t检验与均值比较
- 格式:ppt
- 大小:2.20 MB
- 文档页数:91
实验五均值比较与T检验⏹均值(Means)过程对准备比较的各组计算描述指标,进行预分析,也可直接比较。
⏹单样本T检验(One-Samples T Test)过程进行样本均值与已知总体均值的比较。
⏹独立样本T检验(Independent-Samples T Test)过程进行两独立样本均值差别的比较,即通常所说的两组资料的t检验。
⏹配对样本(Paired-Samples T Test)过程进行配对资料的显著性检验,即配对t检验。
⏹单因素方差分析(One-Way ANOVA)过程进行两组及多组样本均值的比较,即成组设计的方差分析,还可进行随后的两两比较,详情请参见单因素方差分析。
预备知识:假设检验的步骤:⏹第一步,根据问题要求提出原假设(Null hypothesis)和备选假设(Alternative hypothesis);⏹第二步,确定适当的检验统计量及相应的抽样分布;⏹第三步,计算检验统计量观测值的发生概率;⏹第四步,给定显著性水平并作出统计决策。
第二步和第三步由SPSS自动完成。
假设检验中的P值⏹P值(P-value)是指在原假设为真时,所得到的样本观察结果或更极端结果的概率,即样本统计量落在观察值以外的概率。
⏹根据“小概率原理”,如果P值非常小,就有理由拒绝原假设,且P值越小,拒绝的理由就越充分。
⏹实际应用中,多数统计软件直接给出P值,其检验判断规则如下(双侧检验):⏹若P值<a,则拒绝原假设;⏹若P值≥ a ,则不能拒绝原假设。
均值比较中原假设H0:μ=μ0(即某一特定值)(适用于单样本情形)或 H0:μ1=μ2。
(适用于两独立样本情形)一、Means(均值)过程选择:分析Analyze==>均值比较Compare Means ==>均值means;1、基本功能分组计算、比较指定变量的描述统计量,还可以给出方差分析表和线性检验结果表。
优点各组的描述指标被放在一起便于相互比较,如果需要还可以直接输出比较结果,无须再次调用其他过程。
Spss16.0与统计数据分析均值比较和T检验20XX6月13日均值比较和T 检验统计分析常常采取抽取样本的方法,即从总体中随机抽取一定数量的样本进行研究来推论总体的特性。
但是,由于抽取的样本不一定具有完全代表性,样本统计量与总体参数间存在差异,所以不能完全的说明总体的特性。
同时,我们也可以知道,均值不等的两个样本不一定来自均值不同的整体。
对于如何避免这些问题,我们自然可以想均值比较和T 检验 1、Means 过程 1.1 Means 过程概述(1)功能:对数据进行进行分组计算,比较制定变量的描述性统计量包括均值、标准差 、总和、观测量数、方差等一系列单列变量描述性统计量,还可以给出方差分析表和线性检验结果。
(2)计算公式为: nxx ni i∑==1111.2问题举例:比较不同性别同学的体重平均值和方差。
数据如下表所示:体重表1.3用SPSS 操作过程截图:1.4 结果和讨论p{color:black;font-family:sans-serif;font-size:10pt;font-weight:normal} Your trial period for SPSS for Windows will expire in 14 days.p{color:0;font -family:Monospaced;font-size:13pt;font-style:normal;font-weight:normal;text-decoration:none}MEANS TABLES=体重 BY 性别/CELLS MEAN COUNT STDDEV VAR.MeansCase Processing SummaryCasesIncluded Excluded TotalN Percent N Percent N Percent体重* 性别24 100.0% 0 .0% 24 100.0%由SPSS 计算计算结果可知男同学体重平均值为:56.5,方差为54.091女同学体重平均值为43.833,方差为29.970。
均值比较t检验的前提条件说到均值比较t检验的前提条件,是不是觉得有点儿复杂?一提到这些术语,很多人脑袋就开始冒烟,心里想着:这东西到底是怎么回事?没那么难!咱们今天就来聊聊,轻松又简单地搞定这个话题。
大家拿好小板凳,准备好喝口水,我这就给你讲讲什么是“t检验”的前提条件,保证你听得懂,也能学得会。
t检验是干嘛的?你可以把它想象成一种“比较武器”,它用来帮助我们比较两个群体的平均值(均值)到底有没有显著差异。
比如说,你做了一个小实验,想知道男生和女生的身高是不是有明显差别,t检验就能告诉你答案。
哎呀,别看这个工具名字很专业,实际上它并不难,学会了也不容易晕头转向。
可是,问题来了,什么样的情况才能用t检验呢?这就是咱们今天要说的前提条件了。
第一条,数据得是独立的。
什么意思呢?就是你研究的两组数据得互不干扰。
举个例子,你不能拿一个班里的男生和女生来做对比,然后发现两组人情感上有很深的纠葛,结果就不公平了。
假如你想比较A班和B班的成绩,记住,A班和B班的数据得互不相关,不能有交集、不能有影响。
咱说白了,就是要给每个人一把独立的伞,别让两把伞碰到一起,数据自然就靠谱。
第二条,数据得符合正态分布。
这里听着有点拗口,但它其实就是告诉你,数据要像一个标准的钟形曲线那样分布。
什么意思呢?也就是大部分数据应该集中在平均值附近,只有少部分数据会出现在两边——这就是正态分布。
比如你测量100个同学的身高,大部分人应该差不多,而特别高或者特别矮的那几个人就是少数。
哎,数据不符合正态分布该怎么办呢?别担心,有些时候我们可以通过一些方法让数据接近正态分布,比如通过转换数据来“救救场”。
再往下看,数据得是连续的。
这里面有点小陷阱哦。
什么叫连续数据?就是数据之间的差距是可测量、可以分得很细的。
例如身高、体重这些都是连续数据,你可以知道一个人身高175.2厘米,另一个是175.5厘米,细得很。
可如果你用“满意”或者“不满意”这种二选一的选项,哎,那就不适合t检验了。
均值⽐较(T检验,⽅差检验,⾮参数检验汇总)⼀、T检验⽤途:⽐较两组数据之间的差异前提:正态性,⽅差齐次性,独⽴性假设:H0: µ0=µ1H1: µ0≠µ1SPSS中对应⽅法:1、单样本T检验(One-sample Test)(1)⽬的:检验单个变量的均值与给定的某个常数是否⼀致。
(2)判断标准:p<0.05;t>1.98即认为是有显著差异的。
2、独⽴样本T检验(Indpendent-Samples T Test)(1)⽬的:检验两个独⽴样本均值是否相等。
(2)判断标准:p<0.05;t>1.98即认为是有显著差异的。
3、配对样本T检验(Paired-Samples T Test)(1)⽬的:检验两个配对样本均值是否相等。
(2)判断标准:p<0.05;t>1.98即认为是有显著差异的。
⼆、⽅差分析⽤途:⽐较多组数据之间的差异前提:正态性,⽅差齐次性,独⽴性假设:H0: µ0=µ1=……H1: µ0,µ1,……不全相等SPSS中对应⽅法:1、单因素⽅差分析(One-way ANOVA)(1)⽬的:检验由单⼀因素影响的多组样本均值差异。
(2)判断标准:p<0.05;t>1.98即认为是有显著差异的。
(3)特别说明:可以进⼀步使⽤LSD,Tukey⽅法检验两两之间的差异。
2、多因素⽅差分析(Univariate)(1)⽬的:检验由多个因素影响的多组样本均值差异。
(2)判断标准:p<0.05;t>1.98即认为是有显著差异的。
(3)特别说明:可以进⼀步使⽤LSD,Tukey⽅法检验两两之间的差异。
三、⾮参数检验⽤途:⽐较多组数据之间的差异,独⽴性等前提:没有严格限制,适⽤于母体不服从正态分布或分布情况不明时,亦可以适⽤于离散和连续数据。
SPSS中对应⽅法:1、卡⽅检验(Chi-Square)(1)⽬的:检验某个连续变量是否与理论的某种分布相⼀致;检验某个分类变量出现的概率是否等于给定的概率;检验两个分类变量是否相互独⽴;检验两种⽅法的结果是否⼀致;检验控制某种或某⼏种分类因素的作⽤后,另两个分类变量是否相互独⽴。
Spss16.0与统计数据分析上机实验报告一、实验目的:1、掌握均值比较,用于计算指定变量的综合描述统计量;2、掌握单样本T检验(One-Sample T Test),检验单个变量的均值与假设检验之间是否存在差异;3、掌握独立样本T检验(Independent Sample T Test),用于检验两组来自独立总体的样本,其独立总体的均值或中心位置是否一样;4、掌握配对样本T检验(Paired-Sample T Test),用于检验两个相关的样本是否来自具有相同均值的总体。
二、实验内容:1.表5.14是某班级学生的高考数学成绩,试分析该班的数学成绩与全国的平均成绩70分之间是否有显著性差异。
表5.14 某班学生数学成绩解:由上表可看出,双尾检测概率P值为0.002,小于0.05,故拒绝零假设,也就是说在显著性水平0.05下,该班的数学成绩与全国的平均成绩70分之间有显著性差异。
2.在某次测试中,随机抽取男女同学的成绩各10名,数据如下:男:99 79 59 89 79 89 99 82 80 85女:88 54 56 23 75 65 73 50 80 65假设样本总体服从正态分布,比较在致信度为95%的情况下男女得分是否有显著性差异。
解:结果分析:对于齐次性,这里采用的是F检验,表中第二列是F统计量的值,为1.607,第三列是对应的概率P值,为0.221>0.05,可以认为两个总体的方差无显著性差异,即方差具备齐性。
在方差相等的情况下,两独立样本T检验结果应看表中的“Equal variances assumed”一行,第5列是相应的双尾检测概率为0.007<0.05,故拒绝零假设,即认为在致信度为95%的情况下男女得分有显著性差异。
3.某医疗机构为研究某种减肥药的疗效,对16位肥胖者进行为期半年的观察测试,测试指标为使用该药之前和之后的体重,数据如表5.15所示。
假设体重近似服从正态分布,试分析服药前后,体重是否有显著变化。
两样本均数比较的t检验
t检验是一种用于比较两个样本均值是否有显著差异的统计方法。
在进行t检验之前,需要满足以下几个假设:
1. 总体分布是正态分布。
2. 两个样本是独立的。
3. 两个样本的方差是未知且相等的。
当满足以上条件时,可以进行如下的t检验:
1. 计算两个样本的均值(x1 和 x2)和方差(s1 和 s2)。
2. 计算标准误差(SE),SE = sqrt((s1^2/n1)+(s2^2/n2)),其中n1和n2分别是两
个样本的观测数量。
3. 计算t值,t = (x1 - x2) / SE。
4. 查找t分布表,找到对应自由度(n1 + n2 - 2)和所选显著性水平下的临界t值。
5. 比较计算得到的t值和临界t值,以确定是否有显著差异。
如果计算得到的t值大于临界t值,则可以拒绝原假设,即两个样本的均值有显著差异。
反之,如果计算得到的t值小于临界t值,则接受原假设,即两个样本的均值没有显著差异。
需要注意的是,当两个样本的方差不相等时,可以使用修正的自由度,也可以使用非
参数方法(如Mann-Whitney U检验)进行比较。
均值比较与t检验第3章均值比较与t检验(t代表平均值间的差距p代表的是可信度)3.1样本平均数与总体平均数差异显著性检验在实际工作中,我们往往需要检验一个样本平均数与已知的总体平均数是否有显著差异,即检验该样本是否来自某一总体,已知的总体平均数一般为一些公认的理论数值、经验数值或期望数值,比较的目的是推断样本所代表的未知总体均数与已知总体均数有无差别。
例题:已知玉米单交种群单105的平均穗重为300g,喷药后随机抽取9个果穗称重,穗重分别为:308、305、311、298、315、300、321、294、320g,问喷药前后果穗穗重差异是否显著。
结果界面包括描述性统计量表(One-SampleStatitic)和t检验表(One-SampleTet)两个表格。
描述性统计量表中输出样本含量、均数、标准差和标准误;t检验表中显示t值(t)自由度(df)、双尾P值(Sig.2-tailed)、样本均数与已知总体均数的差值(MeanDifference)、差值的95%或99%置信区间的上限与下限(95%ConfidenceIntervaloftheDifference,Lower,Upper)。
3.2独立样本t检验在实际工作中,还经常会遇到推断两个样本平均数差异是否显著的问题,以了解两样本所属总体的平均数是否相同。
因试验设计不同,一般可分为:非配对或成组设计两样本平均数的差异显著性检验和配对设计两样本平均数的差异显著性检验。
非配对设计或成组设计是指当进行只有两个处理的试验时,将试验单位完全随机地分成两个组,然后对两组随机施加一个处理。
在这种设计中两组的试验单位相互独立,所得的两个样本相互独立,其含量不一定相等。
例题:某家禽研究所对粤黄鸡进行饲养对比试验,试验时间为60天,增重结果如下,问两种饲料对粤黄鸡的增重效果有无显著差异?t检验表(Independent-SampleTet)较为复杂,第一部分列出的是两样本方差齐性检验(Levene'TetforEqualityofVariance)的F值(F)和显著概率值(Sig.)。