设B =“有男孩”,则B ={(男,男),(男,女),(女,男)}.A =“有两个男孩”,则A ={(男,男)},B 1=“第一个是男孩”,则B 1={(男,男),(男,女)}于是得P (B )=34,P (BA )=P (A )=14,∴P (A |B )=P (BA )P (B )=13;P (B 1)=12,P (B 1A )=P (A )=14,∴P (A |B 1)=P (B 1A )P (B 1)=12.1.条件概率:P (B |A )=P (AB )P (A )=n (AB )n (A ).2.概率P (B |A )与P (AB )的区别与联系:P (AB )表示在样本空间Ω中,计算AB 发生的概率,而P (B |A )表示在缩小的样本空间ΩA 中,计算B 发生的概率.用古典概型公式,则P (B |A )=AB 中样本点数ΩA 中样本点数,P (AB )=AB 中样本点数Ω中样本点数.一、基础达标1.若P (A )=34,P (B |A )=12,则P (AB )等于( )A.23B.38C.13D.58答案 B解析 利用条件概率的乘法公式求解.P (AB )=P (A )·P (B |A )=34×12=38.2.某人忘记了一个电话号码的最后一个数字,只好任意去试拨,他第一次失败、第二次成功的概率是 ( )A.110B.210C.810D.910答案 A解析 某人第一次失败,第二次成功的概率为P =9×110×9=110,所以选A.3.某地区气象台统计,该地区下雨的概率是415,刮风的概率为215,既刮风又下雨的概率为110,则在下雨天里,刮风的概率为 ( ) A.8225B.12C.38D.34答案 C解析 A =“下雨”,B =“刮风”,AB =“刮风又下雨”, ∴P (B |A )=P (AB )P (A )=110415=38.4.某班学生考试成绩中,数学不及格的占15%,语文不及格的占5%,两门都不及格的占3%.已知一学生数学不及格,则他语文也不及格的概率是( ) A .0.2B .0.33C .0.5D .0.6答案 A解析 A =“数学不及格”,B =“语文不及格”,P (B |A )=P (AB )P (A )=0.030.15=0.2.所以数学不及格时,该生语文也不及格的概率为0.2.5.盒中装有10只乒乓球,其中6只新球,4只旧球,不放回地依次取出2只球使用,在第一次摸出新球的条件下,第二次也取到新球的概率为________. 答案 59解析 A ={第一次取到新球},B ={第二次取到新球},则n (A )=C 16C 19,n (AB )=C 16C 15,∴P (B |A )=n (AB )n (A )=C 16C 15C 16C 19=59.6.把一枚硬币任意掷两次,事件A ={第一次出现正面},事件B ={第二次出现反面},则P (B |A )=________. 答案 12解析 P (A )=24=12,P (AB )=14,故P (B |A )=P (AB )P (A )=12.7.一张储蓄卡的密码共有6位数字,每位数字都可从0~9中任选一个.某人在银行自动提款机上取钱时,忘记了密码的最后一位数字,求:(1)任意按最后一位数字,不超过2次就按对的概率;(2)如果他记得密码的最后一位是偶数,不超过2次就按对的概率.解 设“第i 次按对密码”为事件A i (i =1,2),则A =A 1∪(A -1A 2)表示“不超过2次就按对密码”.(1)因为事件A 1与事件A -1A 2互斥,由概率的加法公式得P (A )=P (A 1)+P (A -1A 2)=110+9×110×9=15. (2)设“最后一位按偶数”为事件B ,则P (A |B )=P (A 1|B )+P (A -1A 2|B )=15+4×15×4=25.二、能力提升8.从混有5张假钞的20张百元钞票中任意抽出2张,将其中1张放到验钞机上检验发现是假钞,则第2张也是假钞的概率为 ( ) A.119B.1738C.419D.217答案 D解析 设事件A 表示“抽到2张都是假钞”, 事件B 为“2张中至少有一张假钞”,所以为P (A |B ). 而P (AB )=C 25C 220,P (B )=C 25+C 15C 115C 220. ∴P (A |B )=P (AB )P (B )=217.9.有一批种子的发芽率为0.9,出芽后的幼苗成活率为0.8,在这批种子中,随机抽取一粒,则这粒种子能成长为幼苗的概率为________. 答案 0.72解析 设“种子发芽”为事件A ,“种子成长为幼苗”为事件AB (发芽,又成活为幼苗),出芽后的幼苗成活率为P (B |A )=0.8,P (A )=0.9.根据条件概率公式P (AB )=P (B |A )·P (A )=0.8×0.9=0.72,即这粒种子能成长为幼苗的概率为0.72.10.如图,四边形EFGH 是以O 为圆心、半径为1的圆的内接正方形.将一颗豆子随机地扔到该圆内,用A 表示事件“豆子落在正方形EFGH 内”,B 表示事件“豆子落在扇形OHE (阴影部分)内”,则(1)P (A )=________; (2)P (B |A )=________. 答案 (1)2π (2)14解析 正方形的面积为2,圆的面积为π. (1)∵A 表示事件“豆子落在正方形EFGH 内”, ∴P (A )=2π.(2)∵B 表示事件“豆子落在扇形OHE (阴影部分)内”, ∴P (AB )=12π,∴P (B |A )=P (AB )P (A )=14.11.抛掷红、蓝两枚骰子,设事件A 为“蓝色骰子的点数为3或6”,事件B 为“两枚骰子的点数之和大于8”. (1)求P (A ),P (B ),P (AB );(2)当已知蓝色骰子点数为3或6时,问两枚骰子的点数之和大于8的概率为多少? 解 (1)设x 为掷红骰子得到的点数,y 为掷蓝骰子得到的点数,则所有可能的事件与(x ,y )一一对应,由题意作图(如图). 显然:P (A )=1236=13,P (B )=1036=518,P (AB )=536.(2)法一 P (B |A )=n (AB )n (A )=512.法二 P (B |A )=P (AB )P (A )=53613=512.12.某生在一次口试中,共有10题供选择,已知该生会答其中6题,随机从中抽5题供考生回答,答对3题及格,求该生在第一题不会答的情况下及格的概率.解 设事件A 为从10题中依次抽5题,第一题不会答;设事件B 为从10题中依次抽5题,第一题不会答,其余4题中有3题或4题会答.n (A )=C 14C 49,n (B )=C 14(C 36C 13+C 46C 03).则P =C 14(C 36C 13+C 46C 03)C 14C 49=2542. 所以该生在第一题不会答的情况下及格的概率为2542.三、探究与创新13.现有6个节目准备参加比赛,其中4个舞蹈节目,2个语言类节目,如果不放回的依次抽取2个节目,求(1)第1次抽到舞蹈节目的概率;(2)第1次和第2次都抽到舞蹈节目的概率;(3)在第1次抽到舞蹈节目的条件下,第2次抽到舞蹈节目的概率.解 设第1次抽到舞蹈节目为事件A ,第2次抽到舞蹈节目为事件B ,则第1次和第2次都抽到舞蹈节目为事件AB .(1)从6个节目中不放回的依次抽取2个的事件数为n (Ω)=A 26=30, 根据分步乘法计数原理n (A )=A 14A 15=20, 于是P (A )=n (A )n (Ω)=2030=23.(2)因为n (AB )=A 24=12, 于是P (AB )=n (AB )n (Ω)=1230=25.(3)由(1)(2)可得,在第1次抽到舞蹈节目的条件下,第2次抽到舞蹈节目的概率为 P (B |A )=P (AB )P (A )=2523=35.故P (B |A )=n (AB )n (A )=1220=35.。
第二章 随机变量及其分布章末复习课[整合·网络构建][警示·易错提醒]1.“互斥事件”与“相互独立事件”的区别.“互斥事件”是说两个事件不能同时发生,“相互独立事件”是说一个事件发生与否对另一个事件发生的概率没有影响.2.对独立重复试验要准确理解.(1)独立重复试验的条件:第一,每次试验是在同样条件下进行;第二,任何一次试验中某事件发生的概率相等;第三,每次试验都只有两种结果,即事件要么发生,要么不发生.(2)独立重复试验概率公式的特点:关于P (X =k )=C k n p k(1-p )n -k,它是n 次独立重复试验中某事件A 恰好发生k 次的概率.其中n 是重复试验次数,p 是一次试验中某事件A 发生的概率,k 是在n 次独立试验中事件A 恰好发生的次数,弄清公式中n ,p ,k 的意义,才能正确运用公式.3.(1)准确理解事件和随机变量取值的意义,对实际问题中事件之间的关系要清楚. (2)认真审题,找准关键字句,提高解题能力.如“至少有一个发生”“至多有一个发生”“恰有一个发生”等.(3)常见事件的表示.已知两个事件A 、B ,则A ,B 中至少有一个发生为A ∪B ;都发生为A ·B ;都不发生为— A ·— B ;恰有一个发生为(— A ·B )∪(A ·—B );至多有一个发生为(— A ·— B )∪(— A ·B )∪(A ·— B ).4.对于条件概率,一定要区分P (AB )与P (B |A ).5.(1)离散型随机变量的期望与方差若存在则必唯一,期望E (ξ)的值可正也可负,而方差的值则一定是一个非负值.它们都由ξ的分布列唯一确定.(2)D (ξ)表示随机变量ξ对E (ξ)的平均偏离程度.D (ξ) 越大表明平均偏离程度越大,说明ξ的取值越分散;反之D (ξ)越小,ξ的取值越集中.(3)D (a ξ+b )=a 2D (ξ),在记忆和使用此结论时,请注意D (a ξ+b )≠aD (ξ)+b ,D (a ξ+b )≠aD (ξ).6.对于正态分布,要特别注意N (μ,σ2)由μ和σ唯一确定,解决正态分布问题要牢记其概率密度曲线的对称轴为x =μ.专题一 条件概率的求法条件概率是高考的一个热点,常以选择题或填空题的形式出现,也可能是大题中的一个部分,难度中等.[例1] 坛子里放着7个大小、形状相同的鸭蛋,其中有4个是绿皮的,3个是白皮的.如果不放回地依次拿出2个鸭蛋,求:(1)第1次拿出绿皮鸭蛋的概率;(2)第1次和第2次都拿出绿皮鸭蛋的概率;(3)在第1次拿出绿皮鸭蛋的条件下,第2次拿出绿皮鸭蛋的概率.解:设“第1次拿出绿皮鸭蛋”为事件A ,“第2次拿出绿皮鸭蛋”为事件B ,则“第1次和第2次都拿出绿皮鸭蛋”为事件AB .(1)从7个鸭蛋中不放回地依次拿出2个的事件数为n (Ω)=A 27=42, 根据分步乘法计数原理,n (A )=A 14×A 16=24. 于是P (A )=n (A )n (Ω)=2442=47.(2)因为n (AB )=A 24=12, 所以P (AB )=n (AB )n (Ω)=1242=27.(3)法一 由(1)(2)可得,在第1次拿出绿皮鸭蛋的条件下,第2次拿出绿皮鸭蛋的概率为P (B |A )=P (AB )P (A )=27÷47=12. 法二 因为n (AB )=12,n (A )=24,所以P (B |A )=n (AB )n (A )=1224=12.归纳升华解决概率问题的步骤.第一步,确定事件的性质:古典概型、互斥事件、独立事件、独立重复试验、条件概率,然后把所给问题归结为某一种.第二步,判断事件的运算(和事件、积事件),确定事件至少有一个发生还是同时发生,分别运用相加或相乘事件公式.第三步,利用条件概率公式求解:(1)条件概率定义:P (B |A )=P (AB )P (A ).(2)针对古典概型,缩减基本事件总数P (B |A )=n (AB )n (A ).[变式训练] 把一枚骰子连续掷两次,已知在第一次抛出的是偶数点的情况下,第二次抛出的也是偶数点的概率为是多少?解:“第一次抛出偶数点”记为事件A ,“第二次抛出偶数点”记为事件B ,则P (A )=3×66×6=12,P (AB )=3×36×6=14. 所以P (B |A )=P (AB )P (A )=14÷12=12.专题二 互斥事件、独立事件的概率要正确区分互斥事件与相互独立事件,准确应用相关公式解题,互斥事件是不可能同时发生的事件,相互独立事件是指一个事件的发生与否对另一个事件没有影响.[例2] 红队队员甲、乙、丙与蓝队队员A ,B ,C 进行围棋比赛,甲对A 、乙对B 、丙对C 各一盘.已知甲胜A 、乙胜B 、丙胜C 的概率分别为0.6,0.5,0.5.假设各盘比赛结果相互独立.(1)求红队至少两名队员获胜的概率;(2)用ξ表示红队队员获胜的总盘数,求P (ξ≤1).解:(1)设“甲胜A ”为事件D ,“乙胜B ”为事件E ,“丙胜C ”为事件F ,则D ,E ,F 分别表示甲不胜A 、乙不胜B 、丙不胜C 的事件.因为P (D )=0.6,P (E )=0.5,P (F )=0.5,由对立事件的概率公式,知P (D )=0.4,P (E )=0.5,P (F )=0.5.红队至少两人获胜的事件有DEF ,DEF ,DEF ,DEF .由于以上四个事件两两互斥且各盘比赛的结果相互独立,因此红队至少两人获胜的概率为P =P (DEF )+P (DEF )+P (DEF )+P (DEF )=0.6×0.5×0.5+0.6×0.5×0.5+0.4×0.5×0.5+0.6×0.5×0.5=0.55.(2)由题意,知ξ的可能取值为0,1,2,3.P(ξ=0)=P(D E F)=0.4×0.5×0.5=0.1,P(ξ=1)=P(D E F)+P(DEF)+P(D E F)=0.4×0.5×0.5+0.4×0.5×0.5+0.6×0.5×0.5=0.35,所以P(ξ≤1)=P(ξ=0)+P(ξ=1)=0.45.[变式训练] 设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立.(1)求同一工作日至少3人需使用设备的概率;(2)X表示同一工作日需使用设备的人数,求P(X=1).解:记A i表示事件“同一工作日乙、丙中恰有i人需使用设备”,i=0,1,2,B表示事件“甲需使用设备”,C表示事件“丁需使用设备”,D表示事件“同一工作日至少3人需使用设备”.(1)D=A1BC+A2B+A2BC,P(B)=0.6,P(C)=0.4,P(A i)=C i2×0.52,i=0,1,2,所以P(D)=P(A1BC+A2B+A2BC)=P(A1BC)+P(A2B)+P(A2BC)=P(A1)P(B)P(C)+P(A2)P(B)+P(A2)P(B)P(C)=0.31.(2)X=1表示在同一工作日有一人需使用设备.P(X=1)=P(BA0C+BA0C+BA1C)=P(B)P(A0)P(C)+P(B)P(A0)P(C)+P(B)P(A1)P(C)=0.6×0.52×(1-0.4)+(1-0.6)×0.52×0.4+(1-0.6)×2×0.52×(1-0.4)=0.25.专题三独立重复试验与二项分布二项分布是高考考查的重点,要准确理解、熟练运用其概率公式P n(k)=C k n·p k(1-p)n -k,k=0,1,2,…,n,高考以解答题为主,有时也用选择题、填空题形式考查.[例3] 现有10道题,其中6道甲类题,4道乙类题,张同学从中任取3道题解答. (1)求张同学所取的3道题至少有1道乙类题的概率;(2)已知所取的3道题中有2道甲类题,1道乙类题.设张同学答对每道甲类题的概率都是35,答对每道乙类题的概率都是45,且各题答对与否相互独立.用X 表示张同学答对题的个数,求X 为1和3的概率.解:(1)设事件A =“ 张同学所取的3道题至少有1道乙类题”,则有A =“张同学所取的3道题都是甲类题”.因为P (— A )=C 36C 310=16,所以P (A )=1-P (— A )=56.(2)P (X =1)=C 12⎝ ⎛⎭⎪⎫351·⎝ ⎛⎭⎪⎫251·15+C 02⎝ ⎛⎭⎪⎫350·⎝ ⎛⎭⎪⎫252·45=28125; P (X =3)=C 22⎝ ⎛⎭⎪⎫352·⎝ ⎛⎭⎪⎫25·45=36125.归纳升华解决二项分布问题必须注意: (1)对于公式P n (k )=C kn ·p k(1-p )n -k,k =0,1,2,…,n 必须在满足“独立重复试验”时才能运用,否则不能应用该公式.(2)判断一个随机变量是否服从二项分布,关键有两点:一是对立性,即一次试验中,事件发生与否两者必有其一;二是重复性,即试验独立重复地进行了n 次.[变式训练] 一位病人服用某种新药后被治愈的概率为0.9,服用这种新药的有甲、乙、丙3位病人,且各人之间互不影响,有下列结论:①3位病人都被治愈的概率为0.93; ②3人中的甲被治愈的概率为0.9;③3人中恰好有2人被治愈的概率是2×0.92×0.1; ④3人中恰好有2人未被治愈的概率是3×0.9×0.12. 其中正确结论的序号是________(把正确结论的序号都填上).解析: ①中事件为3次独立重复试验恰有3次发生的概率,其概率为0.93,故①正确;由独立重复试验中,事件A 发生的概率相同,知②正确;③中恰有2人被治愈的概率为P (X =2)=C 23p 2(1-p )=3×0.92×0.1,从而③错误;④中恰好有2人未被治愈相当于恰好1人被治愈,故概率为C 13×0.9×0.12=3×0.9×0.12,从而④正确.答案:①②④专题四 离散型随机变量的期望与方差离散型随机变量的均值和方差在实际问题中具有重要意义,也是高考的热点内容.[例4] (2016·天津卷)某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4.现从这10人中随机选出2人作为该组代表参加座谈会.(1)设A 为事件“选出的2人参加义工活动次数之和为4”,求事件A 发生的概率; (2)设X 为选出的2人参加义工活动次数之差的绝对值,求随机变量X 的分布列和数学期望.解:(1)由已知,有P (A )=C 13C 14+C 23C 210=13. 所以,事件A 发生的概率为13.(2)随机变量X 的所有可能取值为0,1,2. P (X =0)=C 23+C 23+C 24C 210=415, P (X =1)=C 13C 13+C 13C 14C 210=715, P (X =2)=C 13C 14C 210=415.所以随机变量X 的分布列为:随机变量X 的数学期望E (X )=0×15+1×15+2×15=1.归纳升华(1)求离散型随机变量的分布列有以下三个步骤:①明确随机变量X 取哪些值;②计算随机变量X 取每一个值时的概率;③将结果用表格形式列出.计算概率时要注意结合排列组合知识.(2)均值和方差的求解方法是:在分布列的基础上利用E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 求出均值,然后利用D (X )= i =1n[x i -E (X )]2p i 求出方差.[变式训练] 根据以往的经验,某工程施工期间的降水量X (单位:mm)对工期的影响如下表:0.3,0.7,0.9,求:(1)工期延误天数Y 的均值与方差.(2)在降水量至少是300的条件下,工期延误不超过6天的概率.解:(1)由已知条件有P (X <300)=0.3,P (300≤X <700)=P (X <700)-P (X <300)=0.7-0.3=0.4,P (700≤X <900)=P (X <900)-P (X <700)=0.9-0.7=0.2. P (X ≥900)=1-P (X <900)=1-0.9=0.1.所以Y 的分布列为于是,E (Y )=0×0.3D (Y )=(0-3)2×0.3+(2-3)2×0.4+(6-3)2×0.2+(10-3)2×0.1=9.8.故工期延误天数Y 的均值为3,方差为9.8.(2)由概率的加法公式,P (X ≥300)=1-P (X <300)=0.7, 又P (300≤X <900)=P (X <900)-P (X <300)=0.9-0.3=0.6. 由条件概率,得P (Y ≤6|X ≥300)=P (X <900|X ≥300)=P (300≤X <900)P (X ≥300)=0.60.7=67.故在降水量X 至少是300的条件下,工期延误不超过6天的概率是67.专题五 正态分布及简单应用高考主要以选择题、填空题形式考查正态曲线的形状特征与性质,抓住其对称轴是关键. [例5] 某市去年高考考生成绩服从正态分布N (500,502),现有25 000名考生,试确定考生成绩在550~600分的人数.解:因为考生成绩X ~N (500,502),所以μ=500,σ=50,所以P (550<X ≤600)=12[P (500-2×50<X ≤500+2×50)-P (500-50<X ≤500+50)]=12(0.954 4-0.682 6)=0.135 9. 故考生成绩在550~600分的人数为25 000×0.135 9≈3 398(人).归纳升华正态分布概率的求法1.注意3σ原则,记住正态总体在三个区间内取值的概率.2.注意数形结合.由于正态分布密度曲线具有完美的对称性,体现了数形结合的重要思想,因此运用对称性结合图象解决某一区间内的概率问题成为热点问题.[变式训练] 某镇农民年收入服从μ=5 000元,σ=200元的正态分布.则该镇农民平均收入在5 000~5 200元的人数的百分比是________.解析:设X 表示此镇农民的平均收入,则X ~N (5 000,2002). 由P (5 000-200<X ≤5 000+200)=0.682 6. 得P (5 000<X ≤5 200)=0.682 62=0.341 3.故此镇农民平均收入在5 000~5 200元的人数的百分比为34.13%. 答案:34.13% 专题六 方程思想方程思想是解决概率问题中的重要思想,在求离散型随机变量的分布列,求两个或三个事件的概率时常会用到方程思想.即根据题设条件列出相关未知数的方程(或方程组)求得结果.[例6] 甲、乙、丙三台机床各自独立地加工同一种零件,已知甲机床加工的零件是一等品而乙机床加工的零件不是一等品的概率为14,乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率为112,甲、丙两台机床加工的零件都是一等品的概率为29. (1)分别求甲、乙、丙三台机床各自加工的零件是一等品的概率;(2)从甲、乙、丙加工的零件中各取一个检验,求至少有一个一等品的概率. 解:记A ,B ,C 分别为甲、乙、丙三台机床各自加工的零件是一等品的事件. 由题设条件有⎩⎪⎨⎪⎧P (A — B )=14,P (B — C )=112,P (AC )=29,即⎩⎪⎨⎪⎧P (A )[1-P (B )]=14, ①P (B )[1-P (C )]=112, ②P (A )P (C )=29. ③由①③得P (B )=1-98P (C ),代入②得27[P (C )]2-51P (C )+22=0. 解得P (C )=23或P (C )=119(舍去).将P (C )=23分别代入②③可得P (A )=13,P (B )=14.故甲、乙、丙三台机床各自加工的零件是一等品的概率分别是13,14,23.(2)记D 为从甲、乙、丙加工的零件中各取一个检验,至少有一个一等品的事件.则P (D )=1-P (— D )=1-[1-P (A )][1-P (B )][1-P (C )]=1-23×34×13=56.故从甲、乙、丙加工的零件中各取一个检验,至少有一个一等品的概率为56.归纳升华(1)在求离散型随机变量的分布列时,常利用分布列的性质:①p 1≥0,i =1,2,3,…,n ;②∑i =1np i =1,列出方程或不等式求出未知数.(2)在求两个或多个概率时,常根据不同类型的概率公式列出方程或方程组求出未知数. [变式训练] 若离散型随机变量ξ的分布列为:求常数a 解:由离散型随机变量的性质得⎩⎪⎨⎪⎧9a 2-a +3-8a =1,0≤9a 2-a ≤1,0≤3-8a ≤1,解得a =23(舍去)或a =13.所以,随机变量的分布列为:。
2.1 离散型随机变量及其分布列 1
预习导航
1.随机变量
(1)定义:随着试验结果变化而变化的变量称为随机变量.
(2)表示法:随机变量常用字母X,Y,ξ,η,…表示.
思考1 随机变量与函数有何区别与联系?
提示:联系:两者均是特殊的映射.
区别:随机变量把试验的结果映射为实数,而函数是把一个非空数集映射到另一个非空数集上.
2.离散型随机变量
所有取值可以一一列出的随机变量,称为离散型随机变量.
思考2 离散型随机变量有什么特点?
提示:(1)随机变量的取值能一一列出,这是判定随机变量是否为离散型随机变量的关键.
(2)离散型随机变量的取值可以是有限个,如取值1,2,3,…,n;也可以是无限个,如取值为1,2,…,n,….
1。
第二课随机变量及其分布[核心速填](建议用时5分钟)1.离散型随机变量如果随机变量X的所有可能的取值都能一一列出,则称X为离散型随机变量.2.条件概率的性质(1)非负性:0≤P(B|A)≤1.(2)可加性:如果是两个互斥事件,则P(B∪C|A)=P(B|A)+P(C|A).3.相互独立事件的性质(1)推广:一般地,如果事件A1,A2,…,A n相互独立,那么这n个事件同时发生的概率等于每个事件发生的概率的积,即P(A1A2…A n)=P(A1)×P(A2)×…×P(A n).(2)对于互斥事件A与B有下面的关系:P(A+B)=P(A)+P(B).4.二项分布满足的条件(1)每次试验中,事件发生的概率是相同的.(2)各次试验中的事件是相互独立的.(3)每次试验只有两种结果:事件要么发生,要么不发生.(4)随机变量是这n次独立重复试验中某事件发生的次数.5.超几何分布与二项分布的概率计算(1)超几何分布:P(X=k)=C k M C n-kN-MC n N(其中k为非负整数).(2)二项分布:P(X=k)=C k n p k(1-p)n-k(k=0,1,2,…,n).6.期望与方差及性质(1)E(X)=X1·P1+X2·P2+…+X n P n.(2)D(X)=(X1-E(X))2·P1+(X2-E(X))2·P2+…+(x n-E(X))2·P n.(3)若η=aξ+b(a,b是常数),ξ是随机变量,则η也是随机变量,E(η)=E(aξ+b)=aE(ξ)+b.(4)D(aξ+b)=a2D(ξ).(5)D(ξ)=E(ξ2)-(E(ξ))2.7.正态变量在三个特殊区间内取值的概率(1)P(μ-σ<X≤μ+σ)≈68.27%.(2)P(μ-2σ<X≤μ+2σ)≈95.45%.(3)P(μ-3σ<X≤μ+3σ)≈99.73%.[体系构建][题型探究]什么条件下发生的概率.求条件概率的主要方法有: (1)利用条件概率公式P (B |A )=P ABP A;(2)针对古典概型,可通过缩减基本事件总数求解.在5道题中有3道理科题和2道文科题.如果不放回地依次抽取2道题,求: (1)第1次抽到理科题的概率;(2)第1次和第2次都抽到理科题的概率;(3)在第1次抽到理科题的条件下,第2次抽到理科题的概率.【导学号:95032213】[解] 设“第1次抽到理科题”为事件A ,“第2次抽到理科题”为事件B ,则“第1次和第2次都抽到理科题”为事件AB .(1)从5道题中不放回地依次抽取2道题的事件数为n (Ω)=A 25=20.根据分步乘法计数原理,n (A )=A 13×A 14=12.于是P (A )=n A n Ω=1220=35. (2)因为n (AB )=A 23=6, 所以P (AB )=n AB n Ω=620=310.(3)法一(定义法):由(1)(2)可得,在第1次抽到理科题的条件下,第2次抽到理科题的概率 P (B |A )=P ABP A =31035=12.法二(直接法):因为n (AB )=6,n (A )=12, 所以P (B |A )=n AB n A =612=12.AB P B ⎝ ⎛⎭⎪⎫或B |A =P AB P A 求解.ABn A求解.其中(2)常用于古典概型的概率计1.抛掷5枚硬币,在已知至少出现了2枚正面朝上的情况下,问:正面朝上数恰好是3枚的条件概率是多少?[解] 法一(直接法):记至少出现2枚正面朝上为事件A ,恰好出现3枚正面朝上为事件B ,所求概率为P (B |A ),事件A 包含的基本事件的个数为n (A )=C 25+C 35+C 45+C 55=26,事件B 包含的基本事件的个数为n (B )=C 35=10,P (B |A )=n AB n A =n B n A =1026=513.法二(定义法):事件A ,B 同上,则 P (A )=C 25+C 35+C 45+C 5525=2632, P (AB )=P (B )=C 3525=1032,所以P (B |A )=P AB P A =P B P A =513.间的内部联系,在此基础上用基本事件之间的交、并、补运算表示出有关事件,并运用相应公式求解.特别注意以下两公式的使用前提:(1)若A ,B 互斥,则P (A ∪B )=P (A )+P (B ),反之不成立. (2)若A ,B 相互独立,则P (AB )=P (A )P (B ),反之成立.一个暗箱里放着6个黑球、4个白球.(1)依次取出3个球,不放回,若第1次取出的是白球,求第3次取到黑球的概率. (2)有放回地依次取出3个球,若第1次取出的是白球,求第3次取到黑球的概率. (3)有放回地依次取出3个球,求取到白球个数ξ的分布列和期望.【导学号:95032214】[解] 设事件A 为“第1次取出的是白球,第3次取到黑球”,B 为“第2次取到白球”,C 为“第3次取到白球”,(1)P (A )=C 1416C 15+C 13C 16C 14A 29=23.(2)因为每次取出之前暗箱的情况没有变化,所以每次取球互不影响, 所以P (C -)=610=35.(3)设事件D 为“取一次球,取到白球”,则P (D )=25,P (D -)=35,这3次取出球互不影响,则ξ~B ⎝ ⎛⎭⎪⎫3,25,所以P (ξ=k )=C k 3⎝ ⎛⎭⎪⎫25k⎝ ⎛⎭⎪⎫353-k(k =0,1,2,3).E (ξ)=3×25=65.提醒:有放回地依次取出3个球,相当于独立重复事件,即ξ~B ⎝ ⎛⎭⎪⎫3,25,则可根据独立重复事件的定义求解.2.红队队员甲、乙、丙与蓝队队员A ,B ,C 进行围棋比赛,甲对A 、乙对B 、丙对C 各一盘.已知甲胜A 、乙胜B 、丙胜C 的概率分别为0.6,0.5,0.5.假设各盘比赛结果相互独立.(1)求红队至少两名队员获胜的概率;(2)用ξ表示红队队员获胜的总盘数,求P (ξ≤1).[解] (1)设“甲胜A ”为事件D ,“乙胜B ”为事件E ,“丙胜C ”为事件F ,则D -,E -,F -分别表示甲不胜A 、乙不胜B 、丙不胜C 的事件.因为P (D )=0.6,P (E )=0.5,P (F )=0.5,由对立事件的概率公式,知P (D -)=0.4,P (E -)=0.5,P (F -)=0.5.红队至少两人获胜的事件有DE F -,D E -F ,D -EF ,DEF .由于以上四个事件两两互斥且各盘比赛的结果相互独立,因此红队至少两人获胜的概率为P =P (DE F -)+P (D E -F )+P (D -EF )+P (DEF )=0.6×0.5×0.5+0.6×0.5×0.5+0.4×0.5×0.5+0.6×0.5×0.5=0.55. (2)由题意,知ξ的可能取值为0,1,2,3.P (ξ=0)=P (D -E -F -)=0.4×0.5×0.5=0.1,P (ξ=1)=P (D -E -F )+P (D -E F -)+P (D E -F -)=0.4×0.5×0.5+0.4×0.5×0.5+0.6×0.5×0.5=0.35,所以P (ξ≤1)=P (ξ=0)+P (ξ=1)=0.45.2.应用范围:均值和方差在实际优化问题中应用非常广泛,如同等资本下比较收益的高低、相同条件下比较质量的优劣、性能的好坏等.3.求解思路:应用时,先要将实际问题数学化,然后求出随机变量的概率分布列.对于一般类型的随机变量,应先求其分布列,再代入公式计算,此时解题的关键是概率的计算.计算概率时要结合事件的特点,灵活地结合排列组合、古典概型、独立重复试验概率、互斥事件和相互独立事件的概率等知识求解.若离散型随机变量服从特殊分布(如两点分布、二项分布等),则可直接代入公式计算其数学期望与方差.一次同时投掷两枚相同的正方体骰子(骰子质地均匀,且各面分别刻有1,2,2,3,3,3六个数字)(1)设随机变量η表示一次掷得的点数和,求η的分布列.(2)若连续投掷10次,设随机变量ξ表示一次掷得的点数和大于5的次数,求E (ξ),D (ξ). [解] (1)由已知,随机变量η的取值为:2,3,4,5,6.设掷一次正方体骰子所得点数为η0,则η0的分布列为:P (η0=1)=16,P (η0=2)=13, P (η0=3)=12,所以η的分布列为:P (η=2)=16×16=136, P (η=3)=2×16×13=19, P (η=4)=2×16×12+13×13=518, P (η=5)=2×13×12=13. P (η=6)=12×12=14.(2)由已知,满足条件的一次投掷的点数和取值为6,设其发生的概率为p ,由(1)知,p =14,因为随机变量ξ~B ⎝ ⎛⎭⎪⎫10,14, 所以E (ξ)=np =10×14=52,D (ξ)=np (1-p )=10×14×34=158.3.为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加.现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3名.从这8名运动员中随机选择4人参加比赛.(1)设A 为事件“选出的4人中恰有2名种子选手,且这2名种子选手来自同一个协会”,求事件A 发生的概率;(2)设X 为选出的4人中种子选手的人数,求随机变量X 的分布列和数学期望. [解] (1)由已知,有P (A )=C 22C 23+C 23C 23C 48=635. 所以,事件A 发生的概率为635. (2)随机变量X 的所有可能取值为1,2,3,4. P (X =k )=C k 5C 4-k3C 48(k =1,2,3,4).所以,随机变量X 的分布列为随机变量X 的数学期望E (X )=1×14+2×7+3×7+4×14=2.掌握正态分布曲线函数关系式;(2)理解正态分布曲线的性质;(3)记住正态分布在三个区间内取值的概率,运用对称性结合图象求相应的概率.正态分布下两类常见的概率计算(1)利用正态分布密度曲线的对称性研究相关概率问题,涉及的知识主要是正态曲线关于直线x =μ对称,曲线与x 轴之间的面积为1.(2)利用3σ原则求概率问题时,要注意把给出的区间或范围与正态变量的μ、σ进行对比联系,确定它们属于(μ-σ,μ+σ),(μ-2σ,μ+2σ),(μ-3σ,μ+3σ)中的哪一个.设X ~N (10,1).(1)证明:P (1<X <2)=P (18<X <19). (2)设P (X ≤2)=a ,求P (10<X <18).【导学号:95032215】[解] (1)证明:因为X ~N (10,1),所以,正态曲线φμ,σ(x )关于直线x =10对称,而区间(1,2)和(18,19)关于直线x =10对称,所以⎠⎛12φμ,σ(x )dx =⎠⎛1819φμ,σ(x)dx即P (1<X <2)=P (18<X <19).(2)因为P (X ≤2)+P (2<X ≤10)+P (10<X <18)+P (X ≥18)=1,P (X ≤2)=P (X ≥18)=a , P (2<X ≤10)=P (10<X <18),所以,2a +2P (10<X <18)=1, 即P (10<X <18)=1-2a 2=12-a .4.为了了解某地区高三男生的身体发育状况,抽查了该地区1 000名年龄在17.5岁至19岁的高三男生的体重情况,抽查结果表明他们的体重X (kg)服从正态分布N (μ,22),且正态分布密度曲线如图22所示.若体重大于58.5 kg 小于等于62.5 kg 属于正常情况,则这1 000名男生中属于正常情况的人数是( )图22A .997B .954C .819D .683D [由题意,可知μ=60.5,σ=2,故P (58.5<X ≤62.5)=P (μ-σ<X ≤μ+σ)=0.682 7,从而属于正常情况的人数是1 000×0.682 7≈683.]。
第二章 随机变量及其分布章末复习提升课,超几何分布[问题展示] (选修23 P50习题2.1B 组T1)老师要从10篇课文中随机抽3篇让同学背诵,规定至少要背出其中2篇才能及格.某同学只能背诵其中的6篇,求: (1)抽到他能背诵的课文的数量的分布列; (2)他能及格的概率.【解】 (1)他能背诵的课文的数量X 的可能取值为0,1,2,3, 则P (X =0)=C 06C 34C 310=130,P (X =1)=C 16C 24C 10=310,C 102P (X =3)=C 36C 04C 310=16,所以X 的分布列为(2)他能及格的概率为P (X =2)+P (X =3)=2+6=3.某位同学记住了10个数学公式中的m 个(m ≤10),从这10个公式中随机抽取3个,若他记住2个的概率为12.(1)求m 的值;(2)分别求他记住的数学公式的个数X 与没记住的数学公式的个数Y 的数学期望E (X )与E (Y ),比较E (X )与E (Y )的关系,并加以说明.【解】 (1)P (X =2)=C 2m C 110-m C 310=12,即m (m -1)(10-m )=120,且m ≥2.因为120=2×5×12=4×5×6=3×5×8=2×4×15=2×2×30. 而m 与m -1一定是相邻正整数.所以⎩⎪⎨⎪⎧m -1=4,m =5,10-m =6或⎩⎪⎨⎪⎧m -1=5,m =6,10-m =4解得m =6.(2)由原问题知,E (X )=0×130+1×310+2×12+3×16=95, 没记住的数学公式有10-6=4个,故Y 的可能取值为0,1,2,3. P (Y =0)=C 04C 36C 310=16,P (Y =1)=C 14C 26C 310=12,P (Y =2)=C 24C 16C 310=310,C 1030所以Y 的分布列为E (Y )=0×16+1×12+2×10+3×30=5,由E (X )=95,E (Y )=65得出①E (X )>E (Y ).说明记住公式个数的期望值大于没记住公式个数的期望值. ②E (X )+E (Y )=3.说明记住和没记住的期望值之和等于随机抽取公式的个数3.二项分布[问题展示] (选修23 P59习题2.2B 组T1)甲、乙两选手比赛,假设每局比赛甲胜的概率为0.6,乙胜的概率为0.4,那么采用3局2胜制还是采用5局3胜制对甲更有利?你对局制长短的设置有何认识?【解】 每局比赛只有两个结果,甲胜或乙胜,且每局比赛胜负是相互独立的,所以甲胜的局数X 服从二项分布,即X ~B (n ,p ). ①当采用3局2胜制时,X ~B (3,0.6), 则P (X ≥2)=P (X =2)+P (X =3) =C 23×0.62×0.4+C 330.63=0.648. ②当采用5局3胜制时,X ~B (5,0.6), 则P (X ≥3)=P (X =3)+P (X =4)+P (X =5) =C 35×0.63×0.42+C 45×0.64×0.4+C 550.65≈0.683. 显然0.648<0.683,所以采用5局3胜制对甲更有利. 从而说明了“比赛总局数越多,甲获胜的概率越大”. 对比赛局制长短的认识:①比赛的公平性:局数不能过多或过少,过多对甲有利,过少对乙有利; ②在实际比赛中,应根据计算出的概率结果,对赛制“n 局n +12胜”的n 值给予确定.甲、乙两选手比赛,每局比赛甲获胜的概率为p ,乙获胜的概率为1-p ,采用了“3局2胜制”(这里指最多比赛3局,先胜2局者为胜,比赛结束).若仅比赛2局就结束的概率为1325.(1)求p 的值;(2)若采用“5局3胜制”(这里指最多比赛5局,先胜3局者为胜,比赛结束),求比赛局数X 的分布列和数学期望.【解】 (1)仅比赛2局就结束,即为甲连胜2局或乙连胜2局, 所以p ·p +(1-p )(1-p )=1325, 即25p 2-25p +6=0,解得p =35或p =25.(2)当p =35时,即甲胜的概率为35,乙胜的概率为1-35=25.X 的可能取值为3,4,5.P (X =3)=⎝ ⎛⎭⎪⎫353+⎝ ⎛⎭⎪⎫253=35125, P (X =4)=C 23⎝ ⎛⎭⎪⎫352·25·35+C 23⎝ ⎛⎭⎪⎫252·35·25=234625,P (X =5)=C 24⎝ ⎛⎭⎪⎫352·⎝ ⎛⎭⎪⎫252·35+C 24⎝ ⎛⎭⎪⎫252·⎝ ⎛⎭⎪⎫352·25=216625,所以X 的分布列为所以E (X )=3×35125+4×625+5×625=625≈4.当p =25时,结论与p =35相同.相互独立事件及概率[问题展示] (选修23 P55练习T3)天气预报,在元旦假期甲地的降雨概率是0.2,乙地的降雨概率是0.3.假定在这段时间内两地是否降雨相互之间没有影响,计算在这段时间内: (1)甲、乙两地都降雨的概率;(2)甲、乙两地都不降雨的概率; (3)其中至少一个地方降雨的概率.【解】 设甲地降雨为事件A ,乙地降雨为事件B ,则P (A )=0.2,P (B )=0.3. (1)甲、乙两地都降雨为事件AB ,P (AB )=P (A )·P (B )=0.2×0.3=0.06.(2)甲、乙两地都不降雨为事件A -B -,P (A -B -)=P (A -)·P (B -)=(1-0.2)(1-0.3)=0.8×0.7=0.56.(3)至少有一个地方降雨为(AB )∪(A -B )∪(A B -), 所以P [(AB )∪(A -B )∪(A B -)]=P (AB )+P (A -B )+P (A B -) =P (A )P (B )+P (A -)P (B )+P (A )P (B -)=0.2×0.3+(1-0.2)×0.3+0.2×(1-0.3)=0.44. 或P [(AB )∪(A -B )∪(A B -)]=1-P (A -B -)=1-0.56=0.44.天气预报,在元旦期间甲、乙两地都降雨的概率为16,至少有一个地方降雨的概率为23,已知甲地降雨的概率大于乙地降雨的概率,且在这段时间甲、乙两地降雨互不影响. (1)分别求甲、乙两地降雨的概率;(2)在甲、乙两地3天假期中,仅有一地降雨的天数为X ,求X 的分布列和数学期望与方差. 【解】 (1)设甲、乙两地降雨的事件分别为A ,B ,且P (A )=x ,P (B )=y .由题意得⎩⎪⎨⎪⎧xy =161-(1-x )(1-y )=23x >y, 解得⎩⎪⎨⎪⎧x =12,y =13.所以甲地降雨的概率为12,乙地降雨的概率为13.(2)在甲、乙两地中,仅有一地降雨的概率为P =P (A B -)+P (A -B )=P (A )P (B -)+P (A -)P (B ) =12×23+12×13=12. X 的可能取值为0,1,2,3.P (X =0)=C 03⎝ ⎛⎭⎪⎫123=18,P (X =1)=C 13⎝ ⎛⎭⎪⎫121⎝ ⎛⎭⎪⎫1-122=38,P (X =2)=C 23⎝ ⎛⎭⎪⎫122⎝ ⎛⎭⎪⎫1-12=38, P (X =3)=C 33⎝ ⎛⎭⎪⎫1-123=18,所以X 的分布列为所以E (X )=0×18+1×8+2×8+3×8=2.方差D (X)=18×⎝ ⎛⎭⎪⎫0-322+38×⎝ ⎛⎭⎪⎫1-322+38×⎝ ⎛⎭⎪⎫2-322+18×⎝⎛⎭⎪⎫3-322=34.正态分布[问题展示] (选修23 P75习题2.4 A 组 T2)商场经营的某种包装的大米质量(单位:kg)服从正态分布N (10,0.12),任选一袋这种大米,质量在9.8~10.2 kg 的概率是多少?【解】 设该种包装的大米质量为X ,则X ~N (10,0.12),其中μ=10,σ=0.1, 所以P (9.8<X ≤10.2)=P (10-2×0.1<X ≤10+2×0.1)≈0.954 5.为了评估某大米包装生产设备的性能,从该设备包装的大米中随机抽取100袋作为样本,称其质量为(1)为评判该生产线的性能,从该生产线中任抽取一袋,设其质量为X (kg),并根据以下不等式进行评判.①P (μ-σ<X ≤μ+σ)≥0.682 7; ②P (μ-2σ<X ≤μ+2σ)≥0.954 5; ③P (μ-3σ<X ≤μ+3σ)≥0.997 3;若同时满足三个不等式,则生产设备为甲级;满足其中两个,则为乙级;仅满足其中一个,则为丙级;若全不满足则为丁级.请判断该设备的等级.(2)将质量小于或等于μ-2σ 与质量大于μ+2σ的包装认为是不合格的包装,从设备的生产线上随机抽取5袋大米,求其中不合格包装袋数Y 的数学期望E (Y ). 【解】 (1)由题意得P (μ-σ<X ≤μ+σ)=P (9.89<X ≤10.31)=80100=0.8>0.682 7, P (μ-2σ<X ≤μ+2σ)=P (9.68<X ≤10.52)=94100=0.94<0.954 5, P (μ-3σ<X ≤μ+3σ)=P (9.47<X ≤10.73)=99100=0.99<0.997 3, 所以该生产设备为丙级.(2)由表知,不合格的包装共有6袋,则从设备的生产线上随机抽取一袋不合格的概率P =6100=350, 由题意Y 服从二项分布, 即Y ~B ⎝ ⎛⎭⎪⎫5,350, 所以E (Y )=5×350=0.3.1.某人忘记一个电话号码的最后一个数字,只好任意去试拨,他第一次失败,第二次成功的概率是( )A.110 B.210 C.810D.910解析:选A.电话号码的最后一个数可能是0,1,2,3,4,5,6,7,8,9中的一个数,所以他第一次失败,第二次成功的概率为910×19=110.2.有10件产品,其中3件是次品,从中任取2件,若X 表示取到次品的件数,则D (X )=( ) A.35 B.1115 C.1415 D.2875解析:选D.X 的所有可能取值是0,1,2.则P (X =0)=C 27C 210=715,P (X =1)=C 17C 13C 210=715,P (X =2)=C 23C 210=115.所以X 的分布列为于是E (X )=0×715+1×15+2×15=5,E (X 2)=0×15+1×15+4×15=1115,所以D (X )=E (X 2)-(E (X ))2=1115-⎝ ⎛⎭⎪⎫352=2875.3.某省试验中学高三共有学生600人,一次数学考试的成绩ξ(试卷满分为150分)服从正态分布N (100,σ2),统计结果显示学生考试成绩在80分到100分之间的人数约占总人数的13,则此次考试成绩不低于120分的学生有________人. 解析:因为数学考试成绩ξ~N (100,σ2),作出正态分布图像(图略),可以看出,图像关于直线x =100对称.显然P (80≤ξ≤100)=P (100≤ξ≤120)=13,所以P (ξ≤80)=P (ξ≥120).又因为P (ξ≤80)+P (ξ≥120)=1-P (80≤ξ≤100)-P (100≤ξ≤120)=13,所以P (ξ≥120)=12×13=16.所以成绩不低于120分的学生约为600×16=100(人).答案:1004.生产A ,B 两种元件,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品.现随机抽取这两种元件各100件进行检测,检测结果统计如下表:(2)生产一件元件A ,若是正品可盈利40元,若是次品则亏损5元;生产一件元件B ,若是正品可盈利50元,若是次品则亏损10元.在(1)的前提下,①记X 为生产1件元件A 和1件元件B 所得的总利润,求随机变量X 的分布列和数学期望; ②求生产5件元件B 所获得的利润不少于140元的概率. 解:(1)元件A 为正品的概率约为40+32+8100=45.元件B 为正品的概率约为40+29+6100=34.(2)①因为生产1件元件A 和1件元件B 可以分为四种情况:A 正B 正,A 次B 正,A 正B 次,A 次B 次.所以随机变量X 的所有取值为90,45,30,-15. 因为P (X =90)=45×34=35;P (X =45)=⎝⎛⎭⎪⎫1-45×34=320;P (X =30)=45×⎝⎛⎭⎪⎫1-34=15;P (X =-15)=⎝⎛⎭⎪⎫1-45×⎝⎛⎭⎪⎫1-34=120.所以随机变量X 的分布列为E (X )=90×35+45×20+30×5+(-15)×20=66.②设生产的5件元件B 中正品有n 件,则次品有(5-n )件. 依题意得50n -10(5-n )≥140, 解得n ≥196.所以n =4或n =5.设“生产5件B 所获得的利润不少于140元”为事件A , 则P (A )=C 45⎝ ⎛⎭⎪⎫344×14+⎝ ⎛⎭⎪⎫345=81128.。