大学物理下册总复习
- 格式:ppt
- 大小:1.53 MB
- 文档页数:65
大学物理下归纳总结电学基本要求:1.会求解描述静电场的两个重要物理量:电场强度E 和电势V 。
2.掌握描述静电场的重要定理:高斯定理和安培环路定理(公式内容及物理意义)。
3.掌握导体的静电平衡及应用;介质的极化机理及介质中的高斯定理。
主要公式: 一、 电场强度1计算场强的方法(3种)1、点电荷场的场强及叠加原理点电荷系场强:∑=i i i r rQ E 304πε 连续带电体场强:⎰=Q r dQr E 34πε(五步走积分法)(建立坐标系、取电荷元、写E d、分解、积分)2、静电场高斯定理:物理意义:表明静电场中,通过任意闭合曲面的电通量(电场强度沿任意闭合曲面的面积分),等于该曲面内包围的电荷代数和除以0ε。
对称性带电体场强:3、利用电场和电势关系:x E xU=∂∂-二、电势电势及定义:1.电场力做功:⎰⋅=∆=210l l l d E q U q A2.物理意义:表明静电场中,电场强度沿任意闭合路径的线积分为0。
3.电势:)0(00=⋅=⎰p p aa U l d E U ;电势差:⎰⋅=∆B AAB l d E U电势的计算:1.点电荷场的电势及叠加原理点电荷系电势:∑=iiir Q U 04πε(四步走积分法)(建立坐标系、取电荷元、写dV 、积分) 2.已知场强分布求电势:定义法⎰⎰⋅=⋅=lv pdr E l d E V 0三、静电场中的导体及电介质1. 弄清静电平衡条件及静电平衡下导体的性质2. 了解电介质极化机理,及描述极化的物理量—电极化强度P , 会用介质中的高斯定理,求对称或分区均匀问题中的,,D E P 及界面处的束缚电荷面密度σ。
3. 会按电容的定义式计算电容。
磁学 恒定磁场(非保守力场)基本要求:1.熟悉毕奥-萨伐尔定律的应用,会用右手螺旋法则求磁感应强度方向;3.掌握描述磁场的两个重要定理:高斯定理和安培环路定理(公式内容及物理意义);并会用环路定理计算规则电流的磁感应强度; 3.会求解载流导线在磁场中所受安培力;4.理解介质的磁化机理,会用介质中的环路定律计算H 及B.主要公式:1.毕奥-萨伐尔定律表达式1)有限长载流直导线,垂直距离r (其中。
《大学物理》(下) 复习资料一、电磁感应与电磁场1. 感应电动势——总规律:法拉第电磁感应定律 dtd m i Φ-=ε , 多匝线圈dt d i ψ-=ε, m N Φ=ψ。
i ε方向即感应电流的方向,在电源内由负极指向正极。
由此可以根据计算结果判断一段导体中哪一端的电势高(正极)。
①对闭合回路,i ε方向由楞次定律判断; ②对一段导体,可以构建一个假想的回路(使添加的导线部分不产生i ε)(1) 动生电动势(B 不随t 变化,回路或导体L运动) 一般式:() d B v b ai ⋅⨯=ε⎰; 直导线:()⋅⨯=εB v i动生电动势的方向:B v ⨯方向,即正电荷所受的洛仑兹力方向。
(注意)一般取B v⨯方向为 d 方向。
如果B v ⊥,但导线方向与B v⨯不在一直线上(如习题十一填空2.2题),则上式写成标量式计算时要考虑洛仑兹力与线元方向的夹角。
(2) 感生电动势(回路或导体L不动,已知t /B ∂∂的值):⎰⋅∂∂-=s i s d t Bε,B与回路平面垂直时S t B i ⋅∂∂=ε 磁场的时变在空间激发涡旋电场i E :⎰⎰⋅∂∂-=⋅L s i s d t B d E(B增大时t B ∂∂[解题要点] 对电磁感应中的电动势问题,尽量采用法拉第定律求解——先求出t 时刻穿过回路的磁通量⎰⋅=ΦSm S d B ,再用dtd m i Φ-=ε求电动势,最后指出电动势的方向。
(不用法拉弟定律:①直导线切割磁力线;②L不动且已知t /B ∂∂的值)[注] ①此方法尤其适用动生、感生兼有的情况;②求m Φ时沿B 相同的方向取dS ,积分时t 作为常量;③长直电流r π2I μ=B r /;④i ε的结果是函数式时,根据“i ε>0即m Φ减小,感应电流的磁场方向与回路中原磁场同向,而i ε与感应电流同向”来表述电动势的方向:i ε>0时,沿回路的顺(或逆)时针方向。
2. 自感电动势dtdI Li -=ε,阻碍电流的变化.单匝:LI m=Φ;多匝线圈LI N =Φ=ψ;自感系数I N I L m Φ=ψ= 互感电动势dt dI M212-=ε,dtdIM 121-=ε。
大学物理下册学院:姓名:班级:一、气体的状态参量:用来描述气体状态特征的物理量。
气体的宏观描述,状态参量:(1)压强p:从力学角度来描写状态。
垂直作用于容器器壁上单位面积上的力,是由分子与器壁碰撞产生的。
单位 Pa(2)体积V:从几何角度来描写状态。
分子无规则热运动所能达到的空间。
单位m 3(3)温度T:从热学的角度来描写状态。
表征气体分子热运动剧烈程度的物理量。
单位K。
二、理想气体压强公式的推导:三、理想气体状态方程:112212PV PV PVCT T T=→=;mPV R TM'=;P nkT=8.31JR k mol=;231.3810Jk k-=⨯;2316.02210AN mol-=⨯;AR N k=四、理想气体压强公式:23ktp nε=212ktm vε=分子平均平动动能五、理想气体温度公式:21322ktm v kTε==六、气体分子的平均平动动能与温度的关系:七、刚性气体分子自由度表八、能均分原理:1.自由度:确定一个物体在空间位置所需要的独立坐标数目。
2.运动自由度:确定运动物体在空间位置所需要的独立坐标数目,称为该物体的自由度(1)质点的自由度:在空间中:3个独立坐标在平面上:2 在直线上:1(2)直线的自由度:中心位置:3(平动自由度)直线方位:2(转动自由度)共5个3.气体分子的自由度单原子分子 (如氦、氖分子)3i=;刚性双原子分子5i=;刚性多原子分子6i=4. 能均分原理:在温度为T 的平衡状态下,气体分子每一自由度上具有的平均动都相等,其值为12kT推广:平衡态时,任何一种运动或能量都不比另一种运动或能量更占优势,在各个自由度上,运动的机会均等,且能量均分。
5.一个分子的平均动能为:2ki kT ε=五. 理想气体的内能(所有分子热运动动能之和) 1.1m ol 理想气体2i E R T =5.一定量理想气体()2i m E RT Mνν'==九、气体分子速率分布律(函数)速率分布曲线峰值对应的速率 v p 称为最可几速率,表征速率分布在 v p ~ v p + d v 中的分子数,比其它速率的都多,它可由对速率分布函数求极值而得。
《大学物理》(下)复习资料第二部分:电学基本要求一. 基本概念电场强度, 电势;电势差, 电势能,电场能量。
二.基本定律、定理、公式 1.真空中的静电场: 库仑定律:r r q q F 321041πε=。
=041πε9×109 N·m 2·C -2电场强度定义:0q F=, 单位:N·C -1 ,或V·m -1 点电荷的场强:r q 3041πε=点电荷系的场强:N E E E E +++= 21,(电场强度叠加原理)。
任意带电体电场中的场强:电荷元dq 场中某点产生的场强为: r dqd 3041πε=,整个带电体在该产生的场强为:⎰=E d E电荷线分布dq=,dl λ 电荷面分布dq=dS σ, 电荷体分布dq=dV ρ电通量:S d E Se ⋅=⎰⎰φ=⎰⎰SdS E θcos高斯定理:在真空中的静电场中,穿过任一闭合曲面的电场强度的通量等于该闭合曲面所包围的电荷电量的代数和除以0ε 。
ε∑⎰⎰=⋅iSq S d E 。
物理意义:表明了静电场是有源场注意理解: 是由高斯面内外所有电荷共同产生的。
∑i q 是高斯面内所包围的电荷电量的代数和。
若高斯面内无电荷或电量的代数和为零,则0=•⎰⎰d ,但高斯面上各点的E 不一定为零。
在静电场情况下,高斯定理是普遍成立的。
对于某些具有对称性场强分布问题,可用高斯定理计算场强。
典型静电场:均匀带电球面:=(球面内);r q3041πε=(球面外)。
均匀带电无限长直线:E=r02πελ, 方向垂直带电直线。
均匀带电无限大平面:E=2εσ, 方向垂直带电直线。
均匀带电圆环轴线上: E=2/3220)(4x R qx+πε , 方向沿轴线(R 为圆环半径)。
电场力:q 0= , 电场力的功:A ab =⎰⎰=•ba ba dl E q l d E q θcos 00,特点:积分与路经无关, 说明静电场力是保守力。
大学物理下册复习资料大学物理下册复习资料在大学物理学习的过程中,下册的内容往往更加深入和复杂。
为了更好地复习和掌握这些知识,我们需要有一份全面而有深度的复习资料。
本文将为大家提供一份关于大学物理下册的复习资料,帮助大家更好地备考。
一、电磁场与电磁波电磁场与电磁波是大学物理下册的重要内容。
电磁场包括静电场和静磁场,而电磁波则包括光波和无线电波等。
在复习这一部分内容时,我们可以从以下几个方面进行总结和梳理。
首先,我们可以回顾电场和磁场的基本概念和性质。
电场是由电荷产生的力场,而磁场是由电流产生的力场。
我们需要掌握电场和磁场的计算公式,以及它们的叠加原理和能量守恒定律等。
其次,我们可以深入学习电磁场的运动学和动力学。
在这一部分中,我们需要了解电磁场中的粒子运动规律,如洛伦兹力和质点在电磁场中的运动方程等。
同时,还需要掌握电磁场中的能量和动量守恒定律,以及电磁场的能量密度和能流密度等概念。
最后,我们需要学习电磁波的基本性质和传播规律。
电磁波是由振荡的电场和磁场组成的,具有波动性和粒子性。
我们需要了解电磁波的传播速度、波长和频率之间的关系,以及电磁波的干涉、衍射和偏振等现象。
二、量子力学量子力学是大学物理下册的另一个重要内容。
它是研究微观领域的物质和能量的理论。
在复习这一部分内容时,我们可以从以下几个方面进行总结和梳理。
首先,我们需要回顾波粒二象性的基本概念和原理。
量子力学认为微观粒子既具有波动性又具有粒子性,这一观点颠覆了经典物理学的观念。
我们需要了解波粒二象性对物质和能量的描述,以及波函数和概率密度等概念。
其次,我们可以深入学习量子力学的基本原理和数学表达。
量子力学的基本原理包括叠加原理、不确定性原理和量子力学的统计解释等。
我们需要掌握薛定谔方程和波函数的求解方法,以及量子力学中的算符和测量等概念。
最后,我们需要学习量子力学在原子物理和固体物理中的应用。
量子力学在原子物理中解释了原子的结构和性质,如玻尔模型和量子力学模型等。
大学物理下学期知识点总结.docx恒定磁场一、基本公式1)毕奥-萨伐尔定律dB=2)磁场叠加原理3)磁场中高斯定理(S是闭合曲面)4)安培环路定律(真空中)(介质中)H=BrB=HH=B=r-真空磁导率(4_10-7N/A2)r介质磁导率5)安培定律dF=IdlBsin方向判断:右手四指由Idl的方向经小于角转向B的方向,右螺旋前进的方向即为dFma_的方向6)磁通量匀强磁场中通过平面:7)磁矩若多匝线圈8)磁力矩M=PmBsin=BISsin9)洛伦兹力公式带电粒子受电磁力10)运动电荷产生的磁场二、典型结果1、有限长载流直导线在距其为r的一点产生的磁场2、无限长载流直导线在距其为r的一点产生的磁场3、半限无长载流直导线在距其一端距离为r的一点产生的磁场4、载流圆环在环心产生的磁场5、载流圆弧(已知弧长L和圆心角)在弧心产生的磁场6、长直密绕螺线管内磁场第十一章电磁感应电磁场一、基本公式1)电动势定义2)法拉第电磁感应定律作用:计算闭合回路上的大小和方向方向的判断:首先确定回路绕行方向,如果dBdt0,0,则i=-ddt=-SdBdt0,则表明积分路径是沿着非静电性场强的方向进行的,因此B点电势比A点电势低。
4)感生电动势:产生根源(非静电力)为涡旋电场力或感生电场力公式5)自感:自感系数,若为长l,横截面为S,N匝,介质磁导率为的螺线管,B=NlI;L=N2V(其中V为螺线管体积)感生电动势6)互感:互感系数M,互感磁通量,互感电动势21=-d21dt=-MdI1dt12=-d12dt=-MdI2dt7)磁场能量密度磁场能量一个自感为L,通过电流为I的线圈,其中所储存的磁能为Wm=12LI2=12n2I2V(其中V表示长直螺线管的体积)第十二章机械振动1)谐振动方程:谐振子:,,的求解方法:解析法和旋转矢量法2)同方向同频率简谐振动的合成总位移,合振动解析法,3)振动总能量,振动势能振动动能Ek=12mv2=13kA2sin2(t+)第十章机械波1)若已知波源O点振动方程yo=Acos(t+),则该波的波动方程为2)体积元的能量平均能量密度平均能流密度(波动强度)(u 为波速)平均能流(V为介质体积,为介质长度,S为介质侧面积)3)波的干涉条件:振动方向相同,频率相同和位相差恒定=2干涉加强22r2-r1=2kk=0、1、2A=A1+A2干涉减弱22r2-r1=2k+1k=0、1、2A=A1-A24)驻波含义:振幅相同,沿同一直线上相向传播的两列相干波产生的干涉5)以丛波为例,设两列相干波的波动方程为6)相邻波节间各点位相相同,波节两侧点位相相反。