大学物理(下)总复习
- 格式:ppt
- 大小:539.00 KB
- 文档页数:44
大学物理下归纳总结电学基本要求:1.会求解描述静电场的两个重要物理量:电场强度E 和电势V 。
2.掌握描述静电场的重要定理:高斯定理和安培环路定理(公式内容及物理意义)。
3.掌握导体的静电平衡及应用;介质的极化机理及介质中的高斯定理。
主要公式: 一、 电场强度1计算场强的方法(3种)1、点电荷场的场强及叠加原理点电荷系场强:∑=i i i r rQ E 304πε 连续带电体场强:⎰=Q r dQr E 34πε(五步走积分法)(建立坐标系、取电荷元、写E d、分解、积分)2、静电场高斯定理:物理意义:表明静电场中,通过任意闭合曲面的电通量(电场强度沿任意闭合曲面的面积分),等于该曲面内包围的电荷代数和除以0ε。
对称性带电体场强:3、利用电场和电势关系:x E xU=∂∂-二、电势电势及定义:1.电场力做功:⎰⋅=∆=210l l l d E q U q A2.物理意义:表明静电场中,电场强度沿任意闭合路径的线积分为0。
3.电势:)0(00=⋅=⎰p p aa U l d E U ;电势差:⎰⋅=∆B AAB l d E U电势的计算:1.点电荷场的电势及叠加原理点电荷系电势:∑=iiir Q U 04πε(四步走积分法)(建立坐标系、取电荷元、写dV 、积分) 2.已知场强分布求电势:定义法⎰⎰⋅=⋅=lv pdr E l d E V 0三、静电场中的导体及电介质1. 弄清静电平衡条件及静电平衡下导体的性质2. 了解电介质极化机理,及描述极化的物理量—电极化强度P , 会用介质中的高斯定理,求对称或分区均匀问题中的,,D E P 及界面处的束缚电荷面密度σ。
3. 会按电容的定义式计算电容。
磁学 恒定磁场(非保守力场)基本要求:1.熟悉毕奥-萨伐尔定律的应用,会用右手螺旋法则求磁感应强度方向;3.掌握描述磁场的两个重要定理:高斯定理和安培环路定理(公式内容及物理意义);并会用环路定理计算规则电流的磁感应强度; 3.会求解载流导线在磁场中所受安培力;4.理解介质的磁化机理,会用介质中的环路定律计算H 及B.主要公式:1.毕奥-萨伐尔定律表达式1)有限长载流直导线,垂直距离r (其中。
大学物理下册学院:姓名:班级:一、气体的状态参量:用来描述气体状态特征的物理量。
气体的宏观描述,状态参量:(1)压强p:从力学角度来描写状态。
垂直作用于容器器壁上单位面积上的力,是由分子与器壁碰撞产生的。
单位 Pa(2)体积V:从几何角度来描写状态。
分子无规则热运动所能达到的空间。
单位m 3(3)温度T:从热学的角度来描写状态。
表征气体分子热运动剧烈程度的物理量。
单位K。
二、理想气体压强公式的推导:三、理想气体状态方程:112212PV PV PVCT T T=→=;mPV R TM'=;P nkT=8.31JR k mol=;231.3810Jk k-=⨯;2316.02210AN mol-=⨯;AR N k=四、理想气体压强公式:23ktp nε=212ktm vε=分子平均平动动能五、理想气体温度公式:21322ktm v kTε==六、气体分子的平均平动动能与温度的关系:七、刚性气体分子自由度表八、能均分原理:1.自由度:确定一个物体在空间位置所需要的独立坐标数目。
2.运动自由度:确定运动物体在空间位置所需要的独立坐标数目,称为该物体的自由度(1)质点的自由度:在空间中:3个独立坐标在平面上:2 在直线上:1(2)直线的自由度:中心位置:3(平动自由度)直线方位:2(转动自由度)共5个3.气体分子的自由度单原子分子 (如氦、氖分子)3i=;刚性双原子分子5i=;刚性多原子分子6i=4. 能均分原理:在温度为T 的平衡状态下,气体分子每一自由度上具有的平均动都相等,其值为12kT推广:平衡态时,任何一种运动或能量都不比另一种运动或能量更占优势,在各个自由度上,运动的机会均等,且能量均分。
5.一个分子的平均动能为:2ki kT ε=五. 理想气体的内能(所有分子热运动动能之和) 1.1m ol 理想气体2i E R T =5.一定量理想气体()2i m E RT Mνν'==九、气体分子速率分布律(函数)速率分布曲线峰值对应的速率 v p 称为最可几速率,表征速率分布在 v p ~ v p + d v 中的分子数,比其它速率的都多,它可由对速率分布函数求极值而得。
大学物理(下)期末复习题一、填空题1、 振幅为A 的简谐振动在 位置动能最大,在 位置势能最大, 位置势能与动能相等。
2.有一平面简谐波沿x 轴正方向传播,波速为6s m /,已知在0=x 处的质点的振动方程为))(23cos(1.0m t y ππ-=,则波动方程为 ;质点在x 轴上m x 3-=处的振动方程为 ,m x 3-=处的振动加速度为 。
3.一平面简谐波的表达式为 )37.0125cos(025.0x t y -= (SI),其角频率ω =______,波速u =________,波长λ = 。
4. 一列平面简谐波沿x 轴正向无衰减地传播,波的振幅为 2×10-3 m ,周期为0.01 s ,波速为400 m/s . 当t = 0时x 轴原点处的质元正通过平衡位置向y 轴正方向运动,则该简谐波的表达式为________________。
5. 已知波源的振动周期为4.00×10-2 s ,波的传播速度为300 m/s ,波沿x 轴正方向传播,则位于x 1 = 10.0 m 和x 2 = 16.0 m 的两质点振动相位差为__________。
6. 如图所示,两个直径微小差别的彼此平行的滚珠之间的距离,夹在两块平晶的中间,形成空气劈尖,当单色光垂直入射时,产生等厚干涉条纹。
如果两滚珠之间的距离L 变大,则在L 范围内干涉条纹的数目 ,条纹间距 (填变化情况)。
7. 如图所示,波长为λ的平行单色光垂直入射在折射率为2n 的薄膜上,若薄膜厚度为e ,而且321n n n >>,则两束透射光的位相差为 。
8. 在复色光照射下的单缝衍射图样中,某一波长单色光的第3级明纹位置恰与波长λ=600nm 的单色光的第2级明纹位置重合,这光波的波长 。
9.在单缝衍射中,沿第二级明纹的衍射方向狭缝可分为 个半波带,沿第三级暗纹的衍射方向狭缝可分为 个半波带,若用波长为λ的单色光照射时沿衍射角为θ方向,宽度为b 的单缝可分为 个半波带。
大学物理(下)1简谐运动:1.1定义:物体运动位移(或角度)符合余弦函数规律,即:;1.2特征:回复力;=令;1.3简谐运动:=1.4描述简谐运动的物理量:I振幅A:物体离开平衡位置时的最大位移;II频率:是单位时间震动所做的次数(周期和频率仅与系统本身的弹性系数和质量有关);III相位:称为初相,相位决定物体的运动状态1.5常数A和的确定:I解析法:当已知t=0时x和v;II旋转矢量法(重点):运用参考圆半径的旋转表示;2单摆和复摆2.1复摆:任意形状的物体挂在光滑水平轴上作微小()的摆动。
I回复力矩;(是物体的转动惯量)II方程:;2.2单摆:单摆只是复摆的特殊情况所以推导方法相同,单摆的惯性矩3求简谐运动周期的方法(1) 建立坐标,取平衡位置为坐标原点;(2) 求振动物体在任一位置所受合力(或合力矩);(3) 根据牛顿第二定律(或转动定律)求出加速度与位移的关系式2a x ω=-4 简谐运动的能量:4.1 简谐运动的动能: ; 4.2 简谐运动的势能: ; 4.3 简谐运动的总能量: ;(说明:①简谐运动强度的标志是A ②振动动能和势能图像的周期为谐振动周期的一半) 5 简谐振动的合成5.1 解析法:①和振幅 ②5.2 旋转矢量法:①和振幅 ②由几何关系求出初相6 波6.1 定义:振动在空间的传播过程;分为横波 纵波;6.2 波传播时的特点:①沿波传播的方向各质点相位依次落后②各质点对应的相位以波速向后传播;6.3 描述波的物理量:I 波长(λ):相位相差2π的两质点之间的距离,反应了波的空间周期性;II 周期(T ):波前进一个波长所需要的时间(常用求解周期的方法 ); III 频率(ν):单位时间内通过某点周期的个数; IV 波速(u ):振动在空间中传播的速度;6.4 波的几何描述I 波线:波的传播方向;II 波面:相同相位的点连成的曲面。
特例—波前(面)6.5 平面简谐波的波动方程I 波方程常见形式一:(波沿x 轴正方向运动,若波沿X 轴反方向运动则把“-”改为“+”) II 波方程常见形式二: π ; III 平面简谐波的速度:; IV 平面简谐波的加速度:V 讨论:i 当x 一定时:某一特定质点---表示在x 处质点的振动方程; ii 当t 一定时: ---表示各点在t 时刻离开平衡位置的位移;iii 当x 和t 都变时:方程表示各个质点在所有位置和时间离开平衡位置时的位移6.6 波的能量I 波的动能等于势能,且在平衡位置时动能和势能最大 II 波的任何一个体积元都在不断地吸收和放出能量,由于是个开放的系统,能量并不守恒;6.7 波的能量密度w (描述能量的空间分布):单位体积中的平均能量密度2212w A ρω=; 6.8 能流P :单位时间内通过某面积S 的能量;平均能流 ;6.9 能流密度I (描述波能量的强弱):通过垂直于波传播方向的平均能流。
大学物理下复习题(附答案)第一章填空题自然界中只存在正负两种电荷,同种电荷相互排斥,异种电荷相互吸引。
()对自然界中只存在正负两种电荷,同种电荷相互吸引,异种电荷相互排斥。
()错电荷电量是量子化的。
()对物体所带电量可以连续地取任意值。
()错物体所带电量只能是电子电量的整数倍。
()对库仑定律只适用于真空中的点电荷。
()对电场线稀疏处的电场强度小。
()对电场线稀疏处的电场强度大。
()错静电场是有源场。
()对静电场是无源场。
()错静电场力是保守力。
()对静电场力是非保守力。
()错静电场是保守力场。
()对静电场是非保守力场。
()错电势是矢量。
()错电势是标量。
()对等势面上的电势一定相等。
()对沿着电场线的方向电势降落。
()对沿着电场线的方向电势升高。
()错电场中某点场强方向就是将点电荷放在该点处所受电场力的方向。
()错电场中某点场强方向就是将正点电荷放在该点处所受电场力的方向。
()对电场中某点场强方向就是将负点电荷放在该点处所受电场力的方向。
()错电荷在电场中某点受到电场力很大,该点场强E一定很大。
()错电荷在电场中某点受到电场力很大,该点场强E不一定很大。
()对在以点电荷为中心,r为半径的球面上,场强E处处相等。
()错在以点电荷为中心,r为半径的球面上,场强E大小处处相等。
()对如果在高斯面上的E处处为零,肯定此高斯面内一定没有净电荷。
()对根据场强与电势梯度的关系可知,在电势不变的空间电场强度为零。
()对如果高斯面内没有净电荷,肯定高斯面上的E处处为零。
()错正电荷由A移到B时,外力克服电场力做正功,则B点电势高。
对导体达到静电平衡时,导体内部的场强处处为零。
()对第一章填空题已一个电子所带的电量的绝对值e= C。
1.602*10-19或1.6*10-19真空中介电常数值为=0ε C 2.N -1.m -2。
8.85*10-12 真空中有一无限长带电直棒,电荷线密度为λ,其附近一点P 与棒的距离为a ,则P 点电场强度E 的大小为 。
大学物理下学期知识点总结.docx恒定磁场一、基本公式1)毕奥-萨伐尔定律dB=2)磁场叠加原理3)磁场中高斯定理(S是闭合曲面)4)安培环路定律(真空中)(介质中)H=BrB=HH=B=r-真空磁导率(4_10-7N/A2)r介质磁导率5)安培定律dF=IdlBsin方向判断:右手四指由Idl的方向经小于角转向B的方向,右螺旋前进的方向即为dFma_的方向6)磁通量匀强磁场中通过平面:7)磁矩若多匝线圈8)磁力矩M=PmBsin=BISsin9)洛伦兹力公式带电粒子受电磁力10)运动电荷产生的磁场二、典型结果1、有限长载流直导线在距其为r的一点产生的磁场2、无限长载流直导线在距其为r的一点产生的磁场3、半限无长载流直导线在距其一端距离为r的一点产生的磁场4、载流圆环在环心产生的磁场5、载流圆弧(已知弧长L和圆心角)在弧心产生的磁场6、长直密绕螺线管内磁场第十一章电磁感应电磁场一、基本公式1)电动势定义2)法拉第电磁感应定律作用:计算闭合回路上的大小和方向方向的判断:首先确定回路绕行方向,如果dBdt0,0,则i=-ddt=-SdBdt0,则表明积分路径是沿着非静电性场强的方向进行的,因此B点电势比A点电势低。
4)感生电动势:产生根源(非静电力)为涡旋电场力或感生电场力公式5)自感:自感系数,若为长l,横截面为S,N匝,介质磁导率为的螺线管,B=NlI;L=N2V(其中V为螺线管体积)感生电动势6)互感:互感系数M,互感磁通量,互感电动势21=-d21dt=-MdI1dt12=-d12dt=-MdI2dt7)磁场能量密度磁场能量一个自感为L,通过电流为I的线圈,其中所储存的磁能为Wm=12LI2=12n2I2V(其中V表示长直螺线管的体积)第十二章机械振动1)谐振动方程:谐振子:,,的求解方法:解析法和旋转矢量法2)同方向同频率简谐振动的合成总位移,合振动解析法,3)振动总能量,振动势能振动动能Ek=12mv2=13kA2sin2(t+)第十章机械波1)若已知波源O点振动方程yo=Acos(t+),则该波的波动方程为2)体积元的能量平均能量密度平均能流密度(波动强度)(u 为波速)平均能流(V为介质体积,为介质长度,S为介质侧面积)3)波的干涉条件:振动方向相同,频率相同和位相差恒定=2干涉加强22r2-r1=2kk=0、1、2A=A1+A2干涉减弱22r2-r1=2k+1k=0、1、2A=A1-A24)驻波含义:振幅相同,沿同一直线上相向传播的两列相干波产生的干涉5)以丛波为例,设两列相干波的波动方程为6)相邻波节间各点位相相同,波节两侧点位相相反。
《大学物理》(下)复习提纲第6章 恒定电流的磁场(1) 掌握磁场,磁感应强度,磁力线,磁通量等概念,磁场中的高斯定理,毕奥一沙伐一拉普拉斯定律。
(2) 掌握安培环路定律,应用安培环路定律计算磁场.(3)掌握安培定律,会用安培定律计算磁场力。
会判断磁力矩的方向。
会判断霍尔效应电势的方向。
1. 边长为2a 的等边三角形线圈,通有电流I ,则线圈中 心处的磁感强度的大小为________________.2. 边长为l 的正方形线圈,分别用图示两种方式通以电流I (其中ab 、cd 与正方形共面),在这两种情况下,线圈在其中心产生的磁感强度的大小分别为3.一无限长载流直导线,通有电流I ,弯成如图形状.设各线段皆在纸面内,一无限长载流直导线,通有电流I ,弯成如图形状.设各线段皆在纸面内,则P 点磁感强度B的大小为________________.则P 点磁感强度B的大小为4. 一无限长载有电流I 的直导线在一处折成直角,P 点位于导线所在平面内,距一条折线的延长线和另一条导线的距离都为a ,如图.求P点的磁感强度B.5.无限长直导线在P 处弯成半径为R 的圆,当通以电流I 时,则在圆心O 点的磁感强度大小等于(A )R I πμ20 (B )240RIμ6.如图所示,用均匀细金属丝构成一半径为R 的圆环C ,电流I 由导线1流入圆环A 点,并由圆环B 点流入导线2.设导线1和导线2与圆环共面,则环心O 处的磁感强度大小 为________________________,方向___________________.7. 真空中电流分布如图,两个半圆共面,且具有公共圆心,试求O 点处的磁感强度.8.均匀磁场的磁感强度B 与半径为 r 的圆形平面的法线n的夹角为α ,今以圆周为边界,作一个半球面S ,S 与圆形平面组成 封闭面如图.则通过S 面的磁通量Φ =________________.9.如图,两根直导线ab 和cd 沿半径方向被接到一个截面处处相等的铁环上,稳恒电流I从a 端流入而从d 端流出,则磁感强度B沿图中闭合路径L 的积分⎰⋅Ll d B 等于10.如图,流出纸面的电流为2I,流进纸面的电流为I,则下述各式中哪一个是正确的?11.如图,在一圆形电流I所在的平面内,选取一个同心圆形闭合回路L,则由安培环路定理可知(A) 0d=⎰⋅LlB,且环路上任意一点B = 0.(B) 0d=⎰⋅LlB,且环路上任意一点B≠0.(C) 0d≠⎰⋅LlB,且环路上任意一点B≠0.(D) 0d≠⎰⋅LlB,且环路上任意一点B =常量.[]12. 有一同轴电缆,其尺寸如图所示,它的内外两导体中的电流均为I,且在横截面上均匀分布,但二者电流的流向正相反,则(1) 在r < R1处磁感强度大小为________________.(2) R1< r< R2处磁感强度大小为________________.(2) 在r > R3处磁感强度大小为________________.13. 两根长直导线通有电流I,图示有三种环路;在每种情况下,⎰⋅L l dB等于:_______________________(对环路a)._______________________(对环路b)._______________________(对环路c).14. 在图(a)和(b)中各有一半径相同的圆形回路L 1、L 2,圆周内有电流I 1、I 2,其分布相同,且均在真空中,但在(b)图中L 2回路外有电流I 3,P 1、P 2为两圆形回路上的对应点,则:(A) =⎰⋅1d L l B⎰⋅2d L l B, 21P P B B =(B) ≠⎰⋅1d L l B⎰⋅2d L l B, 21P P B B =.(C) =⎰⋅1d Ll B⎰⋅2d L l B, 21P P B B ≠.(D)≠⎰⋅1d L l B ⎰⋅2d L l B , 21P P B B ≠. [ ]15.把轻的导线圈用线挂在磁铁N 极附近,磁铁的轴线穿过线圈中心,且与线圈在同一平面内,如图所示.当线圈内通以如图所示方向的电流时,线圈将(A) 不动. (B) 发生转动,同时靠近磁铁. (C) 发生转动,同时离开磁铁. (D) 不发生转动,只靠近磁铁.(E) 不发生转动,只离开磁铁. [ ]16. 如图,一根载流导线被弯成半径为R 的1/4圆弧,放在磁感强度为B 的均匀磁场中,则载流导线ab (电流I 顺时针方向流动)所受磁场的作用力的大小为____________,方向_________________.17.如图,均匀磁场中放一均匀带正电荷的圆环,其线电荷密度为λ,圆环可绕通过环心O 与环面垂直的转轴旋转.当圆环以角速度ω转动时,圆环受到的磁力矩为 ___ _________, 其方向__________________________.L 1 2I 3(a)(b)⊙18.有两个半径相同的环形载流导线A 、B ,它们可以自由转动和移动,把它们放在相互垂直的位置上,如图所示,将发生以下哪一种运动?(A) A 、B 均发生转动和平动,最后两线圈电流同方向并紧靠在一起. (B) A 不动,B 在磁力作用下发生转动和平动. (C) A 、B 都在运动,但运动的趋势不能确定.(D) A 和B 都在转动,但不平动,最后两线圈磁矩同方向平行.19.如图,在一固定的无限长载流直导线的旁边放置一个可以自由移动和转动的圆形的刚性线圈,线圈中通有电流,若线圈与直导线在同一平面,见图(a),则圆线圈的运动将是 ______________________ _________; 若线圈平面与直导线垂直,见图(b),则圆线圈将 __________________________________________________。