油田测井方法及应用研究
- 格式:docx
- 大小:27.68 KB
- 文档页数:2
油田高含水开发期,更多的会应用水平井,为提高油田开发的效率,就需要对水平井进行懂爱测试,以充分了解水平段的产液状况,其中产业剖面测井技术是当前测井找水方法中最为直观且实际的方法。
通过动态监测出水规律,能够有效指导油田开发方案的制定与调整,实现对堵水等措施提供充足的依据,从而提高水平井开发的水平。
一、产业剖面测井技术概述产液剖面测井主要是在产油气井正常生产过程中,对储层产液性质信息进行检测。
具体而言就是通过涡轮流量或者是示踪流量来计算分层中的产液量,通过对持水率曲线(有时加测流体密度、持气率)的计算,结合实验室图版来计算分层产液的性质,其中井温和压力曲线可以对分析产出段定性,而磁定位和自然伽马曲线可以用来做深度的校正,以更好的了解井内管串结构。
要注意的是,通常对水平井产业剖面测井的解释,需要与井眼轨迹以及阵列电容持水率CAT、阵列电阻持水率RAT还有示踪流量和井温等相关测井资料来进行综合的分析。
二、水平井产液剖面测井所需仪器与应用1.水平井测井爬行器输送工艺当前,水平井产业剖面测井的主要工艺有管具输送法、爬行器输送法以及挠性管输送法。
其中管具输送法的工艺存在一定的不足,在应用中有所限制,难以进行水平井产出剖面、注入剖面等带压的测井项目施工。
而挠性管技术对于水平井生产测井施工而言,相对价格又比较高。
因此在当前的水平井测井工作中,广泛采用的是爬行器输送工艺。
通常爬行器系统由三个部分组成。
首先是高效的电机供电,能够确保爬行器进行双向爬行,同时也能够与地面进行实时的通讯。
采用的爬行器通常有MaxTrac爬行器与SONDEX公司所生产的爬行器。
其中MaxTrac爬行器的液压制动腿,能够针对井内套管或者是油管的尺寸来改变伸缩半径,伸开后就能够卡住井壁并沿着仪器的方向进行滑动,从而到达测试层。
这一一起的牵引力比较大,能够很好的适应不同直径的套管,井筒内的岩屑基本不会对其产生影响。
Sondex爬行器主要是提供了一个办法,通过单芯电缆能够在水平井和大斜度井中下放仪器和装置。
关于油田测井的分析与应用探索1. 引言1.1 研究背景油田测井作为油田勘探开发中的重要手段,通过对油井内部岩石进行测量和解释,为油田开发提供了重要的技术支持。
油田测井技术的发展历史可以追溯到20世纪初,起初主要用于确定井孔内岩石的性质和地层的结构。
随着油田勘探深度和难度的增加,测井技术逐步发展并完善,成为了当前油田勘探开发中不可或缺的工具之一。
研究背景的提出,是因为油田测井技术的应用已经成为了油田勘探开发的重要环节,具有广泛的前景和应用价值。
通过测井技术可以获取井下岩石的物理特性参数,从而帮助地质工作者更准确地理解地层结构和储层性质,为油田开发提供可靠的数据支撑。
对油田测井技术进行深入研究和探索,对于提高油田勘探开发的效率和成本效益具有重要意义。
中包含了对油田测井技术的重要性和应用前景的探讨,为后续研究提供了理论基础和动力支持。
1.2 研究目的研究目的是通过对油田测井技术的深入探讨和分析,揭示其在油田勘探和开发中的重要作用和应用价值。
通过对测井技术概述、数据处理与解释方法、应用案例分析等方面的研究,旨在为油田工程技术人员提供更准确、可靠的数据支持,帮助他们更好地理解油藏的地质特征、储层性质和油气分布规律,从而指导油田的勘探开发工作。
本研究也旨在为今后油田测井技术的进一步改进和发展提供参考和借鉴,推动油田勘探开发领域的技术创新和进步。
通过本文的研究,旨在总结和探索油田测井技术的应用现状和发展趋势,进一步凝练出未来研究的重点和方向,从而推动油田勘探开发工作取得更好的成果和效益。
2. 正文2.1 测井技术概述测井技术是油田勘探开发中的一项重要技术手段。
测井是指在钻井过程中通过在井中放置测井仪器测量地层各种物理性质的方法,以获得地层和岩石的信息,从而判断油气储集层的性质和产能情况。
测井技术通常包括测井仪器的选择、井下测量与数据传输、数据处理与解释等环节。
测井技术主要包括测井仪器选择和测井方法选择两个方面。
测井技术在油气田勘探开发中的应用摘要:测井技术是石油勘探、开发的“眼睛”。
它在油气田勘探、开发的不同阶段有着不同的目的和任务。
油气田勘探开发的长期实践证明,测井是发现与评价油气层的最重要、最有效的必不可少的技术手段。
关键词:测井技术评价应用1 测井的概念及发展概况1.1 测井的概念。
测井技术又称为地球物理测井技术,是一种井下油气勘探的重要手段,是在钻探井中使用反映热、声、电、光、磁和核放射性等物理性质的仪器测量地层的各种物理信息;通过对这些信息按各自的物理原理和它们之间相互联系进行数据处理和解释,辨别地下岩石的孔隙性、渗透性和流体性质及其分布,用于发现油气藏,评估油气储量及其产量。
测井技术在油气田开发和钻井工程中也有广泛的用途。
测井技术还是勘探煤、盐、硫、石膏、金属、地热、地下水、放射性等矿产资源的重要方法和有效手段,并扩展到工程地质、灾害地质、生态环境等领域的应用。
在油气藏勘探开发中测井技术是地质家和油气藏开发工程师的“眼睛”,通过测井获得的测井资料是测井评价、地质研究和油气藏开发的科学依据。
1.2 测井技术的发展阶段及趋势1.2.1 测井技术的发展阶段。
测井技术可以分为测井仪器研制、测井数据处理技术及测井资料的综合解释与应用三大部分。
它的发展可以划分为五个阶段:第一阶段(20世纪20~40年代),半自动测井;第二阶段(20世纪40~60年代),全自动测井;第三阶段(20世纪60~70年代),数字测井;第四阶段(20世纪70~80年代),数控测井;第五阶段(20世纪90年代以来),成像测井。
世界上第一条测井曲线是电测井曲线,是1927年法国人斯伦贝谢(schlumberger)兄弟在pechelbronn油田的一口井中通过“点测”方式,由人工绘制而成的,这是现代测井技术的开端。
我国的测井工作相对晚了十多年,1939年12月20日,我国著名的地球物理勘探专家翁文波首次在四川石油沟1号井测出一条电阻率曲线和一条自然电位曲线,并划分出了气层的位置。
随钻测井资料解释方法研究及应用一、本文概述本文旨在探讨随钻测井资料解释方法的研究与应用。
随钻测井技术作为现代石油勘探领域的重要技术手段,对于提高钻井效率、优化油气藏开发策略具有重要意义。
本文将首先介绍随钻测井技术的基本原理及其在石油勘探中的应用背景,阐述其相较于传统测井技术的优势。
随后,文章将重点分析随钻测井资料解释方法的现状与挑战,包括数据处理、信号提取、地层识别等方面的难点问题。
在此基础上,本文将深入探讨随钻测井资料解释方法的研究进展与创新点,包括新型算法的开发、多源信息融合技术的应用以及技术在资料解释中的潜力。
本文将通过具体案例分析,展示随钻测井资料解释方法在实际应用中的效果与价值,为相关领域的科研工作者和工程技术人员提供参考与借鉴。
二、随钻测井资料解释方法基础随钻测井(Logging While Drilling,LWD)是石油勘探领域中的一种重要技术,它通过在钻井过程中实时测量地下岩石的物理性质,为地质评价和油气藏描述提供关键数据。
随钻测井资料解释方法的基础主要建立在对测量数据的准确理解、合理的解释模型以及先进的处理技术上。
随钻测井资料解释需要深入理解各种测井信号的物理含义和影响因素。
例如,电阻率、声波速度、自然伽马等测井参数,它们分别反映了地下岩石的导电性、弹性和放射性等特性。
这些参数的变化不仅与岩石的矿物成分、孔隙度、含油饱和度等地质因素有关,还受到井眼环境、仪器性能等多种因素的影响。
因此,在解释随钻测井资料时,需要充分考虑这些因素,以确保解释的准确性和可靠性。
随钻测井资料解释需要建立合理的解释模型。
这些模型通常基于地质学、地球物理学和石油工程等领域的专业知识,用于将测井数据转化为地质参数和油气藏特征。
例如,通过电阻率测井数据可以推断地层的含油饱和度,通过声波速度测井数据可以估算地层的孔隙度等。
这些模型的建立需要充分考虑地质条件和实际情况,以确保解释的准确性和实用性。
随钻测井资料解释还需要借助先进的处理技术。
油田地质岩心分析及其物性测井技术研究随着全球能源需求的增长,石油资源的开采和利用成为各国经济发展的重要支撑。
而在油田勘探开发过程中,岩心分析和物性测井技术是必不可少的手段。
一、岩心分析岩心是从钻井现场取出的地下矿层中的岩石样品。
岩心能够提供关于矿床成因、沉积环境、岩石类型、矿物组成、岩石结构、孔隙类型和孔隙度等信息,是油气勘探和开发中最重要的数据来源之一。
岩芯采取的主要目的是进行岩石学研究、岩性判别、油气的储集性能分析、地球物理补偿、地层古环境分析以及岩心获取重量。
1.岩石学研究岩石学是研究岩石的组成、结构、性质、成因及分布规律的学科,其中最主要的任务是系统描述各种岩石类型的组成、结构和物理性质。
岩心样品是从地层中分离出来的岩石片,可以通过显微镜扫描、透射、偏光、反射等方法进行观察和分析。
通过岩心的岩石学特征,可以确定岩石的命名和分类,建立岩石学模型,认识岩石的成因及其在地球构造和动力学方面的作用。
2.岩性判别岩石性质的判别是进行岩心分析的主要目标之一,它能够确定岩石的物理、化学和结构性质。
岩性的判别通常使用各种分析技术,如X射线荧光光谱仪、扫描电镜、微量磁滞仪、扫描透射电镜等。
这些技术可以获得岩石的主要元素和次要元素组成,粒度大小、孔隙度、孔隙结构、矿物成分、生物化石含量、成岩温度、地应力状态等特征,为油气勘探和开发提供理论依据。
3.油气储集性能分析岩心的油气储存性能是进行油气勘探的关键参数之一。
为了评价储集层的质量,必须对储层进行分析、判别和地质用户模型的建立。
通过岩心分析,可以确定储层的物性参数,如孔隙度、渗透率、渗吸比、饱和度和比表面积等,建立地质用户模型,评估油田的资源潜力,优化油田生产技术和开发方案。
二、物性测井技术物性测井技术是指通过各种物理和化学方法测定钻井现场地层的岩石物性参数。
物性测井技术是实现油气勘探开发高效、高质量的关键技术之一。
其主要目的是测定储层岩石的物理和化学参数,如孔隙度、渗透率、比表面积、饱和度和孔隙结构等,从而评价储层的储存性能和生产能力,确定最佳的开发方案。
油田测井方法及应用研究
这是中国油气勘探早期使用的测井技术,这一时期主要分为半自动测井技术和全自动测
井技术两个阶段。
最初的测井技术出现在上个世纪50年代末期,当时所使用的测井技术较
为落后,技术手段主要是采用电法测井,并具有一定的危险性。
解放前,玉门油田应用半自动
测井技术勘探油气获得了成功,解放后,克拉玛依油田第1口油气发现井也是应用半自动测井
技术进行了测井作业,发现了油层和气层。
从上世纪六十年代起,开始用全自动测井技术勘探
石油。
大港油田油气发现井港3井、四川盆地石炭系气藏发现井相18井等都是采用全自动
测井技术勘探油气,并且获得了成功。
因此,全自动测井技术在中国油气勘探史上贡献巨大。
1.2数字、数控测井时期
第二时期测井技术诞生于上个世纪60年代初期,也就是数字测井技术,其运作原理就
是运用计算机对采集到的数字信息进行分析与处理。
数字测井技术实现了系列化、数字化和
标准化,提高了砂岩和泥质砂岩油气藏的勘探效益。
数字测井技术中的仪器系列配套全,采集
的测井信息多,经过计算处理解释,能对砂岩和泥质砂岩油气层做出正确评价。
数字测井技术
还开辟了在油田开发中应用的新领域,用数字测井技术探测水驱油田产层剩余油动态变化,评
价水淹层和原油采出程度,现已成为中国水驱油田动态监测技术的基本手段。
中国使用数控测
井技术勘探石油始于80年代初期,数控测井技术中有先进的裂缝识别测井技术,对评估裂缝
性碳酸盐岩油藏储量有利,由于数控测井技术中的仪器系列全、精度高、并有测井质量控制
和处理解释功能,提高了勘探深层天然气的分辨率。
1.3高清成像测井时期
高清成像测井技术出现是在90年代末期,即将所需要的数据和信息进行处理后,以图
像的方式经过工作站并运用电缆进行数据传输,该项技术不但传输速度快,成像质量好,操
作上也更加便捷。
美国首先推出成像测井技术,用于提高复杂油气藏的勘探效益,效果显著。
中国从美国引进成像测井技术,在大庆、胜利、新疆、四川、海上等油田应用,发现了许多勘
探难度极大的油田。
成像测井技术开始成为中国非均质、复杂油田勘探的关键技术。
辽河油
田应用成像测井技术和钻进式井壁取心技术探测非均质严重的裂缝性石灰岩油藏,获得成功。
成像测井技术能发现裂缝,但不能判断裂缝性地层流体性质;钻进式井壁取心技术能从裂缝性
石灰岩硬地层中取出岩心,岩心上有油迹显示,评价为裂缝性油层,经测试,获得了高产。
这一成
功的实践经验,为今后勘探类似的非均质复杂油藏提供了范例。
2.测井新方法及应用分析
2.1声、电成像测井技术
利用声、电成像测井技术,对研究井下的岩性特性及物性参数提供依据,是寻找和评价
油田的井下测试技术措施。
例如,在井下利用传感器的阵列扫描技术措施,也可以实施扫描
测量,采集井筒的数据信息资料,传输到地面后,经过成像处理,得到井壁的二维影像资料,或者井筒周围的三维影像资料,为地质分析提供测井信息。
大庆油田汪902井进行了成像测井,主要解决识别低孔隙和低渗透致密气层难题。
根据阵列感应和地层微电阻率扫描成像测井
图以及核孔隙度-岩性组合测井图,准确地提供了地层岩性、构造和沉积环境信息,在井深2937.6~3052.2m的侏罗系地层中,测井解释4层低孔隙孔隙度约为5%,经射孔和压裂后测试,
获天然气产量140000m3/d,不含水。
这个范例为今后勘探类似的低孔隙和低渗透气藏提供了
实践经验。
2.2产出剖面测井技术
随着油田开发的深入和要求的逐步提高,各种新的技术问题不断出现,老式产出剖面测井
仪器难以适应新的应用需求,由此近些年来相继开发出以阻抗式仪器为代表的一些新型产出剖
面测井技术,并逐渐成为油田探查地下开发动态的主要技术。
大庆油田针对油田高含水期研究开发了阻抗式产出剖面测井和电导式相关流量测井等技术,含水率测量范围在50%~100%之间,精度为±3%,满足了油田高含水期产出剖面测井要求。
大庆油田自主研发的阻抗式产出剖面测井技术专门针对高含水井产出剖面测井而设计,含水率测量采用电导传感器,通过测量传感器
内混相油水介质的阻抗变化来确定含水率,并且该技术的突出特点是能够实现在时间轴上对流量和含水2个参数同时进行连续测量,测井过程中可在不同深度测点对地层水电导率进行实地校正,因此产出水矿化度和流体温度变化对测量的影响很小。
2.3气举找水测井技术
在油田生产测井过程中,利用气举测井的方法可以有效地找出强出水层。
目前找水测井方法有三种:自喷井找水测井方法、抽油井找水测井方法、油井气举作业测井方法。
对那些产能较低、不能自喷又无偏心井口的抽油井,应用油井气举作业的测井方法,得出的结论与油井的
生产实际符合程度较高。
采取相应措施后,增产效果显著,见到了明显的地质应用效果。
对于
含水大于90%的抽油井,可利用磁定位、自然伽马、井温(三个状态)三参数组合系列测井,快速准确地确定出水层,如:中原油田马厂油区M19-2井,日产液14.0t,日产油0.2t,综合含水98%。
随着开发时间的推移,在综合含水不断升高的情况下,采用气举找水测井技术是油田中高含水
期找准出水层位行之有效的方法。
结语:随着测井技术的更新换代,使获得的井筒地质数据更加准确,从而为制定油田开发方案提供依据。
参考文献:
[1]张建军.油井深抽过泵产液剖面测试技术[J].油气井测试,2007,16(1):57~59.
[2]杨振宇.测井技术在石油勘探中的应用[J].硅谷,2013(11):107.。