第十四章傅里叶光学
- 格式:ppt
- 大小:252.00 KB
- 文档页数:16
实验题目:傅里叶光学实验目的:傅里叶光学原理的发明最早可以追溯到1893年阿贝(Abbe )为了提高显微镜的分辨本领所做的努力。
他提出一种新的相干成象的原理,以波动光学衍射和干涉的原理来解释显微镜的成像的过程,解决了提高成像质量的理论问题。
1906年波特(Porter )用实验验证了阿贝的理论。
1948年全息术提出,1955年光学传递函数作为像质评价兴起,1960年由于激光器的出现使相干光学的实验得到重新装备,因此从上世纪四十年代起古老的光学进入了“现代光学”的阶段,而现代光学的蓬勃发展阶段是从上世纪六十年代起开始。
由于阿贝理论的启发,人们开始考虑到光学成像系统与电子通讯系统都是用来收集、传递或者处理信息的,因此上世纪三十年代后期起电子信息理论的结果被大量应用于光学系统分析中。
两者一个为时间信号,一个是空间信号,但都具有线性性和不变性,所以数学上都可以用傅立叶变换的方法。
将光学衍射现象和傅立叶变换频谱分析对应起来,进而应用于光学成像系统的分析中,不仅是以新的概念来理解熟知的物理光学现象,而且使近代光学技术得到了许多重大的发展,例如泽尼克相衬显微镜,光学匹配滤波器等等,因此形成了现代光学中一门技术性很强的分支学科—傅里叶光学。
实验原理:我们知道一个复变函数f(x,y)的傅立叶变换为⎰⎰+-=ℑ=dxdy vy ux i y x f v u F )](2exp[),()}y ,x (f {),(π ( 1 )F (u,v)叫作f(x,y)的变换函数或频谱函数。
它一般也为复变函数,f(x,y)叫做原函数,也可以通过求 F(u,v)逆傅立叶变换得到原函数f(x,y),⎰⎰+=ℑ=-dudv vy ux 2i v u F v u F y x f 1)](exp[),()},({),(π (2)在光学系统中处理的是平面图形,当光波照明图形时从图形反射或透射出来的光波可用空间两维复变函数(简称空间函数)来表示。
第1篇一、实验目的1. 深入理解傅里叶光学的基本原理和概念。
2. 通过实验验证傅里叶变换在光学系统中的应用。
3. 掌握光学信息处理的基本方法,如空间滤波和图像重建。
4. 理解透镜的成像过程及其与傅里叶变换的关系。
二、实验原理傅里叶光学是利用傅里叶变换来描述和分析光学系统的一种方法。
根据傅里叶变换原理,任何光场都可以分解为一系列不同频率的平面波。
透镜可以将这些平面波聚焦成一个点,从而实现成像。
本实验主要涉及以下原理:1. 傅里叶变换:将空间域中的函数转换为频域中的函数。
2. 光学系统:利用透镜实现傅里叶变换。
3. 空间滤波:在频域中去除不需要的频率成分。
4. 图像重建:根据傅里叶变换的结果恢复原始图像。
三、实验仪器1. 光具座2. 氦氖激光器3. 白色像屏4. 一维、二维光栅5. 傅里叶透镜6. 小透镜四、实验内容1. 测量小透镜的焦距实验步骤:(1)打开氦氖激光器,调整光路使激光束成为平行光。
(2)将小透镜放置在光具座上,调节光屏的位置,观察光斑的会聚情况。
(3)当屏上亮斑达到最小时,即屏处于小透镜的焦点位置,测量出此时屏与小透镜的距离,即为小透镜的焦距。
2. 利用夫琅和费衍射测光栅的光栅常数实验步骤:(1)调整光路,使激光束通过光栅后形成衍射图样。
(2)测量衍射图样的间距,根据dsinθ = kλ 的关系式,计算出光栅常数 d。
3. 傅里叶变换光学系统实验实验步骤:(1)将光栅放置在光具座上,调整光路使激光束通过光栅。
(2)在光栅后放置傅里叶透镜,将光栅的频谱图像投影到屏幕上。
(3)在傅里叶透镜后放置小透镜,将频谱图像聚焦成一个点。
(4)观察频谱图像的变化,分析透镜的成像过程。
4. 空间滤波实验实验步骤:(1)将光栅放置在光具座上,调整光路使激光束通过光栅。
(2)在傅里叶透镜后放置空间滤波器,选择不同的滤波器进行实验。
(3)观察滤波后的频谱图像,分析滤波器对图像的影响。
五、实验结果与分析1. 通过测量小透镜的焦距,验证了透镜的成像原理。
matlab 傅里叶光学全文共四篇示例,供读者参考第一篇示例:傅里叶光学是一种利用傅里叶变换理论研究光传播和光信息处理的方法。
它将光学现象和傅里叶分析有机地结合在一起,通过对光学系统中光场随时间和空间的变化进行频域分析,揭示了光学系统的特性和行为。
傅里叶光学在光学设计、成像系统、数字图像处理等领域具有重要的应用价值,对于提升光学系统的性能和实现更复杂的光学功能具有重要意义。
傅里叶光学的基本原理是将光场视为波动,利用傅里叶变换将光场表示为频谱分解的形式。
在傅里叶光学中,光场的传播和变换可以用傅里叶变换公式描述,通过傅里叶变换可以将一个任意时间或空间变化的光场分解成一系列频率不同的平面波,这些平面波之间的相位和幅度关系代表了原始光场的性质。
通过傅里叶变换,可以实现光场的频域分析,理解光场的传播规律和特性。
在数字图像处理中,傅里叶变换被广泛应用于图像的频域分析和滤波处理。
通过对图像进行傅里叶变换,可以将图像表示为频域上的频谱分布,通过分析频谱特性可以实现图像的去噪、增强、压缩等处理,提高图像质量和清晰度。
傅里叶变换还可以应用于图像配准、图像拼接、图像分割等图像处理任务,为数字图像处理提供了一种有效的工具和方法。
在实际应用中,matlab是一种常用的工具软件,可以实现傅里叶光学的理论研究和数值计算。
matlab软件提供了丰富的函数库和工具箱,可以用于对光场进行傅里叶变换、光学系统的仿真模拟、图像处理和分析等任务。
通过matlab软件,研究者可以方便地进行傅里叶光学的数值计算和模拟,探索光学系统的特性和行为,实现光学功能的设计和优化。
第二篇示例:傅里叶光学是光学领域中一个重要的分支,它利用傅里叶变换的原理来研究光的传播、衍射、干涉等现象。
在傅里叶光学中,光被视为一种波动现象,能够通过数学方法描述和分析光的传播和相互作用。
让我们来了解一下傅里叶光学的基本概念。
在光学中,光波可以被表示为一个复数函数,具有振幅和相位两个要素。
傅里叶光学实验傅里叶光学原理的发明最早可以追溯到1893年阿贝(Abbe )为了提高显微镜的分辨本领所做的努力。
他提出一种新的相干成象的原理,以波动光学衍射和干涉的原理来解释显微镜的成像的过程,解决了提高成像质量的理论问题。
1906年波特(Porter )用实验验证了阿贝的理论。
1948年全息术提出,1955年光学传递函数作为像质评价兴起,1960年由于激光器的出现使相干光学的实验得到重新装备,因此从上世纪四十年代起古老的光学进入了“现代光学”的阶段,而现代光学的蓬勃发展阶段是从上世纪六十年代起开始。
由于阿贝理论的启发,人们开始考虑到光学成像系统与电子通讯系统都是用来收集、传递或者处理信息的,因此上世纪三十年代后期起电子信息论的结果被大量应用于光学系统分析中。
两者一个为时间信号,一个是空间信号,但都具有线性性和不变性,所以数学上都可以用傅立叶变换的方法。
将光学衍射现象和傅立叶变换频谱分析对应起来,进而应用于光学成像系统的分析中,不仅是以新的概念来理解熟知的物理光学现象,而且使近代光学技术得到了许多重大的发展,例如泽尼克相衬显微镜,光学匹配滤波器等等,因此形成了现代光学中一门技术性很强的分支学科—傅里叶光学。
实验原理:我们知道一个复变函数f(x,y)的傅立叶变换为:( 1 )⎰⎰+-=ℑ=dxdy vy ux 2i y x f y x f v u F )](exp[),()},({),(πF (u,v)叫作f(x,y)的傅立叶变换函数或频谱函数。
它一般也为复变函数,f(x,y)叫做原函数,也可以通过求 F(u,v)逆傅立叶变换得到原函数f(x,y):(2)⎰⎰+=ℑ=-dudv vy ux 2i v u F v u F y x f 1)](exp[),()},({),(π在光学系统中处理的是平面图形,当光波照明图形时从图形反射或透射出来的光波可用空间两维复变函数(简称空间函数)来表示。
在这些情况下一般都可以进行傅里叶变换或广义的傅里叶变换。
傅立叶光学基本原理实验目的:在4f 系统中,观察不同的衍射物通过两个凸透镜后的傅立叶变换,计算栅格常数实验原理:傅立叶变换,惠更斯原理,多缝衍射,阿贝成像原理该实验使用当中,在进行相干光学处理时,采用了如下图所示的双透镜系统(即4f 系统)。
这时输入图像(物)被置于透镜L1的前焦面,若透镜足够大,在L1的后焦面上即得到图像准确的傅立叶变换(频谱)。
并且,因为输入图像在L1的前焦面,需要利用透镜L2使像形成在有限远处。
在4f 系统中,L1的后焦面正好是L2的前焦面,因此系统的像面位于L2的后焦面,并且像面的复振幅分布是图像频谱准确的傅立叶变换。
物面L1 频谱面 L2 像面从几何光学看,4f 系统是两个透镜成共焦组合且放大倍数为1的成像系统。
在单色平面波照明下(相干照明),当输入图像置于透镜L1的前焦面时,在L1的后焦面上得到图像函数E *(x,y )准确的傅立叶变换:E *(x,y )=⎰⎰∞+∞-+-∞+∞-⨯dadb e b a E f y x A b f y a f x B B B )(2),(),,(λλπ其中,x,y 是L1后焦面(频谱面)的坐标。
由于L1的后焦面与L2的前焦面重合,所以在L2的后焦面又得到频谱函数E *(x,y )的傅立叶变换,略去常数因子:⨯=)ˆ,ˆ,ˆ(ˆ)ˆ,ˆ(ˆB f y x A y x E ⎰⎰∞+∞-+-∞+∞-dadb e b a E b f y a f x B B )ˆˆ(2),(λλπ通过两次傅立叶变换,像函数与物函数成正比,只是自变量改变符号,这意味着输出图像与输入图像相同,只是变成了一个倒像。
第一次傅立叶变换把物面光场的空间分布变为频谱面上的空间频率分布,第二次傅立叶变换又将其还原到空间分布。
相干光学信息处理在频谱面上进行,通过在频谱面上加入各种空间滤波器可以达到改变频谱而达到处理图像信息的目的。
通过在物面处加上光栅,通过光的多缝干涉,使得不同空间频率的图像信息叠加在一起(空间频率是在空间呈现周期性分布的几何图形或物理量在某个方向上单位长度内重复的次数)。
补充读物傅里叶光学和数字图象处理光学与电通讯和电信息理论相互结合,逐渐形成了傅里叶光学。
傅里叶光学的数学基础是傅里叶变换,它的物理基础是光的衍射理论。
一、空间频率和复振幅设一维简谐波以相速度u 沿x 轴正方向传播,)(cos ),(0ϕωξ+−=x k t A t x简谐振动的时间周期性:时间周期T ,时间频率ν,时间角频率ω .简谐波还具有空间周期性?波速u :(单位时间内振动状态的传播距离称为波速,相速)πλωλνλ2===T u . 空间周期性:空间周期:波长λ (表示振动在一个周期T 内所传播的距离,两个相邻的振动相位相同的点之间距离。
)空间频率:1/λ空间角频率:波数2π/λ若两个单色波沿其传播方向有不同的空间频率,意味着它们有不同的波长。
时间周期性和空间周期性的联系(对单色光):λ = uT 沿空间任意k 方向传播的单色平面波,复振幅 )(i 00e )(~ϕ−⋅=r k r A E ])cos cos cos ([i 0e ϕγβα−++=z y x k A ,其中α , β 和γ 为传播矢量k 的方位角。
在多数情况下,若不考虑光波随时间的变化,可以只用复振幅表示光波以简化计算。
二、空间频率概念的推广(二维)通常,要处理一个二维的复振幅分布或光强分布,如分析平面上的衍射花样,这时要推广空间频率。
沿k 方向传播的单色平面波,0z z =平面的复振幅分布为 γcos i 000e ),(~z k A y x E =)cos cos (i e βαy x k +对于沿一定方向传播的平面波,γcos i 0e z k =常数,则A y x E =),(~0)cos cos (i e βαy x k +x, y 平面上各点复振幅的差别仅来源于不同的(x, y )处有不同的相位差。
x y 平面上的相位分布?k 方向传播的平面波的波面如上图示,0z z =平面与任一波面的交线(虚线)上,各点的位相=该波面的相位值;交线族 = 等相位线族,其方程为 =+)cos cos (2βαλπy x 常数 故,0z z =平面上复振幅分布的特点:等位相线是一组平行线, 呈周期分布(周期为π2)。
傅里叶光学全复习资料1 傅里叶变换F f _ , f y f _, y e2i f_ _ fy y d_dy F{f (_, y )}式中H 0 (f_,fy)f_ 和 fy 称为空间频率,F f_ , f yF f_ , f y出瞳重叠面积 (f_, fy) 出瞳总面积 0称为 F(_,y)的傅里叶谱或空间频谱。
F (f_,fy)和 F(_,y)分别称为函数 f(_,y)的振幅谱和相位谱,而称为 f(_,y)的功率谱。
2 逆傅里叶变换f ( _, y )F ( f_ , fy )e[ 2 i ( f _ _ f y y )f_fy F 1 {F ( f_ , fy )}3 函数 f(_,y)存在傅里叶变换的充分条件是: f(_,y)必须在 _y 平面上的每一个有限区域内局部连续,即仅存在有限个不连续结点 f(_,y)在 _y 平面域内绝对可积 f(_,y)必须没有无穷大间短点4 物函数 f(_,y)可看做是无数振幅不同,方向不同的平面线性叠加的结果5 sinc 函数常用来描述单缝或矩孔的夫琅禾费衍射图样6 在光学上常用矩形函数不透明屏上矩形孔,狭缝的透射率7 三角状函数表示光瞳为矩形的非相干成像系统的光学传递函数8 高斯函数常用来描述激光器发出的高斯光束,又是用于光学信息处理的“切趾术” 9 δ函数表示某种极限状态。
可用来描述高度集中的物理量。
如点电荷、点光源、瞬间电脉冲等,所以δ函数又称为脉冲函数。
δ函数只有通过积分才有定值 10 在光学上,单位光通量间隔为 1 个单位的点光源线阵之亮度可用一个一维梳状函数表示:42 非相干成像系统的截止频率是相干成像系统的两倍 43 具有像差的系统其调制传递函数只可能下降而绝不会增大,结果会使像面上光强度分布在多个空间频率处的对比率降低,这是一个具有普遍性的重要结论 44 在相干照明条件下,光学成像系统对光场的复振幅变换而言,是线性不变系统;对于光强度的变换,则不是线性系统。