4第四章 假设检验、t检验和Z检验
- 格式:ppt
- 大小:673.00 KB
- 文档页数:23
第四章 假设检验填空(5题/章),选择(5题/章),判断(5题/章),计算(3题/章) 一、填空1、在做假设检验时容易犯的两类错误是 和2、如果提出的原假设是总体参数等于某一数值,这种假设检验称为 ,若提出的原假设是总体参数大于或小于某一数值,这种假设检验称为3、假设检验有两类错误,分别是 也叫第一类错误,它是指原假设H0是 的,却由于样本缘故做出了 H0的错误;和 叫第二类错误,它是指原假设H0是 的, 却由于样本缘故做出 H0的错误。
4、在统计假设检验中,控制犯第一类错误的概率不超过某个规定值α,则α称为 。
5、 假设检验的统计思想是小概率事件在一次试验中可以认为基本上是不会发生的,该原理称为 。
6、从一批零件中抽取100个测其直径,测得平均直径为5.2cm ,标准差为1.6cm ,想知道这批零件的直径是否服从标准直径5cm ,在显著性水平α下,否定域为7、有一批电子零件,质量检查员必须判断是否合格,假设此电子零件的使用时间大于或等于1000,则为合格,小于1000小时,则为不合格,那么可以提出的假设为 。
(用H 0,H 1表示)8、一般在样本的容量被确定后,犯第一类错误的概率为α,犯第二类错误的概率为β,若减少α,则β9、某厂家想要调查职工的工作效率,用方差衡量工作效率差异,工厂预计的工作效率为至少制作零件20个/小时,随机抽样30位职工进行调查,得到样本方差为5,试在显著水平为0.05的要求下,问该工厂的职工的工作效率 (有,没有)达到该标准。
KEY: 1、弃真错误,纳伪错误 2、双边检验,单边检验3、拒真错误,真实的,拒绝,取伪错误,不真实的,接受4、显著性水平5、小概率事件6、1.25>21α-z7、H 0:t≥1000 H 1:t <1000 8、增大 9、有二、 选择1、假设检验中,犯了原假设H 0实际是不真实的,却由于样本的缘故而做出的接受H 0的错误,此类错误是( )A 、α类错误B 、第一类错误C 、取伪错误D 、弃真错误 2、一种零件的标准长度5cm ,要检验某天生产的零件是否符合标准要求,建立的原假设和备选假设就为( )A 、0:5H μ=,1:5H μ≠B 、0:5H μ≠,1:5H μ>C 、0:5H μ≤,1:5H μ>D 、0:5H μ≥,1:5H μ< 3、一个95%的置信区间是指( ) A 、总体参数有95%的概率落在这一区间内 B 、总体参数有5%的概率未落在这一区间内C 、在用同样方法构造的总体参数的多个区间中,有95%的区间包含该总体参数D 、在用同样方法构造的总体参数的多个区间中,有95%的区间不包含该总体参数4、假设检验中,如果增大样本容量,则犯两类错误的概率( ) A 、都增大 B 、都减小 C 、都不变 D 、一个增大一个减小5、一家汽车生产企业在广告中宣称“该公司的汽车可以保证在2年或24000公里内无事故”,但该汽车的一个经销商认为保证“2年”这一项是不必要的,因为汽车车主在2年内行驶的平均里程超过24000公里。
假设检验的几种方法假设检验是统计学中常用的一种技术。
它可以帮助人们查看样本数据是否具有代表性,并据此作出关于总体数据的推断。
假设检验的目的是对一个关于总体的假设进行检验,看样本数据是否支持这个假设,或者是否应该拒绝这个假设。
假设检验方法的选择取决于所要检验的问题,而统计学家通常会使用以下四种方法:1. Z检验Z检验适用于大样本,即样本数量大于30个,总体标准差已知的情况下。
它用于检验给定样本均值是否与总体均值相等,或两个样本均值是否相等。
该检验将样本均值与总体均值之间的差异量标准化,得到标准差,从而得出样本和总体均值之间的关系。
2. t检验t检验适用于小样本情况,即样本数量少于30个,总体标准差未知,并且样本符合正态分布。
它用于检验给定样本均值是否与总体均值相等,或两个样本均值是否相等。
该检验将样本均值与总体均值之间的差异量标准化,得出t值,然后与t分布表中相应值比较,从而得出样本和总体均值之间的关系。
3.单尾检验单尾检验是针对所检验的问题的方向(即是大于还是小于)进行的检验。
它根据所研究的问题,将给定样本的假设分为单尾和双尾假设。
单尾检验用于检验一个样本是否比另一个样本更高(或更低),并估计差异的显著性。
4.双尾检验双尾检验用于检验给定样本均值是否与一个已知总体值相等,或者检验两个样本之间的差异是否显著。
它提供了一种可靠的方法,用于估算样本均值与总体均值之间的差异,并考虑标准误差的影响。
总之,假设检验方法的选择应该取决于分析者要研究的问题。
在尽可能保持样本数据的准确性的情况下,正确选择假设检验方法可以提高数据分析的效果。