切变变换、矩阵的相等
- 格式:pptx
- 大小:556.11 KB
- 文档页数:10
《矩阵与变换》复习【知识梳理】1.二阶矩阵与平面向量:(1)矩阵的概念与表示:矩阵的行、列、元素;零矩阵、单位矩阵;行矩阵、列矩阵. (2)二阶矩阵与平面列向量的乘法:⎥⎦⎤⎢⎣⎡22211211a a a a ⎥⎦⎤⎢⎣⎡00y x = . (3)二阶矩阵M =⎥⎦⎤⎢⎣⎡d c b a 确定的变换T M 为:⎥⎦⎤⎢⎣⎡y x →⎥⎦⎤⎢⎣⎡''y x = = . 2.几种常见的平面变换:变换 恒等变换伸压变换反射变换旋转变换投影变换切变变换变换矩阵3.变换的复合与矩阵的乘法: (1)矩阵的乘法:⎥⎦⎤⎢⎣⎡22211211a a a a ⎥⎦⎤⎢⎣⎡22211211b b b b = . 4.逆变换与逆矩阵:(1)逆矩阵的概念:对于二阶矩阵A ,B ,若有 ,则称A 是可逆的,B 称为A 的逆矩阵,A 的逆矩阵记为 . (2)逆矩阵的几何意义: (3)二阶可逆矩阵A =⎥⎦⎤⎢⎣⎡d c b a的逆矩阵公式: . (4)若二阶矩阵A ,B 可逆,则(AB )-1= . 5.特征值与特征向量:(1)概念:设A 为二阶矩阵,若对于实数λ,存在一个非零向量α,使得 ,则称λ是A 的一个特征值,α是A 的属于特征值λ的一个特征向量. (2)特征多项式:f (λ) = . (3)特征值与特征向量的求解步骤:【典型例题】例1.已知变换T 把点(2,1),(-3,2)分别变换成点(7,0),(0,-7),(1)求变换T 对应的矩阵M ;(2)求直线l :x +5y -7=0在变换T 下所得的曲线方程.例2.在直角坐标系中,已知△ABC 的顶点坐标分别为A (0,0),B (1,1),C (0,2),M =⎥⎦⎤⎢⎣⎡1201,N =⎥⎦⎤⎢⎣⎡-0110求△ABC 在矩阵MN 作用下变换所得图形的面积.例3.已知矩阵A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n a a a a a a a a a 212222111211,定义其转置矩阵如下:A ′=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n a a a a a a a a a 212221212111.(1)若A =⎥⎦⎤⎢⎣⎡d c b a ,写出A 的转置矩阵A ′,并求行列式|A |和|A ′|,两者有何关系? (2)若A ⎥⎦⎤⎢⎣⎡y x =⎥⎦⎤⎢⎣⎡43表示的方程组为⎩⎨⎧=+=-43352y x y x ,试求解A ′⎥⎦⎤⎢⎣⎡y x =⎥⎦⎤⎢⎣⎡-295表示的方程组.例4.已知矩阵A =⎥⎦⎤⎢⎣⎡d c 33,若矩阵A 属于特征值6的一个特征向量为⎥⎦⎤⎢⎣⎡=111α,属于特征值1的一个特征向量为⎥⎦⎤⎢⎣⎡-=232α. (1)求矩阵A 及其逆矩阵;(2)若向量α=⎥⎦⎤⎢⎣⎡-91,试计算A n α.【反馈练习】1.下列说法中正确的是 .①反射变换,伸压变换,切变变换都是初等变换; ②任何矩阵都有逆矩阵;③若M ,N 互为逆矩阵,则MN =E ; ④反射变换矩阵都是自己的逆矩阵. 2.已知A =⎥⎦⎤⎢⎣⎡--+y yx 2002,B =⎥⎦⎤⎢⎣⎡-y x x200,若A =B ,则xy = . 3.将平面内的图形绕原点逆时针旋转045的变换矩阵记为M ,曲线C :1=xy 在M 确定的变换T M 作用下变为了曲线C ',则C '的方程为 . 4.若⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-13913214M ,则M = ;若⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-13913214M ,则M = . 5.已知矩阵⎥⎦⎤⎢⎣⎡=2001M ,⎥⎥⎦⎤⎢⎢⎣⎡=10021N ,试求曲线C :y =sin x 在矩阵MN 变换下所得曲线的解析式.6.已知矩阵M =2313⎡⎢⎢⎢-⎢⎣ 1323⎤-⎥⎥⎥⎥⎦,N =2112⎡⎤⎢⎥⎣⎦及向量σ1=11⎡⎤⎢⎥⎣⎦,σ2=11⎡⎤⎢⎥-⎣⎦. (1)证明M 和N 互为逆矩阵;(2)证明σ1和σ2同时是M 和N 的特征向量.7.矩阵A =1102⎡⎤⎢⎥⎣⎦有特征向量α1=11⎡⎤⎢⎥⎣⎦,α2=10⎡⎤⎢⎥⎣⎦. (1)求出α1,α2对应的特征值;(2)对向量α=31⎡⎤⎢⎥⎣⎦,计算A n α.高三数学(理)《矩阵与变换》专题练习1、用矩阵与向量的乘法的形式表示方程组⎩⎨⎧-=-=+1y 2x 2y 3x 2其中正确的是( )A 、⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-122132y x B 、⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-122312y x C 、⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-122132y x D 、⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-121223y x2、已知四边形ABCD 的顶点分别为A (-1,0),B (1,0),C (1,1),D (-1,1),四边形ABCD 在矩阵⎥⎦⎤⎢⎣⎡100a 变换作用下变成正方形,则a =( ) A 、21 B 、2 C 、3 D 、313、若矩阵M 1=⎥⎦⎤⎢⎣⎡1001,M 2=⎥⎦⎤⎢⎣⎡-1001,M 3=⎥⎦⎤⎢⎣⎡0101,则由M 1,M 2,M 3确定的变换分别是( )A 、恒等变换、反射变换、投影变换B 、恒等变换、投影变换、反射变换C 、投影变换、反射变换、恒等变换D 、反射变换、恒等变换、投影变换4、在直角坐标系xOy 内,将每个点的横坐标与纵坐标都变为原来的3倍,则该变换的矩阵是( )A 、1003⎛⎫⎪⎝⎭B 、0330⎛⎫⎪⎝⎭ C 、3003⎛⎫ ⎪⎝⎭ D 、3001⎛⎫⎪⎝⎭5、已知矩阵A =1111⎛⎫⎪-⎝⎭,B =2111-⎛⎫ ⎪-⎝⎭,则AB 等于( )A 、3120⎛⎫⎪-⎝⎭ B 、1032⎛⎫ ⎪-⎝⎭ C 、1302-⎛⎫ ⎪⎝⎭ D 、1320-⎛⎫ ⎪⎝⎭6、已知矩阵A = 1101-⎛⎫⎪⎝⎭,则矩阵A 的逆矩阵A -1等于( )A 、11221122⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭B 、11221122⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭C 、11221122⎛⎫ ⎪⎪ ⎪- ⎪⎝⎭ D 、11221122⎛⎫⎪ ⎪ ⎪- ⎪⎝⎭7、点(-1,k )在伸压变换矩阵⎥⎦⎤⎢⎣⎡100m 之下的对应点的坐标为(-2,-4),则m 、k 的值分别为( )A 、2,4B 、-2,4C 、2,-4D 、-2,-48、设T 是以 ox 轴为轴的反射变换,则变换T 的矩阵为( )A 、⎥⎦⎤⎢⎣⎡-1001 B、 ⎥⎦⎤⎢⎣⎡-1001 C、 ⎥⎦⎤⎢⎣⎡--1001 D、⎥⎦⎤⎢⎣⎡01109、设A 是到ox 轴的正投影变换,A 把点P (x ,y )变成点P ′(x ,0),B 是到oy 轴的正投影变换B 把点P (x ,y )变成点P ″(0,y ),则变换A 和B 的矩阵分别为( ).A、⎥⎦⎤⎢⎣⎡0001,⎥⎦⎤⎢⎣⎡1000 B、⎥⎦⎤⎢⎣⎡1000,⎥⎦⎤⎢⎣⎡0001 C、⎥⎦⎤⎢⎣⎡0101,⎥⎦⎤⎢⎣⎡0001 D、⎥⎦⎤⎢⎣⎡0001,⎥⎦⎤⎢⎣⎡010110、计算:⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡321110=__________ 11、点A (1,2)在矩阵⎥⎦⎤⎢⎣⎡-1022对应的变换作用下得到的点的坐标是___________12、若点A 在矩阵1222-⎡⎤⎢⎥-⎣⎦对应的变换作用下下得到的点为(2,4),则点A 的坐标为_________ 13、将向量⎥⎦⎤⎢⎣⎡=12a 绕原点按逆时针方向旋转4π得到向量b ,则向量b 的坐标为___________14、在某个旋转变换中,顺时针旋转3π所对应的变换矩阵为______ 15、曲线y x =在矩阵0110⎡⎤⎢⎥⎣⎦作用下变换所得的图形对应的曲线方程为______ 16、曲线xy=1绕坐标原点逆时针旋转90°后得到的曲线方程是 ,变换对应的矩阵是__ 17、若曲线x 3cos 21y =经过伸压变换T 作用后变为新的曲线cos y x =,试求变换T 对应的矩阵M =___. 18、求矩阵3221A ⎡⎤=⎢⎥⎣⎦的逆矩阵.19、已知△ABO 的顶点坐标分别是A (4,2),B (2,4),O (0,0),计算在变换T M =1111⎡⎤⎢⎥-⎣⎦之下三个顶点ABO 的对应点的坐标.20、在平面直角坐标系xOy 中,设椭圆2241x y +=在矩阵⎣⎡⎦⎤2 00 1对应的变换作用下得到曲线F ,求F 的方程.21、求曲线C :1xy =在矩阵1111M ⎛⎫= ⎪-⎝⎭对应的变换作用下得到的曲线C 1的方程.22、求将曲线2y x =绕原点逆时针旋转90︒后所得的曲线方程.23、直角坐标系xOy 中,点(2,-2)在矩阵010M a ⎛⎫=⎪⎝⎭对应变换作用下得到点(-2,4),曲线22:1C x y +=在矩阵M 对应变换作用下得到曲线C ',求曲线C '的方程.24、设点P 的坐标为(1,-2),T 是绕原点逆时针方向旋转3π的旋转变换,求旋转变换T 对应的矩阵,并求点P 在T 作用下的象点P ′的坐标.25、在平面直角坐标系xOy 中,A(0,0),B(-3,),C(-2,1),设k ≠0,k ∈R ,M=⎥⎦⎤⎢⎣⎡100k ,N=⎥⎦⎤⎢⎣⎡0110,点A 、B 、C 在矩阵MN 对应的变换下得到点A 1,B 1,C 1,△A 1B 1C 1的面积是△ABC 面积的2倍,求实数k 的值.26、若点(2,2)A 在矩阵=M ⎝⎛ααsin cos ⎪⎪⎭⎫-ααcos sin 对应变换的作用下得到的点为B (2,2)-,求矩阵M 的逆矩阵.27、已知矩阵M=⎥⎦⎤⎢⎣⎡x 221的一个特征值为3,求其另一个特征值.28、设矩阵A =⎣⎡⎦⎤1 a 0 1(a ≠0)、(1)求A 2 ,A 3;(2)猜想A n (n ∈N *);(3)证明:A n (n ∈N *)的特征值是与n 无关的常数,并求出此常数.29、已知△ABC ,A(-1,0),B(3,0),C(2,1),对它先作关于x 轴的反射变换,再将所得图形绕原点逆时针旋转90°.(1)分别求两次变换所对应的矩阵M 1,M 2;(2)求点C 在两次连续的变换作用下所得到的点的坐标.30、已知矩阵A =⎣⎢⎡⎦⎥⎤ 3 3 c d ,若矩阵A 属于特征值6的一个特征向量为α1=⎣⎢⎡⎦⎥⎤11,属于特征值1的一个特征向量为α2=⎣⎢⎡⎦⎥⎤3-2、求矩阵A ,并写出A 的逆矩阵.31、已知矩阵11A ⎡=⎢-⎣ 24⎤⎥⎦,向量74α⎡⎤=⎢⎥⎣⎦. (1)求A 的特征值1λ、2λ和特征向量1α、2α; (2)计算5A α的值.32、已知矩阵11A ⎡=⎢-⎣ a b ⎤⎥⎦,A 的一个特征值2λ=,其对应的特征向是是121α⎡⎤=⎢⎥⎣⎦.(1)求矩阵A ;(2)若向量74β⎡⎤=⎢⎥⎣⎦,计算5A β的值.。
矩阵与变化 知识点一、线性变换与二阶矩阵 1.矩阵的相关概念(1)由4个数a,b,c,d 排成的正方形数表a b c d ⎡⎤⎢⎥⎣⎦称为二阶矩阵,数a,b,c,d 称为矩阵的元素。
在二阶矩阵中,横的叫行,从上到下依次称为矩阵的第一行、第二行;竖的叫列,从左到右依次称为矩阵的第一列、第二列。
矩阵通常用大写的英文字母A ,B ,C ,…表示。
(2)二阶矩阵0000⎡⎤⎢⎥⎣⎦称为零矩阵,简记为0,矩阵1001⎡⎤⎢⎥⎣⎦称为二阶单位矩阵,记作E 2。
(3)对于两个二阶矩阵A ,B ,如果它们的对应元素分别相等,则称矩阵A 与矩阵B 相等,记作A=B ,设A=1111a b c d ⎡⎤⎢⎥⎣⎦,B=2222a b c d ⎡⎤⎢⎥⎣⎦,若A=B ,则12121212,,,a a b b c c d d ====。
2.线性变换的相关概念(1)我们把形如()x ax byy cx dy '=+⎧*⎨'=+⎩的几何变换叫做线性变换,()*式叫做这个线性变换的坐标变换公式,(,)P x y '''是(,)P x y 在这个线性变换作用下的像。
(2)常见的线性变换有旋转变换、反射变换、伸缩变换、投影变换、切变变换。
(3)对同一个直角坐标平面内的两个线性变换σ、ρ,如果对平面内任意一点P ,都有σ(P )=ρ(P ),则称这个两个线性变换相等,简记为σ=ρ,设σ,ρ所对应的二阶矩阵分别为A ,B ,则A=B 。
注:旋转变换R α,平行于x 轴,y 轴的切变变换,对应的二阶矩阵分别是:cos sin 1,1,0,,sin cos 011k k αααα-⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,k 是非零常数。
3.二阶矩阵与平面向量的乘法 设A=a b c d ⎡⎤⎢⎥⎣⎦,α=x y ⎡⎤⎢⎥⎣⎦,则A α=a b c d ⎡⎤⎢⎥⎣⎦x y ⎡⎤⎢⎥⎣⎦=ax by cx dy +⎡⎤⎢⎥+⎣⎦. 4.线性变换的基本性质设A 是一个二阶矩阵,α,β是平面上的任意两个向量,λ是一个任意实数, (1)性质1 ①A(λα)=λA α.②A(α+β)=A α+A β.(2)定理1 1212()A A A λαλβλαλβ+=+(3)定理2 二阶矩阵对应的变换(线性变换)把平面上的直线变成直线(或一点)。
;第一讲二阶矩阵、二阶矩阵与平面向量的乘法、二阶矩阵与线性变换。
一、二阶矩阵 1.矩阵的概念①OP → (2, 3),将→的坐标排成一列,并简记为⎣⎢⎡⎦⎥⎤2 3 — ⎣⎢⎡⎦⎥⎤2 3初赛 复赛 < 甲80 90 乙 86 88③ (概念一:象⎣⎢⎡⎦⎥⎤2 3 80908688⎡⎤⎢⎥⎣⎦ 23324m ⎡⎤⎢⎥-⎣⎦的矩形数字(或字母)阵列称为矩阵.通常用大写的拉丁字母A 、B 、C…表示, 横排叫做矩阵的行,竖排叫做矩阵的列. 名称介绍:①上述三个矩阵分别是2×1矩阵,2×2矩阵(二阶矩阵),2×3矩阵,注意行的个数在前。
②矩阵相等:行数、列数相等,对应的元素也相等的两个矩阵,称为A =B 。
③行矩阵:[a 11,a 12](仅有一行)④列矩阵:⎣⎢⎡⎦⎥⎤a 11 a 21 (仅有一列)$⑤向量a →=(x,y ),平面上的点P (x,y )都可以看成行矩阵[,]x y 或列矩阵x y ⎡⎤⎢⎥⎣⎦,在本书中规定所有的平面向量均写成列向量x y ⎡⎤⎢⎥⎣⎦的形式。
练习1:1.已知⎥⎦⎤⎢⎣⎡-=243x A ,⎥⎦⎤⎢⎣⎡-=21z y B ,若A=B ,试求z y x ,, 2.设23x A y ⎡⎤=⎢⎥⎣⎦,2m nx y B x y m n ++⎡⎤=⎢⎥--⎣⎦,若A=B ,求x,y,m,n 的值。
概念二:2 3 # m 3 -2 4 y x 2 3OP (2, — 2— 3@⎣⎢⎡⎦⎥⎤80 90 86 88 231,3242x y mz x y z ++=⎧⎨-+=⎩简记为23324m ⎡⎤⎢⎥-⎣⎦由4个数a,b,c,d 排成的正方形数表a b c d ⎡⎤⎢⎥⎣⎦称为二阶矩阵。
a,b,c,d 称为矩阵的元素。
①零矩阵:所有元素均为0,即0000⎡⎤⎢⎥⎣⎦,记为0。
②二阶单位矩阵:1001⎡⎤⎢⎥⎣⎦,记为E 2.}二、二阶矩阵与平面向量的乘法定义:规定二阶矩阵A=a b c d ⎡⎤⎢⎥⎣⎦,与向量x y α→⎡⎤=⎢⎥⎣⎦的乘积为ax by A cx dy α→+⎡⎤=⎢⎥+⎣⎦,即A α→=a b c d ⎡⎤⎢⎥⎣⎦x y ⎡⎤⎢⎥⎣⎦=ax by cx dy +⎡⎤⎢⎥+⎣⎦练习2:1.(1)⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-131021=(2) ⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-311021= 2.⎥⎦⎤⎢⎣⎡2101⎥⎦⎤⎢⎣⎡y x =⎥⎦⎤⎢⎣⎡-11,求⎥⎦⎤⎢⎣⎡y x三、二阶矩阵与线性变换 1.旋转变换 &问题1:P (x,y )绕原点逆时针旋转180o 得到P ’(x ’,y ’),称P ’为P 在此旋转变换作用下的象。