几种常用的集成触发器
- 格式:ppt
- 大小:717.00 KB
- 文档页数:13
555施密特触发器什么是555施密特触发器?555施密特触发器是一种常用的集成电路,用于产生周期性的方波输出。
它由三个电阻和两个电容组成,由于其结构简单且性能稳定,因而被广泛应用于各种电子设备的计时和波形产生电路中。
555施密特触发器的工作原理555施密特触发器的工作原理基于施密特触发器,它使用了一个比较器和两个比较阈值来触发输出的翻转。
当555施密特触发器的电源输入电压超过上阈值电压时,输出从低电平翻转到高电平;当电源输入电压低于下阈值电压时,输出从高电平翻转到低电平。
这样,555施密特触发器可以产生周期性的方波输出。
555施密特触发器的主要参数•供电电压:555施密特触发器通常需要在特定的供电电压范围内正常工作,一般为3V至16V。
•高电平输出电压:555施密特触发器在高电平输出状态下的电压。
•低电平输出电压:555施密特触发器在低电平输出状态下的电压。
•上阈值电压:触发器切换为高电平输出的电源输入电压阈值。
•下阈值电压:触发器切换为低电平输出的电源输入电压阈值。
•最大工作频率:555施密特触发器能够可靠工作的最高频率。
555施密特触发器的应用场景555施密特触发器具有广泛的应用场景,以下是几个常见的应用:1.定时器:555施密特触发器可以用作定时器,在电子设备中控制各种时间相关的操作,例如蜂鸣器鸣叫时间控制、闪光灯频率控制等。
2.方波发生器:555施密特触发器可以用作方波发生器,产生周期性的方波输出信号,用于时钟信号同步、驱动脉冲等。
3.频率分频器:555施密特触发器可以用作频率分频器,将输入的高频信号分频到指定的低频信号,常见的例子是数字时钟的秒、分、时信号的分频器。
4.PWM调光控制器:555施密特触发器可以用作PWM调光控制器,通过调节占空比来控制灯光的亮度。
总结555施密特触发器是一种功能强大、广泛应用的集成电路,其工作原理简单,性能稳定。
通过控制电源输入电压的上下阈值,可以实现周期性的方波输出,满足不同应用场景下对于计时和波形产生的需求。
9.4.2 集成单稳态触发器集成单稳态触发器既有TTL 型集成电路,如74121、74122等,也有CMOS 型集成电路,如CC14528、CC4098等。
同时,根据器件工作特性的不同,集成单稳态触发器又可分为不可重复触发型和可重复触发型两类。
★ 不可重复触发型的单稳态触发器,指其输出一旦被触发,进入暂稳态期间,如果再有新的触发信号输入,也不会影响电路的工作过程,必须等暂稳态结束,电路重新进入稳态后,电路才能接受新的触发信号,出现下一次暂稳态。
★ 可重复触发型的单稳态触发器则不同,在电路暂稳态期间,如果再有新的触发信号输入,电路将被重新出发,使得输出暂稳态时间延长,以新的触发信号为起点,再维持一个脉冲宽度的时间。
这两种类型的单稳态触发器的工作波形如图9.4.3所示。
图9.4.3 不可重复触发型和可重复触发型的单稳态触发器的工作波形(a )不可重复触发型 (b )可重复触发型一.不可重复触发型单稳态触发器74121/541211. 逻辑符号和管脚分析74121和54121是典型的不可重复触发型单稳态触发器,两者主要在使用温度、外接电阻大小和使用电源范围等方面有差异,其芯片封装图和逻辑符号相同,如图9.4.4所示。
图9.4.4 不可重复触发型单稳态触发器74121/54121(a )芯片封装图 (b )逻辑符号W t★ 由图9.4.4(a )可知:74121和54121都是DIP (双列直插)14管脚的芯片,其中,14、7管脚为电源端,2、8、12、13管脚为空管脚(标注 ),没有任何功能。
剩余8个管脚均为功能端。
★ 图9.4.4(b )为74121/54121的逻辑符号,其上标注了8个功能端的使用特点。
◆ 2个输出端状态互补,电路正常工作,出现输入激励信号时,两端同时输出暂稳态,且电平相反。
◆ 6个输入端中, 是逻辑信号输入端。
其中:是低有效的触发信号输入端,是高有效的触发信号输入端,三者经过相应逻辑运算,形成后级单稳态触发单元的输入激励信号,用表示,即(表达式中, 的含义,它是指低有效的触发信号 的非形式。
国产集成触发器KC04的原理与应用国产集成触发器KC04是KC系列触发器中的一个典型代表,适用单相、三相供电装置中作晶闸管双路脉冲移相触发,其两路相位间隔180º的移相脉冲可方便的构成半控、全控桥式触发线路。
该集成电路具有负载能力大、移相性能好、正负半周脉冲相位值均衡性好、移相范围宽、对同步电压要求不严、有脉冲列调制输入及脉冲封锁控制等优点,在实际线路中有着十分广泛的应用。
一、工作原理KC04的内电路见图1,与分立器件的锯齿波移相电路相似,由同步、锯齿波形产生、移相控制、脉冲形成、功率放大等部分组成。
图中VT1~VT3等组成同步检测电路,VT5与外接电容C2构成自举式(密勒)积分器为锯齿波产生电路。
同步正弦电压U T由⑧脚引入,在U T的正负半周内VT 1和VT 2、VT 3交替导通,使VT 1、VT 3的集电极在对应的半周内输出低电位使VT 4截止,电源经电阻R 6、R 14为外接电容C 2充电,形成线性增大的锯齿波电压。
在U T 电压的过零点绝对值小于0.7V 范围内,VT 1~VT 3均截止导至VT 4饱和,C 2迅速放电,使每半周期的锯齿波电压起点一致。
VT 6及外接元件组成脉冲移相环节,⑨脚输入的移相控制电压U K 、偏移电压U P 和C 2上的锯齿波电压并联迭加,当VT 6的基极电压达到0.7时,VT 6导通其集电极输出低电平,经○11、○12脚外接电容C 1微分耦合到VT 7的基极使其由饱和转为截止,一个电源周期内,在VT 7的集电极得到间隔180º的两组由R 12、C 1时间常数决定其宽度的高电平脉冲,经VT 8、VT 12分别封锁其正负半周,由两组功率放大级VT 9~VT 11和VT 13~VT 15分别放大后从①、○15输出。
○13、○14脚为脉冲列调制和脉冲封锁控制端用于三相控制。
KC04的主要技术参数如下:⏹电源电压 ±15V (±5%) ⏹电源电流 正电流≤15mA 负电流≤8mA ⏹同步电压 任意值(一般交流30V ) ⏹同步输入端允许最大同步电流 6mA ⏹移相范围 ≥170º(同步30V ,输入电阻15K Ω) ⏹锯齿波幅度 ≥10V ⏹输出脉宽度 400μs ~2 ms ⏹输出脉冲幅度 ≥13V ⏹最大输出能力 100mA(输出脉冲电流) ⏹输出管反压 ≥18V (Ie=100μA ) ⏹正负半周脉冲相位不均衡度 ≤±3º ⏹使用环境温度 -10~+70℃ ⏹ 封装方式 16脚陶瓷双列直插式二、KC04的典型应用KC04触发器特别适合单相电路,用于三相电路时需用三片进行组合,电路相对复杂不如其它专用的三相集成触发器方便。
NE555施密特触发器1. 引言NE555是一种常用的集成电路,用于实现多种定时和脉冲生成功能。
其中的施密特触发器是一种常见的应用,它能够根据输入信号的电压水平快速切换输出信号的状态。
本文将详细介绍NE555施密特触发器的原理、工作方式和应用场景。
2. NE555概述NE555是一种双稳态脉冲宽度调制(PWM)可控的定时器芯片,由Signetics公司(后被飞利浦公司收购)于1971年研发。
它由电压比较器、RS触发器、RS锁存器和输出驱动器等功能模块组成,可实现多种定时、延时和脉冲生成功能。
NE555工作稳定可靠,应用广泛,在电子设计和制作中扮演着重要角色。
3. 施密特触发器原理施密特触发器是一种基于正反馈原理的触发器。
它通过电压比较器和RS触发器实现。
施密特触发器中的比较器使用了两个参考电压,分别称为上限电压V VV和下限电压V VV。
当输入信号上升到V VV时,输出从低电平切换到高电平。
当输入信号下降到V VV时,输出从高电平切换到低电平。
这样的比较器能够消除输入信号的噪声和抖动,并实现快速切换的输出信号。
4. NE555施密特触发器电路图和工作方式下面是NE555施密特触发器的电路图:+---+---++---|1 8|---+| | | |---+---|2 7|---|---| | NE555 |---+---|3 6|---|---| | | |+---|4 5|---++---+---+NE555的引脚功能说明如下: - 引脚1(GND):接地引脚 - 引脚2(TRIG):施密特触发器的输入引脚,通过施密特触发器的输出状态来改变 - 引脚3(OUT):输出引脚,输出施密特触发器的状态 - 引脚4(RESET):复位引脚 - 引脚5(CTRL):电压控制引脚,通过改变引脚电压可以改变施密特触发器的状态 - 引脚6(THR):上限电压参考引脚 - 引脚7(DIS):输出禁用引脚 - 引脚8(VCC):电源引脚NE555施密特触发器的工作方式如下: 1. 初始状态下,引脚2(TRIG)为低电平,引脚3(OUT)由电源引脚提供高电平输出,引脚6(THR)接地。
常用数字集成电路数字集成电路(Digital Integrated Circuit,简称DIC)是由数字逻辑门、触发器、存储器和其他数字电路组成的集成电路。
常用的数字集成电路有以下几种类型:1.逻辑门(Logic Gates):包括与门(AND)、或门(OR)、非门(NOT)、异或门(XOR)等。
逻辑门是最基本的数字集成电路,用于实现逻辑运算和组合逻辑功能。
2.多路选择器(Multiplexers):多路选择器有多个输入和一个输出,根据控制信号选择其中一个输入输出到输出端。
3.解码器(Decoders):解码器将输入的编码信号转换为对应的输出信号,常用于地址译码和显示控制等应用。
4.编码器(Encoders):编码器将多个输入信号编码为较少的输出信号,常用于数据压缩和数据传输等应用。
5.计数器(Counters):计数器是一种顺序逻辑电路,用于计数和计时应用,例如时钟频率分频、计数器脉冲生成等。
6.触发器(Flip-Flops):触发器是一种存储器元件,用于存储和锁存数据。
常见的触发器包括RS触发器、D触发器、JK触发器等。
7.存储器(Memory):存储器用于存储和读取数据。
常见的存储器包括随机存储器(RAM)和只读存储器(ROM)等。
8.数字比较器(Comparators):数字比较器用于比较两个数字输入的大小关系,并输出比较结果。
9.加法器(Adders):加法器用于实现数字的加法运算,常见的加法器有半加器、全加器和并行加法器等。
10.时序电路(Sequential Circuits):时序电路由组合逻辑电路和触发器组成,可以实现存储和处理时序信息。
这些是常见的数字集成电路类型,它们在数字系统设计和数字电路应用中起着重要的作用。
不同的数字集成电路可以组合使用,实现各种复杂的数字功能和应用。
触发器的工作原理触发器是数字电路中常见的一种元件,它能够在接收到特定的输入信号时产生相应的输出。
触发器在数字系统中扮演着重要的角色,它可以用来存储信息、进行时序控制等。
本文将介绍触发器的工作原理,以及常见的几种触发器类型。
触发器的工作原理可以简单地理解为它能够在特定的时钟信号下,根据输入信号的状态改变输出状态。
触发器内部通常由若干门电路构成,这些门电路能够实现存储功能,从而实现对输入信号的存储和输出。
触发器一般由触发脉冲、数据输入、时钟输入和数据输出等部分组成。
在触发器的工作中,时钟信号起着至关重要的作用。
当时钟信号到来时,触发器会根据数据输入的状态来改变输出状态。
不同类型的触发器对时钟信号的响应方式有所不同,比如边沿触发器和电平触发器。
边沿触发器会在时钟信号的上升沿或下降沿发生时做出响应,而电平触发器则是在时钟信号保持高电平或低电平时才做出响应。
常见的几种触发器类型包括RS触发器、D触发器、JK触发器和T触发器等。
它们各自具有不同的特点和适用场景。
RS触发器由两个输入端S和R组成,它能够实现数据的存储和传输。
D触发器是最简单的一种触发器,它只有一个数据输入端D,能够实现数据的存储和传输。
JK触发器则是在RS触发器的基础上做出了改进,它能够避免出现禁止状态。
T触发器则是一种特殊的触发器,它能够实现数据的频率除法。
总之,触发器作为数字电路中的重要元件,其工作原理和类型多种多样。
通过对触发器的工作原理进行深入理解,我们能够更好地应用触发器在数字系统中,实现各种功能。
希望本文能够帮助读者更好地理解触发器的工作原理,从而更好地应用于实际工程中。
电工电子实验报告集成触发器及应用一、实验目的1.掌握集成触发器的逻辑功能。
2.熟悉用触发器构成计数器的方法。
3.掌握集成触发器的基本应用。
二、主要仪器设备及软件硬件:直流稳压电源,电工电子综合实验箱,函数信号发生器,示波器,笔记本电脑软件:NI Multisim 14三、实验原理(或设计过程)1.集成触发器的种类和特点触发器是组成时序逻辑电路的基本单元,集成触发器主要有3大类,锁存触发器、D触发器和JK触发器。
(1)D锁定触发器目前常使用的D锁存触发器有四锁定触发器74LS75,功能表如下锁定触发器具有以下三个特点:①锁定触发器不会出现不定状态,输入信号只需要一个,使用方便。
②锁定触发器在CP=“0”时,状态不因输入信号发生变化。
③锁定触发器是电平触发的触发器,在CP=“1”,D端状态不允许变化。
(2)维持堵塞D触发器维持阻塞D触发器克服了空翻现象,因而维持阻塞D触发器可以用来作计数器和位移寄存器。
(3)JK触发器①主从JK触发器目前主要的主从JK触发器74LS72单JK触发器和74LS112双JK触发器.②边沿JK触发器边沿触发器不仅可以克服空翻现象,而且仅仅在时钟CP的上升沿或下降沿才对输入信号起响应。
2.集成触发器的应用触发器在构成包含时间关系的数字电路中是必不可少的,它广泛用来构成计器、寄存器、移位寄存器,还可用来构成单稳、多谐等电路。
(1)二进制计数器触发器可以构成各种计数器。
每一个触发器都接成计数状态。
对D触发器,将其D端与Q非输出端相接就构成计数状态,因D触发器是上升沿触发,所以用它们构成二进制计数器时,应将每位Q非输出端与高一位CP端相连。
如图使用TTL集成D触发器和JK触发器构成的三位二进制计数器(2)并行累加器累加器适用于多个数相加求和的一种电路。
(3)堆成脉冲至对称脉冲的奇数分频四、实验电路图五、实验内容和实验结果用74LS74设计二位二进制加法计数器状态转移表:测试结果:六、实验小结通过这次实验,我们掌握集成触发器的逻辑功能,熟悉用触发器构成计数器的方法,掌握集成触发器的基本应用。