大学物理教程复习
- 格式:ppt
- 大小:1.74 MB
- 文档页数:25
大学物理复习第四章知识点总结大学物理复习第四章知识点总结一.静电场:1.真空中的静电场库仑定律→电场强度→电场线→电通量→真空中的高斯定理qq⑴库仑定律公式:Fk122err适用范围:真空中静止的两个点电荷F⑵电场强度定义式:Eqo⑶电场线:是引入描述电场强度分布的曲线。
曲线上任一点的切线方向表示该点的场强方向,曲线疏密表示场强的大小。
静电场电场线性质:电场线起于正电荷或无穷远,止于负电荷或无穷远,不闭合,在没有电荷的地方不中断,任意两条电场线不相交。
⑷电通量:通过任一闭合曲面S的电通量为eSdS方向为外法线方向1EdS⑸真空中的高斯定理:eSoEdSqi1int只能适用于高度对称性的问题:球对称、轴对称、面对称应用举例:球对称:0均匀带电的球面EQ4r20(rR)(rR)均匀带电的球体Qr40R3EQ240r(rR)(rR)轴对称:无限长均匀带电线E2or0(rR)无限长均匀带电圆柱面E(rR)20r面对称:无限大均匀带电平面EE⑹安培环路定理:dl0l2o★重点:电场强度、电势的计算电场强度的计算方法:①点电荷场强公式+场强叠加原理②高斯定理电势的计算方法:①电势的定义式②点电荷电势公式+电势叠加原理电势的定义式:UAAPEdl(UP0)B电势差的定义式:UABUAUBA电势能:WpqoPP0EdlEdl(WP00)2.有导体存在时的静电场导体静电平衡条件→导体静电平衡时电荷分布→空腔导体静电平衡时电荷分布⑴导体静电平衡条件:Ⅰ.导体内部处处场强为零,即为等势体。
Ⅱ.导体表面紧邻处的电场强度垂直于导体表面,即导体表面是等势面⑵导体静电平衡时电荷分布:在导体的表面⑶空腔导体静电平衡时电荷分布:Ⅰ.空腔无电荷时的分布:只分布在导体外表面上。
Ⅱ.空腔有电荷时的分布(空腔本身不带电,内部放一个带电量为q的点电荷):静电平衡时,空腔内表面带-q电荷,空腔外表面带+q。
3.有电介质存在时的静电场⑴电场中放入相对介电常量为r电介质,电介质中的场强为:E⑵有电介质存在时的高斯定理:SDdSq0,intE0r各项同性的均匀介质D0rE⑶电容器内充满相对介电常量为r的电介质后,电容为CrC0★重点:静电场的能量计算①电容:②孤立导体的电容C4R电容器的电容公式C0QQUUU举例:平行板电容器C圆柱形电容器C4oR1R2os球形电容器CR2R1d2oLR2ln()R1Q211QUC(U)2③电容器储能公式We2C22④静电场的能量公式WewedVE2dVVV12二.静磁场:1.真空中的静磁场磁感应强度→磁感应线→磁通量→磁场的高斯定理⑴磁感应强度:大小BF方向:小磁针的N极指向的方向qvsin⑵磁感应线:是引入描述磁感应强度分布的曲线。
第十一章 流体运动基础一、基本知识点流体的可压缩性:流体的体积会随着压强的不同而改变的性质。
流体的黏性:内摩擦力作用导致相邻流体层速度不同的性质。
理想流体:绝对不可压缩且完全没有黏性的流体。
稳定流动:空间各点的流速不随时间变化的流体流动。
流线:在流体空间设想的一系列曲线,其上任意一点的切线方向都与流体通过该点时速度方向一致。
任何两条流线不能相交。
流管:在稳定流动的流体中的一个由流线围成的管状微元。
稳定流动的连续性方程:单位时间内通过任一截面的流体质量都相等,即S ρυ=恒量也称为质量流量守恒定律。
理想流体稳定流动的连续性方程:单位时间内通过任一截面的流体体积都相等,即S υ=恒量也称为体积流量守恒定律。
理想流体的伯努利方程:理想流体作稳定流动时,单位体积的势能、动能及该点压强之和是一恒量,即212P gh ρρυ++=恒量牛顿黏滞定律:黏性力f 的大小与两速度不同的流体层的接触面积S 及接触处的速度梯度d dxυ成正比,即 d f Sdxυη= 式中比例系数η称为流体的黏滞系数或黏度。
η值的大小取决于流体本身的性质,并和温度有关,单位是2N s m -⋅⋅或Pa s ⋅。
表11-1 几种流体的黏度流体 温度()C ︒η()Pa s ⋅流体 温度()C ︒η()Pa s ⋅水0 20 37 100 31.7910-⨯ 31.00510-⨯ 30.69110-⨯ 30.28410-⨯ 空气0 20 100617.110-⨯ 618.110-⨯ 621.810-⨯蓖麻油7.5 2050 60112.2510-⨯ 19.8610-⨯ 11.2210-⨯ 10.8010-⨯ 氢气-125168.310-⨯ 61310-⨯血液 373(2.5~3.5)10-⨯二氧 化碳0 30061410-⨯ 62710-⨯雷诺数: 判断黏性流体的流动状态的一个无量纲的数e rR ρυη=式中,υ为流速,ρ为流体密度,η为黏度,r 为流管半径。
质点运动学例1.已知运动方程(r,ω为常量)求:1);2)轨迹方程。
例2.练习3.在x轴上作变加速直线运动的质点,已知其初速度为,初始位置为,加速度(其中c为常量),求其速度与时间的关系?运动学方程?例3:一人用绳拉一高台上的小车在地面上跑。
设人跑动的速度不变,绳端与小车的高度差为h,求小车的速度及加速度。
例1.练14.质点M在水平面内的运动轨迹如图,OA段为直线,AB、BC 段分别为不同半径的两个1/4圆周.设t =0时,M在O点,已知运动学方程为求t=2s时刻,质点M 的切向加速度和法向加速度.例2.练习7.在半径为R的圆周上运动的质点,其速率与时间关系为(式中c为常量),则(1)从t = 0到t时刻质点走过的路程s(t)为多少?(2)t时刻质点的切向加速度为多少?(3)t时刻质点的法向加速度为多少?例3.练习15.一质点沿x轴运动,其加速度a与位置坐标x的关系为(SI),如果质点在原点处的速度为零,试求其在任意位置处的速度.解:设质点在x处的速度为v因x也是t的函数(还有v)。
应该做变换:例4.练习16.一物体悬挂在弹簧上作竖直振动,其加速度为a=-ky,式中k为常量,y是以平衡位置为原点所测得的坐标.假定振动的物体在坐标处的速度为,试求速度v与坐标y的函数关系式.例6.一质点作抛体运动(忽略空气阻力),如下图所示。
讨论下列问解:1)为切向加速度的大小,质点作自由抛体运动时加速度为常矢量,不变化。
3)法向加速度描述质点速度方向的改变牛顿运动定律及动量守恒定律例1.练习9.已知一质量为m的质点在x轴上运动,质点只受到指向原点的引力的作用,引力大小与质点离原点的距离x的平方成反比,即,k是比例常数.设质点在x=A时的速度为零,求质点在x=A/4处的速度的大小.例2.如图所示,有一条长为l ,质量为m 的均匀分布的链条成直线状放在摩擦系数为u 的水平桌面上。
链子的一端有一段被推出桌子边缘,在重力作用下从静止开始下落,试求:链条刚离开桌面时的速度。
大学物理学复习资料第一章 质点运动学 主要公式:1.笛卡尔直角坐标系位失r=x i +y j +z k,质点运动方程(位矢方程):k t z j t y i t x t r)()()()(++=参数方程:。
t t z z t y y t x x 得轨迹方程消去→⎪⎩⎪⎨⎧===)()()(2.速度:dt r d v =3.加速度:dt vd a =4.平均速度:trv ∆∆=5.平均加速度:t va ∆∆=6.角速度:dt d θω=7.角加速度:dtd ωα=8.线速度与角速度关系:ωR v = 9.切向加速度:ατR dtdva ==10.法向加速度:Rv R a n 22==ω11.总加速度:22n a a a +=τ第二章 牛顿定律 主要公式:1.牛顿第一定律:当0=合外F时,恒矢量=v。
2.牛顿第二定律:dtP d dt v d m a m F=== 3.牛顿第三定律(作用力与反作用力定律):F F '-=第三章 动量与能量守恒定律 主要公式:1.动量定理:P v v m v m dt F I t t∆=-=∆=⋅=⎰)(12212.动量守恒定律:0,0=∆=P F合外力当合外力3、 动能定理:)(21212221v v m E dx F W x x k -=∆=⋅=⎰合 4.机械能守恒定律:当只有保守内力做功时,0=∆E 第五章 机械振动 主要公式:1.)cos(ϕω+=t A x Tπω2= 弹簧振子:mk=ω,k m T π2=单摆:lg =ω,g lT π2=2.能量守恒:动能:221mv E k =势能:221kx E p =机械能:221kA E E E Pk =+= 3.两个同方向、同频率简谐振动得合成:仍为简谐振动:)cos(ϕω+=t A x 其中:⎪⎩⎪⎨⎧++=∆++=22112211212221cos cos sin sin cos 2ϕϕϕϕϕϕA A A A arctg A A A A Aa. 同相,当相位差满足:πϕk 2±=∆时,振动加强,21A A A MAX +=;b. 反相,当相位差满足:πϕ)12(+±=∆k 时,振动减弱,21A A A MIN -=。
《大学物理》(下)复习提纲第6章 恒定电流的磁场(1) 掌握磁场,磁感应强度,磁力线,磁通量等概念,磁场中的高斯定理,毕奥一沙伐一拉普拉斯定律。
(2) 掌握安培环路定律,应用安培环路定律计算磁场.(3)掌握安培定律,会用安培定律计算磁场力。
会判断磁力矩的方向。
会判断霍尔效应电势的方向。
1. 边长为2a 的等边三角形线圈,通有电流I ,则线圈中 心处的磁感强度的大小为________________.2. 边长为l 的正方形线圈,分别用图示两种方式通以电流I (其中ab 、cd 与正方形共面),在这两种情况下,线圈在其中心产生的磁感强度的大小分别为3.一无限长载流直导线,通有电流I ,弯成如图形状.设各线段皆在纸面内,一无限长载流直导线,通有电流I ,弯成如图形状.设各线段皆在纸面内,则P 点磁感强度B的大小为________________.则P 点磁感强度B的大小为4. 一无限长载有电流I 的直导线在一处折成直角,P 点位于导线所在平面内,距一条折线的延长线和另一条导线的距离都为a ,如图.求P点的磁感强度B.5.无限长直导线在P 处弯成半径为R 的圆,当通以电流I 时,则在圆心O 点的磁感强度大小等于(A )R I πμ20 (B )240RIμ6.如图所示,用均匀细金属丝构成一半径为R 的圆环C ,电流I 由导线1流入圆环A 点,并由圆环B 点流入导线2.设导线1和导线2与圆环共面,则环心O 处的磁感强度大小 为________________________,方向___________________.7. 真空中电流分布如图,两个半圆共面,且具有公共圆心,试求O 点处的磁感强度.8.均匀磁场的磁感强度B 与半径为 r 的圆形平面的法线n的夹角为α ,今以圆周为边界,作一个半球面S ,S 与圆形平面组成 封闭面如图.则通过S 面的磁通量Φ =________________.9.如图,两根直导线ab 和cd 沿半径方向被接到一个截面处处相等的铁环上,稳恒电流I从a 端流入而从d 端流出,则磁感强度B沿图中闭合路径L 的积分⎰⋅Ll d B 等于10.如图,流出纸面的电流为2I,流进纸面的电流为I,则下述各式中哪一个是正确的?11.如图,在一圆形电流I所在的平面内,选取一个同心圆形闭合回路L,则由安培环路定理可知(A) 0d=⎰⋅LlB,且环路上任意一点B = 0.(B) 0d=⎰⋅LlB,且环路上任意一点B≠0.(C) 0d≠⎰⋅LlB,且环路上任意一点B≠0.(D) 0d≠⎰⋅LlB,且环路上任意一点B =常量.[]12. 有一同轴电缆,其尺寸如图所示,它的内外两导体中的电流均为I,且在横截面上均匀分布,但二者电流的流向正相反,则(1) 在r < R1处磁感强度大小为________________.(2) R1< r< R2处磁感强度大小为________________.(2) 在r > R3处磁感强度大小为________________.13. 两根长直导线通有电流I,图示有三种环路;在每种情况下,⎰⋅L l dB等于:_______________________(对环路a)._______________________(对环路b)._______________________(对环路c).14. 在图(a)和(b)中各有一半径相同的圆形回路L 1、L 2,圆周内有电流I 1、I 2,其分布相同,且均在真空中,但在(b)图中L 2回路外有电流I 3,P 1、P 2为两圆形回路上的对应点,则:(A) =⎰⋅1d L l B⎰⋅2d L l B, 21P P B B =(B) ≠⎰⋅1d L l B⎰⋅2d L l B, 21P P B B =.(C) =⎰⋅1d Ll B⎰⋅2d L l B, 21P P B B ≠.(D)≠⎰⋅1d L l B ⎰⋅2d L l B , 21P P B B ≠. [ ]15.把轻的导线圈用线挂在磁铁N 极附近,磁铁的轴线穿过线圈中心,且与线圈在同一平面内,如图所示.当线圈内通以如图所示方向的电流时,线圈将(A) 不动. (B) 发生转动,同时靠近磁铁. (C) 发生转动,同时离开磁铁. (D) 不发生转动,只靠近磁铁.(E) 不发生转动,只离开磁铁. [ ]16. 如图,一根载流导线被弯成半径为R 的1/4圆弧,放在磁感强度为B 的均匀磁场中,则载流导线ab (电流I 顺时针方向流动)所受磁场的作用力的大小为____________,方向_________________.17.如图,均匀磁场中放一均匀带正电荷的圆环,其线电荷密度为λ,圆环可绕通过环心O 与环面垂直的转轴旋转.当圆环以角速度ω转动时,圆环受到的磁力矩为 ___ _________, 其方向__________________________.L 1 2I 3(a)(b)⊙18.有两个半径相同的环形载流导线A 、B ,它们可以自由转动和移动,把它们放在相互垂直的位置上,如图所示,将发生以下哪一种运动?(A) A 、B 均发生转动和平动,最后两线圈电流同方向并紧靠在一起. (B) A 不动,B 在磁力作用下发生转动和平动. (C) A 、B 都在运动,但运动的趋势不能确定.(D) A 和B 都在转动,但不平动,最后两线圈磁矩同方向平行.19.如图,在一固定的无限长载流直导线的旁边放置一个可以自由移动和转动的圆形的刚性线圈,线圈中通有电流,若线圈与直导线在同一平面,见图(a),则圆线圈的运动将是 ______________________ _________; 若线圈平面与直导线垂直,见图(b),则圆线圈将 __________________________________________________。
大学物理总复习各章知识点的总结本文档旨在为大学物理学生提供各章知识点的总结,以便进行全面的复。
以下是各章的重要知识点概述:第一章:力学基础- 牛顿三定律:惯性定律、动量定律和作用-反作用定律- 力和力的矢量表示- 物体的平衡状态和平衡条件- 力的分解和合成- 弹力和摩擦力第二章:运动学- 位移、速度和加速度的定义和关系- 一维运动和二维运动的公式和图像- 自由落体运动和投射运动- 碰撞和动量守恒定律- 圆周运动和使用向心力的公式第三章:力学定律应用- 牛顿第二定律和用力学定律解决动力学问题- 摩擦力和滑动/静止摩擦力的计算- 动能和势能的概念以及能量守恒定律的应用- 万有引力和行星运动的规律- 弹性碰撞和非弹性碰撞的区别第四章:热学- 温度、热量和热平衡的概念- 热传递和热平衡的方式:传导、对流和辐射- 理想气体定律和状态方程- 热力学第一定律和热功公式的应用- 熵和热传递的熵变定律第五章:波动光学- 波和光的特性和性质- 光的干涉和衍射现象- 多普勒效应和光谱的应用- 像的成像和光的折射- 反射和折射定律的应用第六章:电学静电学- 电荷和电场的概念- 高斯定律和电场强度的计算- 静电势和电势能的关系- 电和电容的计算- 电场中电荷的受力和电势能的变化第七章:电学电流学- 电流、电阻和电压的定义和关系- 欧姆定律和电阻的计算- 串联和并联电路的计算- 电功率和电能的转换- 阻抗和交流电的特性第八章:磁学- 磁场和磁力线的概念- 安培环路定理和电流的磁场- 法拉第电磁感应定律和楞次定律- 电动势的产生和电磁感应的应用- 磁场中的电荷和导线的受力以上是大学物理各章知识点的概述。
希望本文档能够帮助您进行有效的复习和准备,祝您考试顺利!。