计量经济学 庞皓36页PPT
- 格式:ppt
- 大小:8.93 MB
- 文档页数:36
计量经济学课件庞皓第四章简介本文档是关于计量经济学课程中庞皓第四章的课件摘要。
本章重点讲解了关于回归模型的假设检验和模型选择的内容。
通过学习本章,我们将能够对回归模型的假设进行检验,并了解如何选择最合适的模型来解释我们的数据。
回归模型的假设检验回归模型的假设检验是计量经济学中的重要内容,它帮助我们判断我们的回归模型是否有效,以及通过对模型参数的假设进行检验来评估模型的准确性。
本节我们将学习三个重要的假设检验:线性关系、零斜率以及模型中的其他假设。
1. 线性关系的检验在回归模型中,我们假设解释变量和被解释变量之间存在线性关系。
我们可以使用各种统计方法来检验线性关系,其中最常用的方法是利用t统计量对斜率进行假设检验。
具体地,我们对斜率的假设进行如下检验:H0:斜率等于零,即变量之间不存在线性关系。
Ha:斜率不等于零,即变量之间存在线性关系。
我们可以根据t统计量的计算结果,来判断是否拒绝原假设。
2. 零斜率的检验当我们在回归模型中引入一个变量时,我们可以对该变量的斜率进行检验,来判断该变量对模型的解释能力是否显著。
具体地,我们对斜率的假设进行如下检验:H0:斜率等于零,即该变量对模型的解释能力不显著。
Ha:斜率不等于零,即该变量对模型的解释能力显著。
我们可以根据t统计量的计算结果,来判断是否拒绝原假设。
3. 模型中的其他假设检验除了线性关系和零斜率的检验,回归模型中还有其他重要的假设需要进行检验,包括误差项的正态性、异方差性以及自相关性的检验。
这些假设检验对于模型的有效性评估至关重要。
模型选择在计量经济学中,我们常常面临多个模型的选择问题,如何选择最合适的模型来解释我们的数据是一个重要的问题。
本节将介绍两种常用的模型选择方法:最小二乘法(OLS)和信息准则。
1. 最小二乘法(OLS)最小二乘法是回归模型中最常用的估计方法,它通过最小化观测值和模型估计值之间的残差平方和,来得到模型的最优拟合。
最小二乘法通过估计出的模型参数来评估模型的拟合效果,我们可以根据拟合优度以及估计参数的显著性来选择最优模型。
(完整word版)计量经济学总结第三版庞皓,推荐文档计量经济学第一章导论一节什么是计量经济学统计学,经济学,数学的结合二节研究步骤一、模型假定估计解释变量与被解释变量的关系,设置随机扰动项μ二、估计参数通过变量的样本观测值合理的估计总体模型的参数,是计量经济学的核心内容三、模型检验(1)经济意义检验,检验所估计的模型与经济理论是否相符(2)统计推断信息,检验参数估计值是否是抽样的偶然结果,需要运用数理统计中统计推断方法对模型及参数的统计可靠性作出说明(3)计量经济学检验,t检验和F检验检验模型是否符合计量经济学假定,如多重共线性,随机扰动项的自相关和异方差性(4)模型预测检验四、模型应用三节变量参数数据与模型一、变量经济变量:在不同的时间或空间有不同状态,回去不同的数值且可观测eg.居民家庭收入X和居民消费支出Y分类:(1)流量与存量(2)解释变量/自变量与被解释变量/因变量(3)内生变量(由模型所决定的变量,是模型求解的结果)和外生变量(由模型以外决定的变量)二、参数的估计所得到的参数估计值迎“尽可能接近总体参数真实值”原则三、计量经济学中应用的数据(1)时间序列数据(2)截面数据(3)面板数据(4)虚拟变量数据二章简单线性回归模型一节回归分析与回归函数一、相关分析与回归分析(一)经济变量之间的相关关系经济变量之间有两种关系,一种是确定性的函数关系,另一种是不确定的统计关系,也叫相关关系。
当一个或若干个变量x取一定值时,与之对应的另一个变量Y的值虽然不确定,但按照某种规律在一定范围内变化,称这种变量之间的关系为不确定的统计关系或相关关系。
分类(1)简单相关关系/多重相关关系(2)线性相关/非线性相关(3)正相关/负相关(4)完全相关/不相关(二)简单线性相关关系的度量1简单线性相关系数总体相关系数ρρ反应了总体两个变量X和Y的线性相关程度。
变量X和Y的样本相关系数通常用表示2相关系数特点(1)(2)相关系数至反应变量间线性相关程度,不能说明非线性关系(3)样本相关系数不是确定的值,二是随抽样变动的随机变量(三)回归分析相关分析:(1)分析是否存在相关关系(2)明确相关关系类型(3)激浪祥光关系密切程度回归分析用于具体测定变量之间相关关系的数量形式,是关于一个变量(被解释变量)对另一个变量(解释变量)依存关系的研究,用适当的数学模型近似的表达或估计变量之间平均变化关系二、总体回归函数将总体被解释变量Y的条件期望表现为解释变量X的函数,这个函数称为总体回归函数:若Y的总体条件期望是解释变量X的线性函数,可表示为关于线性的解释(1)模型就变量而言是线性的(2)模型就参数而言是线性的一般指第二个三、随机扰动项μ个别值总是分布在条件期望周围,而不是全在代表平均值轨迹的回归线上,零各个与条件期望的偏差为μ(表示对Y有影响但是没有纳入模型的诸多因素的综合影响)若总体回归函数是只有一个解释变量的线性函数,有有等式暗含的假设条件,也就是假设回归线通过Y的天健期望或条件均值引入随机扰动项的原因:(1)作为未知影响因素的代表(2)(3)(4)(5)(6)四、样本回归函数对于实际经济问题,由于总体包含的单位数太多,无法掌握所有单位的数值,总体回归函数虽然存在但往往未知,能做到的只是通过对样本观测获得的信息去顾及总体回归函数。
第二章简单线性回归模型2.1(1)①首先分析人均寿命与人均GDP的数量关系,用Eviews分析:Dependent Variable: YMethod: Least SquaresDate: 12/27/14 Time: 21:00Sample: 1 22Included observations: 22Variable Coefficient Std. Errort-Statistic Prob.C56.64794 1.96082028.889920.0000X10.1283600.027242 4.7118340.0001R-squared0.526082 Mean dependent var62.50000 Adjusted R-squared0.502386 S.D. dependent var10.08889S.E. of regression7.116881 Akaike infocriterion 6.849324Sum squared resid1013.000 Schwarz criterion 6.948510Log likelihood-73.34257 Hannan-Quinncriter. 6.872689F-statistic22.20138 Durbin-Watson stat0.629074 Prob(F-statistic)0.000134有上可知,关系式为y=56.64794+0.128360x1②关于人均寿命与成人识字率的关系,用Eviews分析如下:Dependent Variable: YMethod: Least SquaresDate: 11/26/14 Time: 21:10Sample: 1 22Included observations: 22Variable Coefficient Std. Error t-Statistic Prob.C38.79424 3.53207910.983400.0000X20.3319710.0466567.1153080.0000R-squared0.716825 Mean dependent var62.50000 Adjusted R-squared0.702666 S.D. dependent var10.08889S.E. of regression 5.501306 Akaike infocriterion 6.334356Sum squared resid605.2873 Schwarz criterion 6.433542 Log likelihood-67.67792 Hannan-Quinn 6.357721criter.F-statistic50.62761 Durbin-Watson stat 1.846406 Prob(F-statistic)0.000001由上可知,关系式为y=38.79424+0.331971x2③关于人均寿命与一岁儿童疫苗接种率的关系,用Eviews分析如下:Dependent Variable: YMethod: Least SquaresDate: 11/26/14 Time: 21:14Sample: 1 22Included observations: 22Variable Coefficient Std. Error t-Statistic Prob.C31.79956 6.536434 4.8649710.0001X30.3872760.080260 4.8252850.0001R-squared0.537929 Mean dependent var62.50000 Adjusted R-squared0.514825 S.D. dependent var10.08889S.E. of regression7.027364 Akaike infocriterion 6.824009Sum squared resid987.6770 Schwarz criterion 6.923194Log likelihood-73.06409 Hannan-Quinncriter. 6.847374F-statistic23.28338 Durbin-Watson stat0.952555Prob(F-statistic)0.000103由上可知,关系式为y=31.79956+0.387276x3(2)①关于人均寿命与人均GDP模型,由上可知,可决系数为0.526082,说明所建模型整体上对样本数据拟合较好。
计量经济学第三版复习知识要点庞皓(总37页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除第一章导论第一节计量经济学的涵义和性质计量经济学是以一定的经济理论和实际统计资料为依据,运用数学、统计学方法和计算机技师,通过建立计量经济模型,定量分析经济变量之间的随机因果关系。
计量经济学是经济学的一个重要分支,以揭示经济活动中客观存在的数量关系的理论与方法为主要内容,其核心是建立计量经济学模型。
第二节计量经济学的内容体系及与其他学科的关系一、计量经济学与经济学、统计学、数理统计学学科间的关系计量经济学是经济理论、统计学和数学的综合。
经济学着重经济现象的定性研究,而计量经济学着重于定量方面的研究。
统计学是关于如何惧、整理和分析数据的科学,而计量经济学则利用经济统计所提供的数据来估计经济变量之间的数量关系并加以验证。
数量统计各种数据的惧、整理与分析提供切实可靠的数学方法,是计量经济学建立计量经济模型的主要工具,但它与经济理论、经济统计学结合而形成的计量经济学则仅限于经济领域。
计量经济模型建立的过程,是综合应用理论、统计和数学方法的过程。
因此计量经济学是经济理论、统计学和数学三者的统一。
二、计量经济学的内容体系1、按范围分为广义计量经济学和狭义计量经济学。
2、按研究内容分为理论计量经济学和应用计量经济学。
理论计量经济学的核心内容是参数估计和模型检验。
应用计量经济学的核心内容是模型设定和模型应用。
第三节基本概念(4、5、7、8了解即可)1.经济变量:经济变量是用来描述经济因素数量水平的指标。
2.解释变量:解释变量也称自变量,是用来解释作为研究对象的变量(即因变量)为什么变动、如何变动的变量。
它对因变量的变动作出解释,表现为议程所描述的因果关系中的“因”。
3.被解释变量:被解释变量也称因变量或应变量,是作为研究对象的变量。
它的变动是由解释变量作出解释的,表现为议程所描述的因果关系的果。